Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Chemistry ; 30(41): e202401634, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38718317

RESUMEN

Superoxido copper complexes play an important role as usually short-lived intermediates in biology and chemistry. The unusual stability of an end-on superoxido copper complex observed in an oxygen-enhanced atom transfer radical polymerization (ATRP) led to a detailed mechanistic investigation of the formation of [CuII(Me6tren)(O2⋅-)]+ (Me6tren=tris(2-dimethyl-aminoethyl)amine) under ambient conditions. The persistence of the superoxido copper complex could be explained by a reaction cycle including the peroxido complex [(Me6tren)2CuII 2(O2)]2+ together with [CuI(Me6tren)(DMSO)]+ and [CuII(Me6tren)(OH)]+ in the overall reaction.

2.
Molecules ; 29(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39202835

RESUMEN

[(Bn-tpen)FeII(MeCN)](ClO4)2, containing the pentadentate Bn-tpen-N-benzyl-N,N',N'-tris(2-pyridylmethyl)-1,2-diaminoethane ligand, was studied in the oxygenation of cyclohexene and limonene using low-pressure dioxygen (0.2 atm air or 1 atm pure O2) in acetonitrile. 2-Cyclohexen-1-one and 2-cyclohexen-1-ol are the main products of cyclohexene oxidations, with cyclohexene oxide as a minor product. Limonene is oxidized to limonene oxide, carvone, and carveol. Other oxidation products such as perillaldehyde and perillyl alcohol are found in trace amounts. This catalyst is slightly less active than the previously reported [(N4Py)FeII(MeCN)](ClO4)2 (N4Py-N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine). Based on cyclic voltammetry experiments, it is postulated that [(Bn-tpen)FeIV=O]2+ is the active species. The induction period of approx. 3 h during cyclohexene oxygenation is probably caused by deactivation of the reactive Fe(IV)=O species by the parent Fe(II) complex. Equimolar mixtures of Fe(II) salt and the ligand (in situ-formed catalyst) gave catalytic performance similar to that of the synthesized catalyst.

3.
Angew Chem Int Ed Engl ; : e202416022, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39364811

RESUMEN

Hydrogen bonds involving the oxygen atoms of intermediates that result from copper-mediated O2 activation play a key role for controlling the reactivity of Cux/O2 active sites in metalloenzymes and synthetic model complexes. However, structural insight into H-bonding in such transient species as well as thermodynamic information about proton transfer to or from the O2-derived ligands is scarce. Here we present a detailed study of the reversible interconversion of a µ1,2-peroxodicopper(II) complex ([1]+) and its µ1,1-hydroperoxo congener ([2]+) via (de)protonation, including the isolation and structural characterization of several H-bond donor (HBD) adducts of [1]+ and the determination of binding constants. For one of these adducts a temperature-dependent µ1,2-peroxo/µ1,1-hydroperoxo equilibrium associated with reversible H+-translocation is observed, its thermodynamics investigated experimentally and computationally, and effects of H-bonding on spectroscopic parameters of the CuII2(µ1,2-O2) species are revealed. DFT calculations allowed to fully map and correlate the trajectories of H+-transfer and µ1,2-peroxo→µ1,1-peroxo rearrangement. These findings enhance our understanding of two key intermediates in bioinspired Cu2/O2 chemistry.

4.
Chemistry ; 29(14): e202203128, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36447369

RESUMEN

The cationic complex [Ni(H)(OH)]+ was previously found to activate dioxygen and methane in gas phase under single collision conditions. These remarkable reactivities were thought to originate from a non-classical electronic structure, where the Ni-center adopts a Ni(II), instead of the classically expected Ni(III) oxidation state by formally accepting an electron from the hydroxo ligand, which formally becomes a hydroxyl radical in the process. Such radicaloid oxygen moieties are envisioned to easily react with otherwise inert substrates, mimicking familiar reactivities of free radicals. In this study, the reductive activation of dioxygen by [Ni(H)(OH)]+ to afford the hydroperoxo species was investigated using coupled cluster, multireference ab initio and density functional theory calculations. Orbital and wave function analyses indicate that O2 binding tranforms the aforementioned non-classical electronic structure to a classical Ni(III)-hydroxyl system, before O2 reduction takes place. Remarkably, we found no evidence for a direct involvement of the radicaloid hydroxyl in the reaction with O2 , as is often assumed. The function of the redox non-innocent character of the activator complex is to protect the reactive electronic structure until the complex engages O2 , upon which a dramatic electronic reorganization releases internal energy and drives the chemical reaction to completion.

5.
Molecules ; 28(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37375295

RESUMEN

Surface oxygen vacancy (OV) plays a pivotal role in the activation of molecular oxygen and separation of electrons and holes in photocatalysis. Herein, carbonaceous materials-modified MoO2 nanospheres with abundant surface OVs (MoO2/C-OV) were successfully synthesized via glucose hydrothermal processes. In situ introduction of carbonaceous materials triggered a reconstruction of the MoO2 surface, which introduced abundant surface OVs on the MoO2/C composites. The surface oxygen vacancies on the obtained MoO2/C-OV were confirmed via electron spin resonance spectroscopy (ESR) and X-ray photoelectron spectroscopy (XPS). The surface OVs and carbonaceous materials boosted the activation of molecular oxygen to singlet oxygen (1O2) and superoxide anion radical (•O2-) in selectively photocatalytic oxidation of benzylamine to imine. The conversion of benzylamine was 10 times that of pristine MoO2 nanospheres with a high selectivity under visible light irradiation at 1 atm air pressure. These results open an avenue to modify Mo-based materials for visible light-driven photocatalysis.

6.
Molecules ; 28(5)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36903486

RESUMEN

The use of dioxygen as an oxidant in fine chemicals production is an emerging problem in chemistry for environmental and economical reasons. In acetonitrile, the [(N4Py)FeII]2+ complex, [N4Py-N,N-bis(2-pyridylmethyl)-N-(bis-2-pyridylmethyl)amine] in the presence of the substrate activates dioxygen for the oxygenation of cyclohexene and limonene. Cyclohexane is oxidized mainly to 2-cyclohexen-1-one, and 2-cyclohexen-1-ol, cyclohexene oxide is formed in much smaller amounts. Limonene gives as the main products limonene oxide, carvone, and carveol. Perillaldehyde and perillyl alcohol are also present in the products but to a lesser extent. The investigated system is twice as efficient as the [(bpy)2FeII]2+/O2/cyclohexene system and comparable to the [(bpy)2MnII]2+/O2/limonene system. Using cyclic voltammetry, it has been shown that, when the catalyst, dioxgen, and substrate are present simultaneously in the reaction mixture, the iron(IV) oxo adduct [(N4Py)FeIV=O]2+ is formed, which is the oxidative species. This observation is supported by DFT calculations.

7.
Molecules ; 28(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687067

RESUMEN

Quercetin 2,4-dioxygenase (QueD) with various transition metal ion co-factors shows great differences, but the internal reasons have not been illustrated in detail. In order to explore the effects of metal ion centers on the catalytic reactivity of QueD, we calculated and compared the minimum energy crossing point (MECP) of dioxygen from the relatively stable triplet state to the active singlet state under different conditions by using the DFT method. It was found that the metal ions play a more important role in the activation of dioxygen compared with the substrate and the protein environment. Simultaneously, the catalytic reactions of the bacterial QueDs containing six different transition metal ions were studied by the QM/MM approach, and we finally obtained the reactivity sequence of metal ions, Ni2+ > Co2+ > Zn2+ > Mn2+ > Fe2+ > Cu2+, which is basically consistent with the previous experimental results. Our calculation results indicate that metal ions act as Lewis acids in the reaction to stabilize the substrate anion and the subsequent superoxo and peroxo species in the reaction, and promote the proton coupled electron transfer (PCET) process. Furthermore, the coordination tendencies of transition metal ion centers also have important effects on the catalytic cycle. These findings have general implications on metalloenzymes, which can expand our understanding on how various metal ions play their key role in modulating catalytic reactivity.

8.
Angew Chem Int Ed Engl ; 62(7): e202212053, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36545867

RESUMEN

The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII -superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII -OOH species that couples with the substrate radical, leading to a CuI -alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O-O bond cleavage is coupled with the C-S bond breaking that generates the formylglycine and a CuII -oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2 , which will be useful for future experimental work.


Asunto(s)
Cobre , Cisteína , Cobre/química , Cisteína/metabolismo , Oxidación-Reducción , Oxígeno/química
9.
Chemistry ; 28(28): e202200217, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35315975

RESUMEN

We report two new FeIII complexes [L1 FeIII (H2 O)](OTf)2 and [L2 FeIII (OTf)], obtained by replacing pyridines by phenolates in a known non-heme aminopyridine iron complex. While the original, starting aminopyridine [(L5 2 )FeII (MeCN)](PF6 ) complex is stable in air, the potentials of the new FeIII/II couples decrease to the point that [L2 FeII ] spontaneously reduces O2 to superoxide. We used it as an O2 activator in an electrochemical setup, as its presence allows to generate superoxide at a much more accessible potential (>500 mV gain). Our aim was to achieve substrate oxidation via the reductive activation of O2 . While L2 FeIII (OTf) proved to be a good O2 activator but a poor oxidation system, its association with another complex (TPEN)FeII (PF6 )2 generates a complementary tandem couple for electro-assisted oxidation of substrates, working at a very accessible potential: upon reduction, L2 FeIII (OTf) activates O2 to superoxide and transfers it to (TPEN)FeII (PF6 )2 leading in fine to the oxidation of thioanisole.


Asunto(s)
Compuestos Férricos , Superóxidos , Aminopiridinas , Compuestos Férricos/química , Compuestos Ferrosos/química , Hierro , Oxidación-Reducción , Oxígeno/química , Sulfuros
10.
Chemistry ; 28(63): e202202088, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-35947006

RESUMEN

The unexplored 'actor' behavior of redox-active bis(aldimine) congener, p-phenylene-bis(picoline)aldimine (L1), towards dioxygen activation and subsequent functionalization of its backbone was demonstrated on coordination with {Ru(acac)2 } (acac= acetylacetonate). Reaction under aerobic condition led to the one-pot generation of dinuclear complexes with unperturbed L1, imino-carboxamido (L2- ), and bis(carboxamido) (L32- )-bridged isovalent {RuII (µ-L1)RuII }, 1/ {RuIII (µ-L32- )RuIII }, 3 and mixed-valent {RuII (µ-L2- )RuIII }, 2. Authentication of the complexes along with the redox non-innocence behavior of their bridge have been validated through structure, spectroelectrochemistry and DFT calculations. Kinetic and isotope labelling experiments together with DFT analyzed transition states justified the consideration of redox shuttling at metal/L1 interface for 3 O2 activation despite of the closed shell configuration of 1 (S=0) to give carboxamido derived 2/3.


Asunto(s)
Compuestos Organometálicos , Rutenio , Ligandos , Rutenio/química , Oxígeno , Compuestos Organometálicos/química , Electroquímica , Oxidación-Reducción
11.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682881

RESUMEN

We studied the kinetics of the reaction of N-acetyl-l-cysteine (NAC or RSH) with cupric ions at an equimolar ratio of the reactants in aqueous acid solution (pH 1.4−2) using UV/Vis absorption and circular dichroism (CD) spectroscopies. Cu2+ showed a strong catalytic effect on the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) radical (ABTSr) consumption and autoxidation of NAC. Difference spectra revealed the formation of intermediates with absorption maxima at 233 and 302 nm (ε302/Cu > 8 × 103 M−1 cm−1) and two positive Cotton effects centered at 284 and 302 nm. These intermediates accumulate during the first, O2-independent, phase of the NAC autoxidation. The autocatalytic production of another chiral intermediate, characterized by two positive Cotton effects at 280 and 333 nm and an intense negative one at 305 nm, was observed in the second reaction phase. The intermediates are rapidly oxidized by added ABTSr; otherwise, they are stable for hours in the reaction solution, undergoing a slow pH- and O2-dependent photosensitive decay. The kinetic and spectral data are consistent with proposed structures of the intermediates as disulfide-bridged dicopper(I) complexes of types cis-/trans-CuI2(RS)2(RSSR) and CuI2(RSSR)2. The electronic transitions observed in the UV/Vis and CD spectra are tentatively attributed to Cu(I) → disulfide charge transfer with an interaction of the transition dipole moments (exciton coupling). The catalytic activity of the intermediates as potential O2 activators via Cu(II) peroxo-complexes is discussed. A mechanism for autocatalytic oxidation of Cu(I)−thiolates promoted by a growing electronically coupled −[CuI2(RSSR)]n− polymer is suggested. The obtained results are in line with other reported observations regarding copper-catalyzed autoxidation of thiols and provide new insight into these complicated, not yet fully understood systems. The proposed hypotheses point to the importance of the Cu(I)−disulfide interaction, which may have a profound impact on biological systems.


Asunto(s)
Acetilcisteína , Compuestos de Sulfhidrilo , Antioxidantes , Cobre/química , Disulfuros , Oxidación-Reducción , Oxígeno/química , Especies Reactivas de Oxígeno
12.
Angew Chem Int Ed Engl ; 61(2): e202111492, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34850509

RESUMEN

A new structurally characterized ferrous corrole [FeII (ttppc)]- (1) binds one equivalent of dioxygen to form [FeIII (O2-. )(ttppc)]- (2). This complex exhibits a 16/18 O2 -isotope sensitive ν(O-O) stretch at 1128 cm-1 concomitantly with a single ν(Fe-O2 ) at 555 cm-1 , indicating it is an η1 -superoxo ("end-on") iron(III) complex. Complex 2 is the first well characterized Fe-O2 corrole, and mediates the following biologically relevant oxidation reactions: dioxygenation of an indole derivative, and H-atom abstraction from an activated O-H bond.


Asunto(s)
Oxígeno
13.
Angew Chem Int Ed Engl ; 61(50): e202214235, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36259368

RESUMEN

The non-heme iron ergothioneine synthase (EgtB) is a sulfoxide synthase that catalyzes oxidative C-S bond formation in the synthesis of ergothioneine, which plays roles against oxidative stress in cells. Despite extensive experimental and computational studies of the catalytic mechanisms of EgtB, the root causes for the selective C-S bond formation remain elusive. Using quantum mechanics/molecular mechanics (QM/MM) calculations, we show herein that a coordination switch of the sulfoxide intermediate is involved in the catalysis of the non-heme iron EgtB. This coordination switch from the S to the O atom is driven by the S/π electrostatic interactions, which efficiently promotes the observed stereoselective C-S bond formation while bypassing cysteine dioxygenation. The present mechanism is in agreement with all available experimental data, including regioselectivity, stereoselectivity and KIE results. This match underscores the critical role of coordination switching in the catalysis of non-heme enzymes.


Asunto(s)
Ergotioneína , Catálisis , Simulación de Dinámica Molecular , Hierro , Sulfóxidos
14.
J Biol Inorg Chem ; 26(2-3): 249-263, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33595752

RESUMEN

Inspired by the efficiency of natural enzymes in organic transformation reactions, the development of synthetic catalysts for oxygenation and oxidation reactions under mild conditions still remains challenging. Tyrosinases serve as archetype when it comes to hydroxylation reactions involving molecular oxygen. We herein present new copper(I) guanidine halide complexes, capable of the activation of molecular oxygen at room temperature. The formation of the reactive bis(µ-oxido) dicopper(III) species and the influence of the anion are investigated by UV/Vis spectroscopy, mass spectrometry, and density functional theory. We highlight the catalytic hydroxylation activity towards diverse polycyclic aromatic alcohols under mild reaction conditions. The selective formation of reactive quinones provides a promising tool to design phenazine derivatives for medical applications.


Asunto(s)
Azulenos/química , Complejos de Coordinación/química , Cobre/química , Oxígeno/química , Sesquiterpenos de Guayano/química , Temperatura , Teoría Funcional de la Densidad , Modelos Moleculares , Conformación Molecular
15.
Chemistry ; 27(4): 1311-1315, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33125815

RESUMEN

The first dicobalt(III) µ2 -peroxo N-heterocyclic carbene (NHC) complex is reported. It can be quantitatively generated from a cobalt(II) compound bearing a 16-membered macrocyclic tetra-NHC ligand via facile activation of dioxygen from air at ambient conditions. The reaction proceeds via an end-on superoxo intermediate as demonstrated by EPR studies and DFT. The peroxo moiety can be cleaved upon addition of acetic acid, yielding the corresponding CoIII acetate complex going along with H2 O2 formation. In contrast, both CoII and CoIII complexes are also studied as catalysts to utilize air for olefin and alkane oxidation reactions; however, not resulting in product formation. The observations are rationalized by DFT-calculations, suggesting a nucleophilic nature of the dicobalt(III) µ2 -peroxo complex. All isolated compounds are characterized by NMR, ESI-MS, elemental analysis, EPR and SC-XRD.

16.
Angew Chem Int Ed Engl ; 60(28): 15632-15640, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955154

RESUMEN

The present work describes the reaction of triplet dioxygen with the porphyrinogenic calix[4]pyrrolato aluminates to alkylperoxido aluminates in high selectivity. Multiconfigurational quantum chemical computations disclose the mechanism for this spin-forbidden process. Despite a negligible spin-orbit coupling constant, the intersystem crossing (ISC) is facilitated by singlet and triplet state degeneracy and spin-vibronic coupling. The formed peroxides are stable toward external substrates but undergo an unprecedented oxidative pyrrole α-cleavage by ligand aromatization/dearomatization-initiated O-O σ-bond scission. A detailed comparison of the calix[4]pyrrolato aluminates with dioxygen-related enzymology provides insights into the ISC of metal- or cofactor-free enzymes. It substantiates the importance of structural constraint and element-ligand cooperativity for the functions of aerobic life.


Asunto(s)
Aluminio/metabolismo , Calixarenos/metabolismo , Flavoproteínas/metabolismo , Oxígeno/metabolismo , Fenoles/metabolismo , Pirroles/metabolismo , Aluminio/química , Calixarenos/química , Teoría Funcional de la Densidad , Flavoproteínas/química , Modelos Moleculares , Estructura Molecular , Oxígeno/química , Fenoles/química , Pirroles/química
17.
J Biol Inorg Chem ; 25(4): 583-596, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32248305

RESUMEN

The cytochrome P450 heme monooxygenases commonly use an acid-alcohol pair of residues, within the I-helix, to activate iron-bound dioxygen. This work aims to clarify conflicting reports on the importance of the alcohol functionality in this process. Mutants of the P450, CYP199A4 (CYP199A4D251N and CYP199A4T252A), were prepared, characterised and their crystal structures were solved. The acid residue of CYP199A4 is not part of a salt bridge network, a key feature of paradigmatic model system P450cam. Instead, there is a direct proton delivery network, via a chain of water molecules, extending to the surface. Nevertheless, CYP199A4D251N dramatically reduced the activity of the enzyme consistent with a role in proton delivery. CYP199A4T252A decreased the coupling efficiency of the enzyme with a concomitant increase in the hydrogen peroxide uncoupling pathway. However, the effect of this mutation was much less pronounced than reported with P450cam. Its crystal structures revealed fewer changes at the I-helix, compared to the P450cam system. The structural changes observed within the I-helix of P450cam during oxygen activation do not seem to be required in this P450. These differences are due to the presence of a second threonine residue at position 253, which is absent in P450cam. This threonine forms part of the hydrogen bonding network, resulting in subtle structural changes and is also present across the majority of the P450 superfamily. Overall, the results suggest that while the acid-alcohol pair is important for dioxygen activation this process and the method of proton delivery can differ across P450s.Graphic abstract.


Asunto(s)
Alcoholes/química , Benzoatos/química , Sistema Enzimático del Citocromo P-450/química , Oxígeno/química , Alcoholes/metabolismo , Benzoatos/metabolismo , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Oxígeno/metabolismo
18.
Chemistry ; 26(34): 7556-7562, 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32104930

RESUMEN

The enzyme tyrosinase contains a reactive side-on peroxo dicopper(II) center as catalytically active species in C-H oxygenation reactions. The tyrosinase activity of the isomeric bis(µ-oxo) dicopper(III) form has been discussed controversially. The synthesis of bis(µ-oxo) dicopper(III) species [Cu2 (µ-O)2 (L1)2 ](X)2 ([O1](X)2 , X=PF6 - , BF4 - , OTf- , ClO4 - ), stabilized by the new hybrid guanidine ligand 2-{2-((dimethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (L1), and its characterization by UV/Vis, Raman, and XAS spectroscopy, as well as cryo-UHR-ESI mass spectrometry, is described. We highlight selective oxygenation of a plethora of phenolic substrates mediated by [O1](PF6 )2 , which results in mono- and bicyclic quinones and provides an attractive strategy for designing new phenazines. The selectivity is predicted by using the Fukui function, which is hereby introduced into tyrosinase model chemistry. Our bioinspired catalysis harnesses molecular dioxygen for organic transformations and achieves a substrate diversity reaching far beyond the scope of the enzyme.

19.
Angew Chem Int Ed Engl ; 59(26): 10514-10518, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32196128

RESUMEN

In contrast to catalytically active metal single atoms deposited on oxide nanoparticles, the crystalline nature of metal-organic frameworks (MOFs) allows for a thorough characterization of reaction mechanisms. Using defect-free HKUST-1 MOF thin films, we demonstrate that Cu+ /Cu2+ dimer defects, created in a controlled fashion by reducing the pristine Cu2+ /Cu2+ pairs of the intact framework, account for the high catalytic activity in low-temperature CO oxidation. Combining advanced IR spectroscopy and density functional theory we propose a new reaction mechanism where the key intermediate is an uncharged O2 species, weakly bound to Cu+ /Cu2+ . Our results reveal a complex interplay between electronic and steric effects at defect sites in MOFs and provide important guidelines for tailoring and exploiting the catalytic activity of single metal atom sites.

20.
Angew Chem Int Ed Engl ; 59(32): 13385-13390, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32356371

RESUMEN

The dinuclear copper enzyme, tyrosinase, activates O2 to form a (µ-η2 :η2 -peroxido)dicopper(II) species, which hydroxylates phenols to catechols. However, the exact mechanism of phenolase reaction in the catalytic site of tyrosinase is still under debate. We herein report the near atomic resolution X-ray crystal structures of the active tyrosinases with substrate l-tyrosine. At their catalytic sites, CuA moved toward l-tyrosine (CuA1 → CuA2), whose phenol oxygen directly coordinates to CuA2, involving the movement of CuB (CuB1 → CuB2). The crystal structures and spectroscopic analyses of the dioxygen-bound tyrosinases demonstrated that the peroxide ligand rotated, spontaneously weakening its O-O bond. Thus, the copper migration induced by the substrate-binding is accompanied by rearrangement of the bound peroxide species so as to provide one of the peroxide oxygen atoms with access to the phenol substrate's ϵ carbon atom.


Asunto(s)
Cobre/metabolismo , Monofenol Monooxigenasa/metabolismo , Oxígeno/metabolismo , Tirosina/metabolismo , Aspergillus oryzae/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Biocatálisis , Dominio Catalítico , Cobre/química , Cristalografía por Rayos X , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Químicos , Monofenol Monooxigenasa/química , Oxígeno/química , Unión Proteica , Streptomyces/enzimología , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA