Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Clin Lab Sci ; 61(6): 473-495, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38450458

RESUMEN

Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.


Asunto(s)
Técnicas Biosensibles , Detección Precoz del Cáncer , Técnicas Electroquímicas , Neoplasias , Humanos , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Detección Precoz del Cáncer/métodos , Neoplasias/diagnóstico , Biomarcadores de Tumor/análisis , ADN/análisis , ARN/análisis
2.
Small ; 20(16): e2309264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38010948

RESUMEN

In this work, sub-nanometer Co clusters anchored on porous nitrogen-doped carbon (C─N─Co NCs) are successfully prepared by high-temperature annealing and pre-fabricated template strategies for non-invasive sensing of clozapine (CLZ) as an efficient substrate adsorption and electrocatalyst. The introduction of Co sub-nanoclusters (Co NCs) provides enhanced electrochemical performance and better substrate adsorption potential compared to porous and nitrogen-doped carbon structures. Combined with ab initio calculations, it is found that the favorable CLZ catalytic performance with C─N─Co NCs is mainly attributed to possessing a more stable CLZ adsorption structure and lower conversion barriers of CLZ to oxidized state CLZ. An electrochemical sensor for CLZ detection is conceptualized with a wide operating range and high sensitivity, with monitoring capabilities validated in a variety of body fluid environments. Based on the developed CLZ sensing system, the CLZ correlation between blood and saliva and the accuracy of the sensor are investigated by the gold standard method and the rat model of drug administration, paving the way for non-invasive drug monitoring. This work provides new insights into the development of efficient electrocatalysts to enable drug therapy and administration monitoring in personalized healthcare systems.


Asunto(s)
Antipsicóticos , Clozapina , Ratas , Animales , Antipsicóticos/uso terapéutico , Carbono/química , Monitoreo de Drogas , Nitrógeno , Clozapina/química , Clozapina/uso terapéutico
3.
Small ; 20(35): e2311645, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38659182

RESUMEN

Understanding the growth of mesoporous crystalline materials, such as mesoporous metals, on different substrates can provide valuable insights into the crystal growth dynamics and the redox reactions that influence their electrochemical sensing performance. Herein, it is demonstrated how the amorphous nature of the glass substrate can suppress the typical <111> oriented growth in mesoporous Au (mAu) films. The suppressed <111> growth is manifested as an accumulation of strain, leading to the generation of abundant surface defects, which are beneficial for enhancing the electrochemical activity. The fine structuring attained enables dramatically accelerated diffusion and enhances the electrochemical sensing performance for disease-specific biomolecules. As a proof-of-concept, the as-fabricated glass-grown mAu film demonstrates high sensitivity in electrochemical detection of SARS-CoV-2-specific RNA with a limit of detection (LoD) as low as 1 attomolar (aM).


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Oro , Oro/química , Técnicas Biosensibles/métodos , Porosidad , Técnicas Electroquímicas/métodos , Catálisis , SARS-CoV-2/aislamiento & purificación , Límite de Detección , ARN Viral , COVID-19/virología , COVID-19/diagnóstico
4.
Small ; : e2401273, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958069

RESUMEN

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

5.
Small ; 20(22): e2309357, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102797

RESUMEN

Ensuring an appropriate nitrite level in food is essential to keep the body healthy. However, it still remains a huge challenge to offer a portable and low-cost on-site food nitrite analysis without any expensive equipment. Herein, a portable integrated electrochemical sensing system (IESS) is developed to achieve rapid on-site nitrite detection in food, which is composed of a low-cost disposable microfluidic electrochemical patch for few-shot nitrite detection, and a reusable smartphone-assisted electronic device based on self-designed circuit board for signal processing and wireless transmission. The electrochemical patch based on MXene-Ti3C2Tx/multiwalled carbon nanotubes-cyanocobalamin (MXene/MWCNTs-VB12)-modified working electrode achieves high sensitivity of 10.533 µA mm-1 and low nitrite detection limit of 4.22 µm owing to strong electron transfer ability of hybrid MXene/MWCNTs conductive matrix and high nitrite selectivity of VB12 bionic enzyme-based ion-selective layer. Moreover, the portable IESS can rapidly collect pending testing samples through a microfluidic electrochemical patch within 1.0 s to conduct immediate nitrite analysis, and then wirelessly transmit data from a signal-processing electronic device to a smartphone via Bluetooth module. Consequently, this proposed portable IESS demonstrates rapid on-site nitrite analysis and wireless data transmission within one palm-sized electronic device, which would pave a new avenue in food safety and personal bespoke therapy.


Asunto(s)
Técnicas Electroquímicas , Nitritos , Nitritos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Nanotubos de Carbono/química , Análisis de los Alimentos/instrumentación , Análisis de los Alimentos/métodos , Electrodos , Límite de Detección , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación
6.
Chemistry ; 30(31): e202400982, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38533890

RESUMEN

Glucose holds significant importance in disease diagnosis as well as beverage quality monitoring. The high-efficiency electrochemical sensor plays a crucial role in the electrochemical conversion technology. Ni(OH)2 nanosheets are provided with high specific surface area and redox activity that are widely used in electrochemistry. Conductive metal-organic frameworks (cMOFs) perfectly combine the structural controllability of organic materials with the long-range ordering of inorganic materials that possess the characteristic of high electron mobility. Based on the above considerations, the combination of Ni(OH)2 and Ni-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) as an electrode modification material is designed to enhance electrochemical performance. In this work, to improve glucose detection, a sequence of Ni(OH)2@NiCo-HHTP and NiM-LDH@Ni-HHTP (M=Co2+, Mn2+, Cu2+, LDH=layered double hydroxide) are successfully synthesised by doping metals into Ni-HHTP and Ni(OH)2, respectively. As a result, NiCu-LDH@Ni-HHTP showed the best excellent glucose detection sensitivity.

7.
Anal Biochem ; 689: 115493, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403259

RESUMEN

Aflatoxin B1 (AF-B1) are toxins secreted by secondary metabolites of molds that have adverse effects on humans and animals resulting in huge economic losses. Here we report on field useable, cost effective and direct electrochemical sensor based on conducting polymer composite electrode, Poly (3,4-ethylenedioxythiophene): polystyrene sulphonic acid (PEDOT-PSS) for label-free detection of AF-B1. Structural and morphological characterization of composite electrodes were carried out using XRD and SEM. We compared two different electroanalytical techniques namely, transient capacitance and differential pulse voltammetry, to select the most prominent technique for analyzing the mycotoxin easily. For direct detection of AF-B1, transient capacitance measurement at 77 and 1000 Hz was employed wherein sensor showed linearity in 18.18-300.0 ng mL-1 range at 77 Hz for AF-B1. Best limit of detection (LOD) for AF-B1 was 55.41 ng mL-1 (369 pM) at 77 Hz with very good repeatability. DPV showed linearity in the range 18.18-342.85 ng mL-1 with LOD 435 pM. For demonstration of application of this sensor directly using minimum sample preparation, AF-B1 sensing has been confirmed successfully using white button mushrooms and okra stored at ambient conditions. Sensor response with real samples suggest usefulness of sensor to monitor stored farm products easily.


Asunto(s)
Aflatoxina B1 , Técnicas Biosensibles , Animales , Humanos , Aflatoxina B1/análisis , Técnicas Biosensibles/métodos , Inmunoensayo , Electrodos , Técnicas Electroquímicas/métodos , Límite de Detección
8.
Anal Biochem ; 690: 115513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38531530

RESUMEN

Naproxen is a nonsteroidal anti-inflammatory drug used to treat nonrheumatic inflammation, migraine, and gout. Therefore, the determination of naproxen in pharmaceutical and biological samples is of particular importance. In the present work, SrTi0.7Fe0.3O3 perovskite/Chitosan nanosheets were used to modify the surface of a glassy carbon electrode (GCE) for highly sensitive determination of naproxen. To ensure the successful synthesis of the perovskite nanosheets, morphological studies including scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) were carried out. The electrochemical investigations of naproxen on the modified surface of GCE were investigated and the limit of detection (LOD) and limit of quantification (LOQ) were acquired 0.50 and 1.67 µM, respectively. Additionally, the linear range (LR) of 1.99-130.84 µM was obtained for the oxidation of naproxen. The obtained results have been proved that the mentioned method is simple, sensitive, and specific with a short analysis time. The dominant analytical features of the designed sensor are possessing a low detection limit, excellent stability, repeatability, and high selectivity in the presence of naproxen. For investigation of the applicability of the designed assay in real sample analysis, human plasma samples have been examined and a recovery index was acquired 95%.

9.
Biotechnol Bioeng ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279638

RESUMEN

We report the integration of 3D printing, electrobiofabrication, and protein engineering to create a device that enables near real-time analysis of monoclonal antibody (mAb) titer and quality. 3D printing was used to create the macroscale architecture that can control fluidic contact of a sample with multiple electrodes for replicate measurements. An analysis "chip" was configured as a "snap-in" module for connecting to a 3D printed housing containing fluidic and electronic communication systems. Electrobiofabrication was used to functionalize each electrode by the assembly of a hydrogel interface containing biomolecular recognition and capture proteins. Specifically, an electrochemical thiol oxidation is used to assemble a thiolated polyethylene glycol hydrogel, that in turn is covalently coupled to either a cysteine-tagged protein G that binds the antibody's Fc region or a lectin that binds the glycans of target mAb analytes. We first show the design, assembly, and testing of the hardware device. Then, we show the transition of a step-by-step sensing methodology (e.g., mix, incubate, wash, mix, incubate, wash, measure) into the current method where functionalization, antibody capture, and assessment are performed in situ and in parallel channels. Both titer and glycan analyses were found to be linear with antibody concentration (to 0.2 mg/L). We further found the interfaces could be reused with remarkably similar results. Because the interface assembly and use are simple, rapid, and robust, we suggest this assessment methodology will be widely applicable, including for other biomolecular process development and manufacturing environments.

10.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115011

RESUMEN

Vitamin B6 (VB6) is a member of the water-soluble B vitamins which have a vital performance in nervous system operating activities. VB6 is highly demanded to maintain excellent skin and immune systems in the human body. furthermore, VB6 is tremendously substantial in the functions of some enzymes that participate in the metabolism of proteins, amino acids, etc. The deficiency of VB6 will eventuate in anemic situations and may lead to permanent injuries in the brain. moreover, recent studies disclosed that adequate Vitamin B6 in the human body can decrease the intensity of illnesses such as diabetes, stress, etc., in patients with COVID-19 infections. Thus, the detection of VB6 from real samples is crucial to control the amount of this vitamin in biological fluids and to monitor the pharmaceutical dosage quality. Various analytical approaches have been employed for the VB6 detection in biological and pharmaceutical samples. Although biosensing and sensing approaches hold several obvious advantages such as simplicity, capability for miniaturization, quick response time, etc. from other analytical methods. Hence, through the last decades, designing and fabricating biosensors with sufficient sensitivity and selectivity have been investigated by many researchers in order to detect VB6. The purpose of this review is to illustrate the importance of diverse electrochemical and optical approaches for VB6 detection. Additionally, novel VB6 detection techniques based on electrochemical, optical, and conventional methods have been considerably discussed, and compared with each other. Furthermore, a comprehensive summary of the current limitations and future challenges in VB6 analysis are explained and also create a pathway for subsequent expansions and applications.


Vitamin B6 is an essential compound for proper function of human body.Various nanomaterial-based methods such as conational approach, electrochemical biosensing and apta-sensing analyses for Vitamin B6 detection has been developed.Different techniques for detecting of Vitamin B6 have been comprehensively discussed.Various electrochemical sensors fabrication and its application in Vitamin B6 detection with nanomaterials have been assessed.The article points out the recent progress limitations, and also the upcoming tasks in the successful sensor fabrication with the functionalized nanomaterials.

11.
Environ Res ; 261: 119710, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39102938

RESUMEN

Zeolitic Imidazolate (metal organic) Frameworks (ZIFs) and Prussian Blue Analogues (PBAs) are promising materials in electrochemical sensing due to their unique properties. In this study, a composite material comprising NiFe-PBA and ZIF-67 was synthesized and made to form a uniform layer onto a glassy carbon electrode (GCE) to enhance electrochemical performance for furazolidone (FZD) detection. The synthesized NiFe-PBA/ZIF-67 composite exhibited excellent sensitivity, selectivity, and stability towards FZD detection, with a low limit of detection (LOD). The electrochemical behaviour of FZD on the NiFe-PBA/ZIF-67/GCE electrode was investigated, revealing a diffusion-controlled process. Differential pulse voltammetry (DPV) analysis demonstrated the synergetic effect of the PBA/MOF core-shell structure in enhancing FZD electro-reduction. The sensor exhibited exceptional LOD of 0.007 µM. Selectivity studies confirmed the sensor's ability to distinguish FZD from potential interferents. Extensive evaluations demonstrated the sensor's reproducibility, repeatability, and long-term stability, affirming its practical utility. Real sample analysis further validated the sensor's excellent analytical capabilities in diverse matrices.


Asunto(s)
Técnicas Electroquímicas , Ferrocianuros , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Técnicas Electroquímicas/métodos , Ferrocianuros/química , Electrodos , Estructuras Metalorgánicas/química , Furazolidona/análisis , Furazolidona/química , Límite de Detección , Carbono/química , Zeolitas/química , Imidazoles
12.
J Nanobiotechnology ; 22(1): 55, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331774

RESUMEN

BACKGROUND: Exosomes are nanoscale extracellular vesicles (30-160 nm) with endosome origin secreted by almost all types of cells, which are considered to be messengers of intercellular communication. Cancerous exosomes serve as a rich source of biomarkers for monitoring changes in cancer-related physiological status, because they carry a large number of biological macromolecules derived from parental tumors. The ultrasensitive quantification of trace amounts of cancerous exosomes is highly valuable for non-invasive early cancer diagnosis, yet it remains challenging. Herein, we developed an aptamer-carrying tetrahedral DNA (Apt-TDNA) microelectrode sensor, assisted by a polydopamine (PDA) coating with semiconducting properties, for the ultrasensitive electrochemical detection of cancer-derived exosomes. RESULTS: The stable rigid structure and orientation of Apt-TDNA ensured efficient capture of suspended exosomes. Without PDA coating signal amplification strategy, the sensor has a linear working range of 102-107 particles mL-1, with LOD of ~ 69 exosomes and ~ 42 exosomes for EIS and DPV, respectively. With PDA coating, the electrochemical signal of the microelectrode is further amplified, achieving single particle level sensitivity (~ 14 exosomes by EIS and ~ 6 exosomes by DPV). CONCLUSIONS: The proposed PDA-assisted Apt-TDNA microelectrode sensor, which integrates efficient exosome capture, sensitive electrochemical signal feedback with PDA coating signal amplification, provides a new avenue for the development of simple and sensitive electrochemical sensing techniques in non-invasive cancer diagnosis and monitoring treatment response.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exosomas , Indoles , Neoplasias , Polímeros , Humanos , Microelectrodos , Exosomas/química , ADN/análisis , Neoplasias/diagnóstico , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , Límite de Detección
13.
Mikrochim Acta ; 191(8): 452, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970687

RESUMEN

Novel zeolitic imidazolate frameworks (ZIFs), classical subtypes of metal organic frameworks (MOFs), and nanostructures are electro-engineered onto carbon fiber (CF), leading to a unique freestanding electrochemical platform of budlike nano Zn-ZIFs decorated CF (BN-Zn-ZIFs/CF). The unique morphology, structure, and composition are characterized by electron microscopy and energy spectrum analysis. Notably, the BN-Zn-ZIFs/CF platform displays superb electrocatalysis towards the oxidation of isoeugenol with encouragingly low overpotential and high current response. The strong electrocatalytic oxidation capability of BN-Zn-ZIFs/CF makes it an excellent sensing platform for isoeugenol detection. BN-Zn-ZIFs/CF sensor exhibits high-performance isoeugenol sensing with an extremely low limit of detection (13 nM) and wide detection range (0.1-700 µM). Besides, the BN-Zn-ZIFs/CF sensor can greatly resist interference from common ions, major biomolecules, and some amino acids. Moreover, excellent reliability, stability, and practicality are obtained. Our work demonstrates that the as-prepared BN-Zn-ZIFs/CF can act as an high-performance electrochemical sensor for the isoeugenol detection, the well-developed ZIF nanocrystal-modified conductive substrates can be a unique platform for the efficient sensing of other molecules, and the electrochemical engineering strategy can be an effective method for the growing of fresh MOF nanocrystals at conductive substrates in various electrochemical applications.

14.
Mikrochim Acta ; 191(3): 138, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38361136

RESUMEN

Surface fouling poses a significant challenge that restricts the analytical performance of electrochemical sensors in both in vitro and in vivo applications. Biofouling resistance is paramount to guarantee the reliable operation of electrochemical sensors in complex biofluids (e.g., blood, serum, and urine). Seeking efficient strategies for surface fouling and establishing highly sensitive sensing platforms for applications in complex media have received increasing attention in the past. In this review, we provide a comprehensive overview of recent research efforts focused on antifouling electrochemical sensors. Initially, we present a detailed illustration of the concept about biofouling along with an exploration of four key antifouling mechanisms. Subsequently, we delve into the commonly employed antifouling strategies in the fabrication of electrochemical sensors. These encompass physical surface topography (micro/nanostructure coatings and filtration membranes) and chemical surface modifications (PEG and its derivatives, zwitterionic polymers, peptides, proteins, and various other antifouling materials). The progress in antifouling electrochemical sensors is proposed concerning the antifouling mechanisms as well as sensing capability assessments (e.g., sensitivity, stability, and practical application ability). Finally, we summarize the evolving trends in the field and highlight some key remaining limitations.


Asunto(s)
Incrustaciones Biológicas , Nanoestructuras , Incrustaciones Biológicas/prevención & control , Polímeros/química , Proteínas , Péptidos/química , Nanoestructuras/química
15.
Mikrochim Acta ; 191(1): 77, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38177621

RESUMEN

Sweat is easily accessible from the human skin's surface. It is secreted by the eccrine glands and contains a wealth of physiological information, including metabolites and electrolytes like glucose and Na ions. Sweat is a particularly useful biofluid because of its easy and non-invasive access, unlike other biofluids, like blood. On the other hand, nanomaterials have started to show promise operation as a competitive substitute for biosensors and molecular sensors throughout the last 10 years. Among the most synthetic nanomaterials that are studied, applied, and discussed, carbon nanomaterials are special. They are desirable candidates for sensor applications because of their many intrinsic electrical, magnetic, and optical characteristics; their chemical diversity and simplicity of manipulation; their biocompatibility; and their effectiveness as a chemically resistant platform. Carbon nanofibers (CNFs), carbon dots (CDs), carbon nanotubes (CNTs), and graphene have been intensively investigated as molecular sensors or as components that can be integrated into devices. In this review, we summarize recent advances in the use of carbon nanomaterials as sweat sensors and consider how they can be utilized to detect a diverse range of analytes in sweat, such as glucose, ions, lactate, cortisol, uric acid, and pH.


Asunto(s)
Nanoestructuras , Nanotubos de Carbono , Humanos , Sudor/química , Nanotubos de Carbono/química , Nanoestructuras/química , Iones/análisis , Glucosa/análisis
16.
Mikrochim Acta ; 191(11): 640, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356328

RESUMEN

Chiral compounds are abundantly distributed in both the natural world and biological systems. It is crucial to identify and detect chiral compounds in living systems or to separate and determine them in the natural environment. Many researchers have developed a range of chiral materials with different functionalizations to separate and detect chiral substances. Chiral metal-organic frameworks (CMOFs) have the potential to be used in enantioselective separation and detection due to their large surface areas, regulated framework topologies, particular substrate interactions, and accessible chiral sites. CMOFs contribute significantly to the development of enantiomer separation and detection in medicine, agriculture, food, environment, and other fields. This review focuses on four synthesis methods of CMOFs and their applications in chiral separation and chiral sensing in the past five years, mainly including chromatographic separation, membrane separation, optical sensing, electrochemical sensing, and other sensing methods. Finally, the challenges and potential growth direction of CMOFs in enantiomer separation and detection are discussed and prospected.

17.
Mikrochim Acta ; 191(7): 428, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940957

RESUMEN

A novel nitrogen-doped ordered mesoporous carbon (OMC) pore-embedded growth Pt-Ru-Fe nanoparticles (Pt1-Ru7.5-Fex@N-OMCs) composite was designed and synthesized for the first time. SBA-15 was used as a template, and dopamine was used as a carbon and nitrogen source and metal linking reagent. The oxidative self-polymerization reaction of dopamine was utilized to polymerize dopamine into two-dimensional ordered SBA-15 template pores. Iron porphyrin was introduced as an iron source at the same time as polymerization of dopamine, which was introduced inside and outside the pores using dopamine-metal linkage. Carbonization of polydopamine, nitrogen doping and iron nanoparticle formation were achieved by one-step calcination. Then the templates were etched to form Fex@N-OMCs, and finally the Pt1-Ru7.5-Fex@N-OMCs composites were stabilized by the successful introduction of platinum-ruthenium nanoparticles through the substitution reaction. The composite uniformly embeds the transition metal nanoparticles inside the OMC pores with high specific surface area, which limits the size of the metal nanoparticles inside the pores. At the same time, the metal nanoparticles are also loaded onto the surface of the OMCs, realizing the uniform loading of metal nanoparticles both inside and outside the pores. This enhances the active sites of the composite, promotes the mass transfer process inside and outside the pores, and greatly enhances the electrocatalytic performance of the catalyst. The material shows high electrocatalytic performance for adrenaline, which is characterized by a wide linear range, high sensitivity and low detection limit, and can realize the detection of actual samples.

18.
Mikrochim Acta ; 191(8): 448, 2024 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967796

RESUMEN

Surface functionalization strategy is becoming a crucial bridge from magnetic nanoparticles (MNPs) to their broad bio-application. To realize the multiple functions of MNPs such as magnetic manipulation, target capture, and signal amplification in their use of electrochemical biosensing, co-crosslinking strategy was proposed here to construct dual-functionalized MNPs by combining ultra-sensitive redox moieties and specific biological probes. In this work, MNPs with a TEM size of 10 nm were synthesized by co-precipitation for amination and PEGylation to maintain colloid stability once dispersed in high-ionic-strength buffer (such as phosphate-buffered saline). Then, MNPs@IgG were prepared via the bis(sulfosuccinimidyl) suberate (BS3) cross-linker to conjugate these IgG onto the MNP surface, with a binding efficiency of 73%. To construct dual-functionalized MNPs, these redox probes of ferrocene-NHS (Fc) were co-crosslinked onto the MNP surface, together with IgG, by using BS3. The developed MNPs@Redox@IgG were characterized by SDS‒PAGE to identify IgG binding and by square wave voltammetry (SWV) to validate the redox signal. Additionally, the anti-CD63 antibodies were selected for the development of MNPs@anti-CD63 for use in the bio-testing of exosome sample capture. Therefore, co-crosslinking strategy paved a way to develop dual-functionalized MNPs that can be an aid of their potential utilization in diagnostic assay or electrochemical methods.


Asunto(s)
Reactivos de Enlaces Cruzados , Inmunoglobulina G , Nanopartículas de Magnetita , Oxidación-Reducción , Nanopartículas de Magnetita/química , Inmunoglobulina G/química , Humanos , Reactivos de Enlaces Cruzados/química , Compuestos Ferrosos/química , Metalocenos/química , Técnicas Biosensibles/métodos , Tetraspanina 30/inmunología , Técnicas Electroquímicas/métodos
19.
Mikrochim Acta ; 191(10): 625, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39322848

RESUMEN

A phenyl-modified silica isoporous membrane (Ph-SIM) was prepared on the indium-tin-oxide (ITO) electrode using the electrochemically assisted self-assembly (EASA) method. The resulting Ph-SIM preserved vertically ordered nanochannels while exhibiting outstanding hydrophobicity due to the incorporation of phenyl groups within the nanochannels. As a result, the Ph-SIM/ITO sensor exhibited a remarkable affinity for PCNB extraction through hydrophobic interactions, leading to high detection sensitivity. The electrochemical response showed a linear enhancement with the logarithmic concentration of PCNB ranging from 0.1 to 20.0 µM, and the limit of detection was 4.64 nM. Practical results demonstrated that the Ph-SIM/ITO sensor possessed good anti-fouling capability and robust stability, making it a promising candidate for portable detection of non-polar contaminants.

20.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123954

RESUMEN

We describe two operating modes for the same potentiostat, where the redox processes of hydroquinone in a hydrochloric acid medium are contrasted for cyclic voltammetry (CV) as functions of a digital/staircase scan and an analogue/linear scan. Although superficially there is not much to separate the two modes of operation as an end user, differences can be seen in the voltammograms while switching between the digital and analogue modes. The effects of quantization clearly have some impact on the measurements, with the outputs between the two modes being a function of the equivalent-circuit model of the electrochemical system under investigation. Increasing scan rates when using both modes produces higher peak redox currents, with the differences between the analogue and digital modes of operation being consistent as a function of the scan rate. Differences between the CV loops between the analogue and digital modes show key differences at certain points along the scans, which can be attributed to the nature of the electrolyte affecting the charging and discharging processes and consequently changing the peak currents of the redox processes. The faradaic processes were shown to be independent of the scan rates. Simulations of the equivalent-circuit behaviour show differences in the responses to different input signals, i.e., the step and ramp responses of the system. Both the voltage and current steps and ramp responses showed the time-domain behaviour of distinct elements of the equivalent electrochemical circuit model as an approximation of the applied digital and analogue CV input signals. Ultimately, it was concluded that similar parameters between the two modes of operation available with the potentiostat would lead to different output voltammograms and, despite advances in technology, digital systems can never fully emulate a true analogue system for electrochemical applications. These observations showcase the value of having hardware capable of true analogue characteristics over digital systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA