Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Regen Ther ; 21: 620-630, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514370

RESUMEN

Introduction: Human induced pluripotent stem cells (hiPSCs) are useful tools for reproducing neural development in vitro. However, each hiPSC line has a different ability to differentiate into specific lineages, known as differentiation propensity, resulting in reduced reproducibility and increased time and funding requirements for research. To overcome this issue, we searched for predictive signatures of neural differentiation propensity of hiPSCs focusing on DNA methylation, which is the main modulator of cellular properties. Methods: We obtained 32 hiPSC lines and their comprehensive DNA methylation data using the Infinium MethylationEPIC BeadChip. To assess the neural differentiation efficiency of these hiPSCs, we measured the percentage of neural stem cells on day 7 of induction. Using the DNA methylation data of undifferentiated hiPSCs and their measured differentiation efficiency into neural stem cells as the set of data, and HSIC Lasso, a machine learning-based nonlinear feature selection method, we attempted to identify neural differentiation-associated differentially methylated sites. Results: Epigenome-wide unsupervised clustering cannot distinguish hiPSCs with varying differentiation efficiencies. In contrast, HSIC Lasso identified 62 CpG sites that could explain the neural differentiation efficiency of hiPSCs. Features selected by HSIC Lasso were particularly enriched within 3 Mbp of chromosome 5, harboring IRX1, IRX2, and C5orf38 genes. Within this region, DNA methylation rates were correlated with neural differentiation efficiency and were negatively correlated with gene expression of the IRX1/2 genes, particularly in female hiPSCs. In addition, forced expression of the IRX1/2 impaired the neural differentiation ability of hiPSCs in both sexes. Conclusion: We for the first time showed that the DNA methylation state of the IRX1/2 genes of hiPSCs is a predictive biomarker of their potential for neural differentiation. The predictive markers for neural differentiation efficiency identified in this study may be useful for the selection of suitable undifferentiated hiPSCs prior to differentiation induction.

2.
Cell Cycle ; 14(7): 1036-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25603532

RESUMEN

As the name implies, Stimulated by Retinoic Acid 8 is an early retinoic acid (RA) responsive gene pivotal for the beginning of meiosis in female and male germ cells. Its expression is strictly time-dependent and cell-specific (pre-meiotic germ cells) and likely requires a complex mechanism of regulation. In this study, we demonstrate a direct negative control of SOHLH1 and SOHLH2, 2 germ cell specific bHLH transcription factors, on Stra8 expression. We observed a negative correlation between STRA8 and SOHLH1 expression in prepuberal differentiating mouse KIT(+) spermatogonia and found that SOHLH1 and SOHLH2 were able to directly and cooperatively repress STRA8 expression in cell lines in vitro through binding to its promoter. We also identified 2 canonical E-Box motives in the Stra8 promoter that mediated the negative regulation of SOHLH1 and SOHLH2 on these gene both in the cell lines and KIT(+) spermatogonia. We hypothesize that this novel negative activity of SOHLH1 and SOHLH2 in male cooperates with that of other transcription factors to coordinate spermatogonia differentiation and the RA-induced meiosis and in female ensures STRA8 down-regulation at mid-end stages of meiotic prophase I.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Bases , Diferenciación Celular , Regulación hacia Abajo , Expresión Génica , Silenciador del Gen , Células HEK293 , Humanos , Masculino , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Unión Proteica , Espermatogonias/fisiología
3.
Cell Cycle ; 14(8): 1268-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25695642

RESUMEN

De novo assembled alphoid(tetO)-type human artificial chromosomes (HACs) represent a novel promising generation of high capacity episomal vectors. Their function and persistence, and any adverse effects, in various cell types in live animals, have not, however, been explored. In this study we transferred the alphoid(tetO)-HAC into mouse ES cells and assessed whether the presence of this extra chromosome affects their pluripotent properties. Alphoid(tetO)-HAC-bearing ES cells were indistinguishable from their wild-type counterparts: they retained self-renewal potential and full capacity for multilineage differentiation during mouse development, whereas the HAC itself was mitotically and transcriptionally stable during this process. Our data provide the first example of fully synthetic DNA behaving like a normal chromosome in cells of living animals. It also opens a new perspective into functional genetic studies in laboratory animals as well as stem cell-based regenerative medicine.


Asunto(s)
Diferenciación Celular , Cromosomas Artificiales Humanos/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Animales , Blastocisto/citología , Blastocisto/metabolismo , Células CHO , Cromosomas Artificiales Humanos/genética , Cricetinae , Cricetulus , Femenino , Técnicas de Transferencia de Gen , Terapia Genética , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Teratoma/metabolismo , Teratoma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA