Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Más filtros

Intervalo de año de publicación
1.
Ecol Lett ; 27(1): e14350, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38062899

RESUMEN

Understanding species distributions and predicting future range shifts requires considering all relevant abiotic factors and biotic interactions. Resource competition has received the most attention, but reproductive interference is another widespread biotic interaction that could influence species ranges. Rubyspot damselflies (Hetaerina spp.) exhibit a biogeographic pattern consistent with the hypothesis that reproductive interference has limited range expansion. Here, we use ecological niche models to evaluate whether this pattern could have instead been caused by niche differentiation. We found evidence for climatic niche differentiation, but the species that encounters the least reproductive interference has one of the narrowest and most peripheral niches. These findings strengthen the case that reproductive interference has limited range expansion and also provide a counterexample to the idea that release from negative species interactions triggers niche expansion. We propose that release from reproductive interference enables species to expand in range while specializing on the habitats most suitable for breeding.


Asunto(s)
Modelos Teóricos , Odonata , Animales , Reproducción , Ecosistema
2.
Mol Ecol ; 33(11): e17363, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38682794

RESUMEN

Hybridisation can be an important driver of evolutionary change, but hybridisation with invasive species can have adverse effects on native biodiversity. While hybridisation has been documented across taxa, there is limited understanding of ecological factors promoting patterns of hybridisation and the spatial distribution of hybrid individuals. We combined the results of ecological niche modelling (ENM) and restriction site-associated DNA sequencing to test theories of niche conservatism and biotic resistance on the success of invasion, admixture, and extent of introgression between native and non-native fishes. We related Maxent predictions of habitat suitability based on the native ranges of invasive Eastern Banded Killifish (Fundulus diaphanus diaphanus Lesueur 1817) and native Western Banded Killifish (Fundulus diaphanus menona Jordan and Copeland 1877) to admixture indices of individual Banded Killifish. We found that Eastern Banded Killifish predominated at sites predicted as suitable from their ENM, consistent with niche conservatism. Admixed individuals were more common as Eastern Banded Killifish habitat suitability declined. We also found that Eastern Banded Killifish were most common at sites closest to the presumed source of this invasion, whereas the proportion of admixed individuals increased with distance from the source of invasion. Lastly, we found little evidence that habitat suitability for Western Banded Killifish provides biotic resistance from either displacement by, or admixture with, invasive Eastern Banded Killifish. Our study demonstrates that ENMs can inform conservation-relevant outcomes between native and invasive taxa while emphasising the importance of protecting isolated Western Banded Killifish populations from invasive conspecifics.


Asunto(s)
Ecosistema , Fundulidae , Especies Introducidas , Animales , Fundulidae/genética , Hibridación Genética , Genética de Población , Introgresión Genética , Análisis de Secuencia de ADN , Biodiversidad
3.
Med Vet Entomol ; 38(1): 108-111, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37715451

RESUMEN

Psathyromyia (Psathyromyia) shannoni sensu stricto (Dyar) is a vector of Leishmania parasite and the second sandfly of medical importance with a wide geographical but discontinuous distribution in America. Preliminary genetic structure analysis using a mitochondrial marker shows that the species integrated by at least four lineages could be the result of ecological adaptations to different environmental scenarios, but this hypothesis had never been proven. The aim of the present study was to analyse whether the genetic structure that detected Pa. shannoni ss. is associated with divergence or conservatism niche. Using Ecological Niche Models (ENMs) theory, we estimated the potential distribution for each genetic lineage, and then, we evaluated the equivalency niche for assessing whether climatic niche was more different than expected. The ENMs identify different suitable distribution areas but the same climatic or ecological conditions for the genetic lineages of Pa. shannoni (conservatism niche). Our findings allow us to speculate that other potential processes or events could be related to the genetic differentiation of Pa. shannoni. These studies are important because they allow us to identify the factors that could restrict the potential distribution of the different lineages whose vectorial competence is still unknown.


Asunto(s)
Leishmania , Psychodidae , Animales , Psychodidae/genética , Psychodidae/parasitología , Ecosistema , Modelos Teóricos , Geografía , Filogenia
4.
Int J Biometeorol ; 68(2): 263-277, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38047942

RESUMEN

The selection of explanatory variables is important in modeling prediction of changes in species distribution in response to climate change. In this study, we evaluated the importance of variable selection in species distribution models. We compared two different types of models for predicting the distribution of ant species: temperature-only and both temperature and precipitation. Ants were collected at 343 forest sites across South Korea from 2006 through 2009. We used a generalized additive model (GAM) to predict the future distribution of 16 species that showed significant responses to changes in climatic factors (temperature and/or precipitation). Four types of GAMs were constructed: temperature, temperature with interaction of precipitation, temperature and precipitation without interaction, and temperature and precipitation with interaction. Most species displayed similar results between the temperatureonly and the temperature and precipitation models. The results for predicted changes in species richness were different from the temperature-only model. This indicates higher uncertainty in the prediction of species richness, which is obtained by combining the prediction results of distribution change for each species, than in the prediction of distribution change. The turnover rate of the ant assemblages was predicted to increase with decreases in temperature and increases in elevation, which was consistent with other studies. Finally, our results showed that the prediction of the distribution or diversity of organisms responding to climate change is uncertain because of the high variability of the model outputs induced by the variables used in the models.


Asunto(s)
Hormigas , Animales , Hormigas/fisiología , Temperatura , Bosques , Cambio Climático , República de Corea
5.
Int J Biometeorol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814474

RESUMEN

The Fall armyworm, Spodoptera frugiperda is the most notorious invasive pest species on maize, recently reported in India. The continuous spread of Fall armyworms to new ecological niches raises global concern. The current study is the first in India to forecast the suitability of a habitat for S. frugiperda using a maximum entropy algorithm. Predictions were made based on an analysis of the relationship between 109 occurrence records of S. frugiperda and pertinent historical, current, and predicted climatic data for the study area. The model indicated that S. frugiperda could thrive in different habitats under the current environmental circumstances, particularly in the west and south Indian states like Maharashtra, Tamil Nadu, and Karnataka. The model predicted that areas with higher latitudes, particularly in Uttar Pradesh, Odisha, West Bengal, and some portions of Telangana, Rajasthan, Chhattisgarh, and Madhya Pradesh, as well as some tracts of northeastern states like Assam and Arunachal Pradesh, would have highly climate-suitable conditions for S. frugiperda to occur in the future. The average AUC value was 0.852, which indicates excellent accuracy of the prediction. A Jackknife test of variables indicated that isothermality with the highest gain value was determining the potential geographic distribution of S. frugiperda. Our results will be useful for serving as an early warning tool to guide decision-making and prevent further spread toward new areas in India.

6.
Mol Ecol ; 32(18): 5110-5124, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37548328

RESUMEN

Climate is a fundamental abiotic factor that plays a key role in driving the evolution, distribution and population diversification of species. However, there have been few investigations of genomic signatures of adaptation to local climatic conditions in cladocerans. Here, we have provided the first high-quality chromosome-level genome assembly (~143 Mb, scaffold N50 12.6 Mb) of the waterflea, Daphnia galeata, and investigated genomic variation in 22 populations from Central Europe and Eastern China. Our ecological-niche models suggested that the historic distribution of D. galeata in Eurasia was significantly affected by Quaternary climate fluctuations. We detected pronounced genomic and morphometric divergences between European and Chinese D. galeata populations. Such divergences could be partly explained by genomic signatures of thermal adaptation to distinct climate regimes: a set of candidate single-nucleotide polymorphisms (SNPs) potentially associated with climate were detected. These SNPs were in genes significantly enriched in the Gene ontology terms "determination of adult lifespan" and "translation repressor activity", and especially, mthl5 and SOD1 involved in the IIS pathway, and EIF4EBP2 involved in the target of the rapamycin signalling pathway. Our study indicates that certain alleles might be associated with particular temperature regimes, playing a functional role in shaping the population structure of D. galeata at a large geographical scale. These results highlight the potential role of molecular variation in the response to climate variation, in the context of global climate change.


Asunto(s)
Daphnia , Animales , Daphnia/genética , Europa (Continente) , Geografía , China
7.
Ecol Appl ; 33(2): e2765, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259369

RESUMEN

To be able to protect biodiversity in coming decades, conservation strategies need to consider what sites will be important for species not just today but also in the future. Different methods have been proposed to identify places that will be important for species in the future. Two of the most frequently used methods, ecological niche modeling and climate resilience, have distinct aims. The former focuses on identifying the suitable environmental conditions for species, thus protecting the "actor," namely, the species, whereas the latter seeks to safeguard the "stage," or the landscape in which species occur. We used the two methods to identify climate refugia for 258 forest vertebrates under short- and long-term climatic changes in a biodiversity hotspot, the Appalachian ecoregion of the United States. We also evaluated the spatial congruence of the two approaches for a possible conservation application, that of protecting 30% of the Appalachian region, in line with recent national and international policy recommendations. We detected weak positive correlations between resilience scores and baseline vertebrate richness, estimated with ecological niche models for historical (baseline) climatic conditions. The correlations were stronger for amphibians and mammals than for birds and reptiles. Under climate change scenarios, the correlations between estimated vertebrate richness and resilience were also weakly positive; a positive correlation was detected only for amphibians. Locations with estimated future gain of suitable climatic conditions for vertebrates showed low correlation with resilience. Overall, our results indicate that climate resilience and ecological niche modeling approaches capture different characteristics of projected distributional changes of Appalachian vertebrates. A climate resilience (the stage) approach could be more effective in safeguarding species with low dispersal abilities, whereas an ecological niche modeling (the actor) approach could be more suitable for species with long-distance dispersal capacity because they may be more broadly impacted by climate and less sensitive to geophysical features captured by a climate resilience approach.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Animales , Conservación de los Recursos Naturales/métodos , Biodiversidad , Ecosistema , Vertebrados , Anfibios , Mamíferos
8.
Int J Biometeorol ; 67(7): 1185-1197, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37222775

RESUMEN

The Caribbean fruit fly, Anastrepha suspensa (Lower, 1862) (Diptera: Tephritidae), is a pest of significant economic importance in Central America and Florida (USA). This study was carried out to examine the influence of climate change on the space-time distribution of A. suspensa on temporal and spatial scales. The CLIMEX software was used to model the current distribution and for climate change. The future distribution was performed using two global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR), under the emission scenarios (SRES) A2 and A1B for the years 2050, 2080, and 2100. The results indicate a low potential for global distribution of A. suspensa in all scenarios studied. However, tropical areas were identified with high climatic suitability for A. suspensa in South America, Central America, Africa, and Oceania until the end of the century. Projections of areas with climatic suitability for A. suspensa can provide helpful information to develop preventive strategies of phytosanitary management avoiding economic impacts with the introduction of the species.


Asunto(s)
Tephritidae , Animales , Programas Informáticos , Predicción , Cambio Climático , América Central
9.
Front Zool ; 19(1): 25, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36307847

RESUMEN

BACKGROUND: Predicting invasiveness requires an understanding of the propensity of a given species to thrive in areas with novel ecological challenges. Evaluation of realized niche shift of an invasive species in its invasive range, detecting the main drivers of the realized niche shift, and predicting the potential distribution of the species can provide important information for the management of populations of invasive species and the conservation of biodiversity. The Australian redback spider, Latrodectus hasselti, is a widow spider that is native to Australia and established in Japan, New Zealand, and Southeast Asia. We used ecological niche models and ordinal comparisons in an integrative method to compare the realized niches of native and invasive populations of this spider species. We also assessed the impact of several climatic predictor variables and human activity on this niche shift. We hypothesized that human impact is important for successful establishment of this anthropophilic species, and that climatic predictor variables may determine suitable habitat and thus predict invasive ranges. RESULTS: Our models showed that L. hasselti distributions are positively influenced by human impact in both of the native and invasive ranges. Maximum temperature was the most important climatic variable in predictions of the distribution of native populations, while precipitation seasonality was the most important in predictions of invasive populations. The realized niche of L. hasselti in its invasive range differed from that in its native range, indicating possible realized niche shift. CONCLUSIONS: We infer that a preference for human-disturbed environments may underlie invasion and establishment in this spider species, as anthropogenic habitat modifications could provide shelters from unsuitable climatic conditions and extreme climatic stresses to the spiders. Because Australia and the countries in which the species is invasive have differing climates, differences in the availability of certain climatic conditions could have played a role in the realized niche shift of L. hasselti.

10.
Parasitol Res ; 121(7): 1903-1920, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35462582

RESUMEN

We analysed the spatial and temporal variability of Anisakis larvae infection in hake (Merluccius merluccius) from the North-East Atlantic from 1998 to 2020 and the potential drivers (i.e., environmental and host abundance) of such variation. The results showed that hake from separate sea areas in the North Atlantic have marked differences in temporal abundance levels. Hake larger than 60 cm were all parasitized in all ICES (International Council for the Exploration of the Sea) subareas 6, 7, and 8. The belly flaps were the most parasitized parts of the flesh, accounting for 92% of the total. Individuals of Anisakis simplex, Anisakis pegreffii, Anisakis spp. and a hybrid of Anisakis simplex × pegreffii were genetically identified, and Anisakis simplex as the most abundant (88-100%). An ecological niche model of Anisakis occurrence in fishes in the NE Atlantic was built to define the thermal optimum and environmental ranges for salinity, depth, chlorophyll concentration, and diffuse attenuation. The temporal variability of anisakid infection in fishes in the last two decades indicated an increase in the NE Atlantic at an annual rate of 31.7 nematodes per total number of specimens examined per year. This rise in infection levels could be triggered by the increase in intermediate host fish stocks, especially hake in the area.


Asunto(s)
Anisakiasis , Anisakis , Enfermedades de los Peces , Gadiformes , Perciformes , Animales , Anisakiasis/epidemiología , Anisakiasis/veterinaria , Enfermedades de los Peces/epidemiología , Peces , Caza , Larva
11.
Mol Ecol ; 29(16): 3085-3102, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32621770

RESUMEN

Spatial patterns of intraspecific variation are shaped by geographical distance among populations, historical changes in gene flow and interactions with local environments. Although these factors are not mutually exclusive and operate on both genomic and phenotypic variation, it is unclear how they affect these two axes of variation. We address this question by exploring the predictors of genomic and phenotypic divergence in Icterus gularis, a broadly distributed Middle American bird that exhibits marked geographical variation in body size across its range. We combined a comprehensive single nucleotide polymorphism and phenotypic data set to test whether genome-wide genetic and phenotypic differentiation are best explained by (i) isolation by distance, (ii) isolation by history or (iii) isolation by environment. We find that the pronounced genetic and phenotypic variation in I. gularis are only partially correlated and differ regarding spatial predictors. Whereas genomic variation is largely explained by historical barriers to gene flow, phenotypic diversity can be best predicted by contemporary environmental heterogeneity. Our genomic analyses reveal strong phylogeographical structure coinciding with the Chivela Pass at the Isthmus of Tehuantepec that was formed during the Pleistocene, when populations were isolated in north-south refugia. In contrast, we found a strong association between body size and environmental variables, such as temperature and precipitation. The relationship between body size and local climate is consistent with a pattern produced by either natural selection or environmental plasticity. Overall, these results provide empirical evidence for why phenotypic and genomic data are often in conflict in taxonomic and phylogeographical studies.


Asunto(s)
Ictericia , Passeriformes , Animales , Variación Biológica Poblacional , Flujo Génico , Variación Genética , Genética de Población , Genómica , Passeriformes/genética , Estados Unidos
12.
Am J Bot ; 107(10): 1375-1388, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32974906

RESUMEN

PREMISE: Whole genome duplication is a major evolutionary event, but its role in ecological divergence remains equivocal. When populations of different ploidy (cytotypes) overlap in space, "contact zones" are formed, allowing the study of evolutionary mechanisms contributing toward ploidy divergence. Multiple contact zones per species' range are often described but rarely leveraged as natural replicates. We explored whether the strength of niche differentiation of diploid and autotetraploid Arabidopsis arenosa varies over distinct contact zones and if the frequency of triploids decreases from seedling to adult stage. METHODS: We characterized ploidy composition and habitat preferences in 264 populations across three contact zones using climatic niche modeling. Ecological differences of cytotypes were also assessed using local vegetation surveys at 110 populations within two contact zones, and at the finer scale within five mixed-ploidy sites. This was complemented by flow cytometry of seedlings. RESULTS: We found no niche differences between diploid and tetraploid populations within contact zones for either climatic or local environmental variables. Comparisons of cytotypes within mixed-ploidy sites found weak niche differences that were inconsistent in direction. Triploid individuals were virtually absent (0.14%) in the field, and they were at a similarly low frequency (0.2%) in ex situ germinated seedlings. CONCLUSIONS: This study demonstrates the strength in investigating different spatial scales across several contact zones when addressing ecological niche differentiation between ploidies. The lack of consistent habitat differentiation of ploidies across the scales and locations supports the recently emerging picture that processes other than ecological differentiation may underlie ploidy coexistence in diploid-autopolyploid systems.


Asunto(s)
Arabidopsis , Diploidia , Arabidopsis/genética , Humanos , Ploidias , Poliploidía , Tetraploidía
13.
Environ Res ; 183: 109190, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32311903

RESUMEN

OBJECTIVE: To investigate the relationship between climate variables, East Asian summer monsoon (EASM) and large outbreaks of dengue in China. METHODS: We constructed ecological niche models (ENMs) to analyse the influence of climate factors on dengue occurrence and predict dengue outbreak areas in China. Furthermore, we formulated a generalised additive model (GAM) to quantify the impact of the EASM on dengue occurrence in mainland China from 1980 to 2016. RESULTS: Mean Temperature of Coldest Quarter had a 62.6% contribution to dengue outbreaks. Southern China including Guangdong, Guangxi, Fujian and Yunnan provinces are more vulnerable to dengue emergence and resurgence. In addition, we found population density had a 68.7% contribution to dengue widely distribution in China using ENMs. Statistical analysis indicated a dome-shaped association between EASM and dengue outbreak using GAM, with the greatest impact in the South-East of China. Besides, there was a positive nonlinear association between monthly average temperature and dengue occurrence. CONCLUSION: We demonstrated the influence of climate factors and East Asian summer monsoon on dengue outbreaks, providing a framework for future studies on the association between climate change and vector-borne diseases.


Asunto(s)
Cambio Climático , Dengue , Estaciones del Año , China/epidemiología , Dengue/epidemiología , Brotes de Enfermedades , Humanos , Lluvia
14.
BMC Ecol ; 20(1): 28, 2020 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-32386506

RESUMEN

BACKGROUND: The climate is the dominant factor that affects the distribution of plants. Cuscuta chinensis is a stem holoparasitic plant without leaves or roots, which develops a haustorium and sucks nutrients from host plants. The potential distribution of the parasitic plant C. chinensis has not been predicted to date. This study used Maxent modeling to predict the potential global distribution of C. chinensis, based on the following six main bioclimatic variables: annual mean temperature, isothermality, temperature seasonality, precipitation seasonality, precipitation of the warmest quarter, and precipitation of the coldest quarter. RESULTS: The optimal annual average temperature and isothermality of C. chinensis ranged from 4 to 37 °C and less than 45, respectively, while the optimal temperature seasonality and precipitation seasonality ranged from 4000 to 25,000 and from 50 to 130, respectively. The optimal precipitation of the warmest season ranged from 300 to 1000 mm and from 2500 to 3500 mm, while that of the coldest season was less than 2000 mm. In Asia, C. chinensis is mainly distributed at latitudes ranging from 20° N to 50° N. During three specific historical periods (last glacial maximum, mid-Holocene, and 1960-1990) the habitats suitable for C. chinensis were concentrated in the central, northern, southern, and eastern parts of China. From the last glacial maximum to the mid-Holocene, the total area with suitability of 0.5-1 increased by 0.0875 million km2; however, from the mid-Holocene to 1960-1990, the total area with suitability of 0.5-1 decreased by 0.0759 million km2. The simulation results of habitat suitability in the two representative concentration pathways (RCP) 2.6 (i.e., the low greenhouse gas emissions pathway) and 8.5 (i.e., the high greenhouse gas emissions pathway) indicate that the habitat suitability of C. chinensis decreased in response to the warming climate. Compared with RCP2.6, areas with averaged suitability and high suitability for survival (RCP8.5) decreased by 0.18 million km2. CONCLUSION: Suitable habitats of C. chinensis are situated in central, northern, southern, and eastern China. The habitat suitability of C. chinensis decreased in response to the warming climate. These results provide a reference for the management and control of C. chinensis.


Asunto(s)
Cuscuta , Calentamiento Global , China , Cambio Climático , Ecosistema
15.
Environ Monit Assess ; 192(6): 372, 2020 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-32417982

RESUMEN

It is important to understand how species distributions will shift under climate change. While much focus has been on species tracking temperature changes in the northern hemisphere, changing precipitation patterns in tropical regions have received less attention. The aim of the study was to estimate the current distribution of wet and dry miombo woodlands of sub-Saharan Africa and to predict their distributions under different climate change scenarios. A maximum entropy method (Maxent) was used to estimate the distributions and for projections. Occurrence records of dominant tree species in each woodland were used for modeling, together with altitude, soil characteristics, and climate variables as the environmental variables. Modeling was done under all four representative concentration pathways (RCPs) and three general circulation models. Three dominant tree species were used in models of dry miombo while seven were used for wet miombo. Models estimated dry miombo to cover almost the entire known distribution of miombo woodlands while wet miombo were estimated to predominate in parts of Angola, southern Democratic Republic of Congo, Malawi, Tanzania, Zambia, and Zimbabwe. Future climate scenarios predict a drier climate in sub-Saharan Africa, and as a result, the range of dry miombo will expand. Dry miombo were predicted to expand by up to 17.3% in 2050 and 22.7% in 2070. In contrast, wet miombo were predicted to contract by up to - 28.6% in 2050 and - 41.6% in 2070. A warming climate is conducive for the proliferation of dry miombo tree species but unfavorable for wet miombo tree species.


Asunto(s)
Cambio Climático , Monitoreo del Ambiente , Bosques , África Central , Angola , Malaui , Sudáfrica , Tanzanía , Zambia , Zimbabwe
16.
Proc Biol Sci ; 286(1911): 20190304, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31530139

RESUMEN

Over the last approximately 2.6 Myr, Earth's climate has been dominated by cyclical ice ages that have profoundly affected species' population sizes, but the impact of impending anthropogenic climate change on species' extinction potential remains a worrying problem. We investigated 11 bat species from different taxonomic, ecological and geographical backgrounds using combined information from palaeoclimatic habitat reconstructions and genomes to analyse biotic impacts of historic climate change. We discover tightly correlated fluctuations between species' historic distribution and effective population size, identify frugivores as particularly susceptible to global warming, pinpoint large insectivores as having overall low effective population size and flag the onset of the Holocene (approx. 10-12 000 years ago) as the period with the generally lowest effective population sizes across the last approximately 1 Myr. Our study shows that combining genomic and palaeoclimatological approaches reveals effects of climatic shifts on genetic diversity and may help predict impacts of future climate change.


Asunto(s)
Quirópteros/genética , Cambio Climático , Ecosistema , Variación Genética , Animales , Extinción Biológica , Genoma , Calentamiento Global
17.
Mol Ecol ; 28(4): 803-817, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30565765

RESUMEN

Ecological niche evolution can promote or hinder the differentiation of taxa and determine their distribution. Niche-mediated evolution may differ among climatic regimes, and thus, species that occur across a wide latitudinal range offer a chance to test these heterogeneous evolutionary processes. In this study, we examine (a) how many lineages have evolved across the continent-wide range of the Eurasian nuthatch (Sitta europaea), (b) whether the lineages' niches are significantly divergent or conserved and (c) how their niche evolution explains their geographic distribution. Phylogenetic reconstruction and ecological niche models (ENMs) showed that the Eurasian nuthatch contained six parapatric lineages that diverged within 2 Myr and did not share identical climatic niches. However, the niche discrepancy between these distinct lineages was relatively conserved compared with the environmental differences between their ranges and thus was unlikely to drive lineage divergence. The ENMs of southern lineages tended to cross-predict with their neighbouring lineages whereas those of northern lineages generally matched with their abutting ranges. The coalescence-based analyses revealed more stable populations for the southern lineages than the northern ones during the last glaciation cycle. In contrast to the overlapping ENMs, the smaller parapatric distribution suggests that the southern lineages might have experienced competitive exclusion to prevent them from becoming sympatric. On the other hand, the northern lineages have expanded their ranges and their current abutting distribution might have resulted from lineages adapting to different climatic conditions in allopatry. This study suggests that niche evolution may affect lineage distribution in different ways across latitude.


Asunto(s)
Ecosistema , Modelos Teóricos , Animales , Especiación Genética , Passeriformes , Filogenia
18.
Mol Ecol ; 28(3): 644-657, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30525264

RESUMEN

A primary challenge for modern phylogeography is understanding how ecology and geography, both contemporary and historical, shape the spatial distribution and evolutionary histories of species. Phylogeographic patterns are the result of many factors, including geology, climate, habitat, colonization history and lineage-specific constraints. Assessing the relative influences of these factors is difficult because few species, regions and environments are sampled in enough detail to compare competing hypotheses rigorously and because a particular phylogeographic pattern can potentially result from different evolutionary scenarios. The silky anoles (Anolis sericeus complex) of Central America and Mexico are abundant and found in all types of lowland terrestrial habitat, offering an excellent opportunity to test the relative influences of the factors affecting diversification. Here, we performed a range-wide statistical phylogeographic analysis on restriction site-associated DNA (RAD) markers from silky anoles and compared the phylogeographic patterns we recovered to historical and contemporary environmental and topographic data. We constructed niche models to compare niche overlap between sister lineages and conducted coalescent simulations to characterize how the major lineages of silky anoles have diverged. Our results revealed that the mode of divergence for major lineage diversification events was geographic isolation, resulting in ecological divergence between lineages, followed by secondary contact. Moreover, comparisons of parapatric sister lineages suggest that ecological niche divergence contributed to isolation by environment in this system, reflecting the natural history differences among populations in divergent environments.


Asunto(s)
Ecosistema , Genética de Población , Lagartos/genética , Animales , Evolución Biológica , América Central , México , Modelos Genéticos , Filogeografía
19.
Glob Chang Biol ; 24(3): 1357-1370, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29152817

RESUMEN

Criticism has been levelled at climate-change-induced forecasts of species range shifts that do not account explicitly for complex population dynamics. The relative importance of such dynamics under climate change is, however, undetermined because direct tests comparing the performance of demographic models vs. simpler ecological niche models are still lacking owing to difficulties in evaluating forecasts using real-world data. We provide the first comparison of the skill of coupled ecological-niche-population models and ecological niche models in predicting documented shifts in the ranges of 20 British breeding bird species across a 40-year period. Forecasts from models calibrated with data centred on 1970 were evaluated using data centred on 2010. We found that more complex coupled ecological-niche-population models (that account for dispersal and metapopulation dynamics) tend to have higher predictive accuracy in forecasting species range shifts than structurally simpler models that only account for variation in climate. However, these better forecasts are achieved only if ecological responses to climate change are simulated without static snapshots of historic land use, taken at a single point in time. In contrast, including both static land use and dynamic climate variables in simpler ecological niche models improve forecasts of observed range shifts. Despite being less skilful at predicting range changes at the grid-cell level, ecological niche models do as well, or better, than more complex models at predicting the magnitude of relative change in range size. Therefore, ecological niche models can provide a reasonable first approximation of the magnitude of species' potential range shifts, especially when more detailed data are lacking on dispersal dynamics, demographic processes underpinning population performance, and change in land cover.


Asunto(s)
Distribución Animal , Aves/fisiología , Cambio Climático , Modelos Biológicos , Animales , Ecosistema , Predicción , Dinámica Poblacional , Especificidad de la Especie
20.
Conserv Biol ; 32(1): 171-182, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28877382

RESUMEN

Fluvial fishes face increased imperilment from anthropogenic activities, but the specific factors contributing most to range declines are often poorly understood. For example, the range of the fluvial-specialist shoal bass (Micropterus cataractae) continues to decrease, yet how perceived threats have contributed to range loss is largely unknown. We used species distribution models to determine which factors contributed most to shoal bass range loss. We estimated a potential distribution based on natural abiotic factors and a series of currently occupied distributions that incorporated variables characterizing land cover, non-native species, and river fragmentation intensity (no fragmentation, dams only, and dams and large impoundments). We allowed interspecific relationships between non-native congeners and shoal bass to vary across fragmentation intensities. Results from the potential distribution model estimated shoal bass presence throughout much of their native basin, whereas models of currently occupied distribution showed that range loss increased as fragmentation intensified. Response curves from models of currently occupied distribution indicated a potential interaction between fragmentation intensity and the relationship between shoal bass and non-native congeners, wherein non-natives may be favored at the highest fragmentation intensity. Response curves also suggested that >100 km of interconnected, free-flowing stream fragments were necessary to support shoal bass presence. Model evaluation, including an independent validation, suggested that models had favorable predictive and discriminative abilities. Similar approaches that use readily available, diverse, geospatial data sets may deliver insights into the biology and conservation needs of other fluvial species facing similar threats.


Asunto(s)
Lubina , Especies Introducidas , Animales , Conservación de los Recursos Naturales , Ríos , Alimentos Marinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA