Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.331
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(7): 1117-1129.e8, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35298912

RESUMEN

Game animals are wildlife species traded and consumed as food and are potential reservoirs for SARS-CoV and SARS-CoV-2. We performed a meta-transcriptomic analysis of 1,941 game animals, representing 18 species and five mammalian orders, sampled across China. From this, we identified 102 mammalian-infecting viruses, with 65 described for the first time. Twenty-one viruses were considered as potentially high risk to humans and domestic animals. Civets (Paguma larvata) carried the highest number of potentially high-risk viruses. We inferred the transmission of bat-associated coronavirus from bats to civets, as well as cross-species jumps of coronaviruses from bats to hedgehogs, from birds to porcupines, and from dogs to raccoon dogs. Of note, we identified avian Influenza A virus H9N2 in civets and Asian badgers, with the latter displaying respiratory symptoms, as well as cases of likely human-to-wildlife virus transmission. These data highlight the importance of game animals as potential drivers of disease emergence.


Asunto(s)
Animales Salvajes/virología , Enfermedades Transmisibles Emergentes/virología , Reservorios de Enfermedades , Mamíferos/virología , Viroma , Animales , China , Filogenia , Zoonosis
2.
Cell ; 185(11): 1960-1973.e11, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35551765

RESUMEN

During vertebrate embryogenesis, cell collectives engage in coordinated behavior to form tissue structures of increasing complexity. In the avian skin, assembly into follicles depends on intrinsic mechanical forces of the dermis, but how cell mechanics initiate pattern formation is not known. Here, we reconstitute the initiation of follicle patterning ex vivo using only freshly dissociated avian dermal cells and collagen. We find that contractile cells physically rearrange the extracellular matrix (ECM) and that ECM rearrangement further aligns cells. This exchange transforms a mechanically unlinked collective of dermal cells into a continuum, with coherent, long-range order. Combining theory with experiment, we show that this ordered cell-ECM layer behaves as an active contractile fluid that spontaneously forms regular patterns. Our study illustrates a role for mesenchymal dynamics in generating cell-level ordering and tissue-level patterning through a fluid instability-processes that may be at play across morphological symmetry-breaking contexts.


Asunto(s)
Matriz Extracelular , Folículo Piloso , Animales , Colágeno , Piel , Vertebrados
3.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36182704

RESUMEN

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Asunto(s)
Arterivirus , Fiebres Hemorrágicas Virales , Animales , Arterivirus/fisiología , Fiebres Hemorrágicas Virales/veterinaria , Fiebres Hemorrágicas Virales/virología , Humanos , Macaca , Primates , Zoonosis Virales , Internalización del Virus , Replicación Viral
4.
Cell ; 184(17): 4392-4400.e4, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34289344

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic underscores the need to better understand animal-to-human transmission of coronaviruses and adaptive evolution within new hosts. We scanned more than 182,000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes for selective sweep signatures and found a distinct footprint of positive selection located around a non-synonymous change (A1114G; T372A) within the spike protein receptor-binding domain (RBD), predicted to remove glycosylation and increase binding to human ACE2 (hACE2), the cellular receptor. This change is present in all human SARS-CoV-2 sequences but not in closely related viruses from bats and pangolins. As predicted, T372A RBD bound hACE2 with higher affinity in experimental binding assays. We engineered the reversion mutant (A372T) and found that A372 (wild-type [WT]-SARS-CoV-2) enhanced replication in human lung cells relative to its putative ancestral variant (T372), an effect that was 20 times greater than the well-known D614G mutation. Our findings suggest that this mutation likely contributed to SARS-CoV-2 emergence from animal reservoirs or enabled sustained human-to-human transmission.


Asunto(s)
COVID-19/virología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Sustitución de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Animales , Línea Celular , Quirópteros/virología , Chlorocebus aethiops , Reservorios de Enfermedades , Evolución Molecular , Genoma Viral , Humanos , Modelos Moleculares , Mutación , Filogenia , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
5.
Cell ; 184(19): 4939-4952.e15, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34508652

RESUMEN

The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.


Asunto(s)
COVID-19/epidemiología , Epidemias , SARS-CoV-2/fisiología , COVID-19/transmisión , Bases de Datos como Asunto , Brotes de Enfermedades , Humanos , Louisiana/epidemiología , Filogenia , Factores de Riesgo , SARS-CoV-2/clasificación , Texas , Viaje , Estados Unidos/epidemiología
6.
Cell ; 176(6): 1367-1378.e8, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30773319

RESUMEN

The root cap surrounding the tip of plant roots is thought to protect the delicate stem cells in the root meristem. We discovered that the first layer of root cap cells is covered by an electron-opaque cell wall modification resembling a plant cuticle. Cuticles are polyester-based protective structures considered exclusive to aerial plant organs. Mutations in cutin biosynthesis genes affect the composition and ultrastructure of this cuticular structure, confirming its cutin-like characteristics. Strikingly, targeted degradation of the root cap cuticle causes a hypersensitivity to abiotic stresses during seedling establishment. Furthermore, lateral root primordia also display a cuticle that, when defective, causes delayed outgrowth and organ deformations, suggesting that it facilitates lateral root emergence. Our results show that the previously unrecognized root cap cuticle protects the root meristem during the critical phase of seedling establishment and promotes the efficient formation of lateral roots.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Cápsula de Raíz de Planta/metabolismo , Cápsula de Raíz de Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Lípidos de la Membrana/biosíntesis , Lípidos de la Membrana/metabolismo , Meristema/metabolismo , Mutación , Raíces de Plantas/citología , Plantones/genética , Plantones/crecimiento & desarrollo
7.
Cell ; 176(1-2): 295-305.e10, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30528431

RESUMEN

Between 5,000 and 6,000 years ago, many Neolithic societies declined throughout western Eurasia due to a combination of factors that are still largely debated. Here, we report the discovery and genome reconstruction of Yersinia pestis, the etiological agent of plague, in Neolithic farmers in Sweden, pre-dating and basal to all modern and ancient known strains of this pathogen. We investigated the history of this strain by combining phylogenetic and molecular clock analyses of the bacterial genome, detailed archaeological information, and genomic analyses from infected individuals and hundreds of ancient human samples across Eurasia. These analyses revealed that multiple and independent lineages of Y. pestis branched and expanded across Eurasia during the Neolithic decline, spreading most likely through early trade networks rather than massive human migrations. Our results are consistent with the existence of a prehistoric plague pandemic that likely contributed to the decay of Neolithic populations in Europe.


Asunto(s)
Peste/historia , Yersinia pestis/clasificación , Yersinia pestis/patogenicidad , Evolución Biológica , ADN Bacteriano/genética , Europa (Continente) , Genoma Bacteriano , Historia Antigua , Humanos , Pandemias , Filogenia
8.
Annu Rev Cell Dev Biol ; 31: 373-97, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407212

RESUMEN

Mechanotransduction translates mechanical signals into biochemical signals. It is based on the soft-matter properties of biomolecules or membranes that deform in response to mechanical loads to trigger activation of biochemical reactions. The study of mechanotransductive processes in cell-structure organization has been initiated in vitro in many biological contexts, such as examining cells' response to substrate rigidity increases associated with tumor fibrosis and to blood flow pressure. In vivo, the study of mechanotransduction in regulating physiological processes has focused primarily on the context of embryogenesis, with an increasing number of examples demonstrating its importance for both differentiation and morphogenesis. The conservation across species of mechanical induction in early embryonic patterning now suggests that major animal transitions, such as mesoderm emergence, may have been based on mechanotransduction pathways. In adult animal tissues, permanent stiffness and tissue growth pressure contribute to tumorigenesis and appear to reactivate such conserved embryonic mechanosensitive pathways.


Asunto(s)
Carcinogénesis/patología , Mecanotransducción Celular/fisiología , Morfogénesis/fisiología , Animales , Evolución Biológica , Desarrollo Embrionario/fisiología , Humanos
9.
Plant Cell ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38366565

RESUMEN

Lateral roots (LRs) increase root surface area and allow plants greater access to soil water and nutrients. LR formation is tightly regulated by the phytohormone auxin. Whereas the transcription factor ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR13 (ERF13) prevents LR emergence in Arabidopsis (Arabidopsis thaliana), auxin activates MITOGEN-ACTIVATED PROTEIN KINASE14 (MPK14), which leads to ERF13 degradation and ultimately promotes LR emergence. In this study, we discovered interactions between ERF13 and the E3 ubiquitin ligases MOS4-ASSOCIATED COMPLEX 3A (MAC3A) and MAC3B. As MAC3A and MAC3B gradually accumulate in the LR primordium, ERF13 levels gradually decrease. We demonstrate that MAC3A and MAC3B ubiquitinate ERF13, leading to its degradation and accelerating the transition of LR primordia from stage IV to stage V. Auxin enhances the MAC3A and MAC3B interaction with ERF13 by facilitating MPK14-mediated ERF13 phosphorylation. In summary, this study reveals the molecular mechanism by which auxin eliminates the inhibitory factor ERF13 through the MPK14-MAC3A and MAC3B signaling module, thus promoting LR emergence.

10.
Proc Natl Acad Sci U S A ; 120(41): e2303302120, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782799

RESUMEN

An increasing amount of evidence suggests that early ocean hydrothermal systems were sustained sources of ammonia, an essential nitrogen species for prebiotic synthesis of life's building blocks. However, it remains a riddle how the abiotically generated ammonia was retained at the vent-ocean interface for the subsequent chemical evolution. Here, we demonstrate that, under simulated geoelectrochemical conditions in early ocean hydrothermal systems ([Formula: see text][Formula: see text] V versus the standard hydrogen electrode), mackinawite gradually reduces to zero-valent iron ([Formula: see text]), generating interlayer [Formula: see text] sites. This reductive conversion leads to an up to 55-fold increase in the solid/liquid partition coefficient for ammonia, enabling over 90% adsorption of 1 mM ammonia in 1 M NaCl at neutral pH. A coordinative binding of ammonia on the interlayer [Formula: see text] sites was computed to be the major mechanism of selective ammonia adsorption. Mackinawite is a ubiquitous sulfide precipitate in submarine hydrothermal systems. Given its reported catalytic function in amination, the extreme accumulation of ammonia on electroreduced mackinawite should have been a crucial initial step for prebiotic nitrogen assimilation, paving the way to the origin of life.

11.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37963246

RESUMEN

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Asunto(s)
Infecciones Estreptocócicas , Streptococcus suis , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Infecciones Estreptocócicas/veterinaria , Granjas , Enfermedades de los Porcinos/epidemiología , Virulencia/genética , Streptococcus suis/genética , Ganado
12.
Proc Natl Acad Sci U S A ; 120(49): e2310752120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38019864

RESUMEN

The mechanisms generating novel genes and genetic information are poorly known, even for microRNA (miRNA) genes with an extremely constrained design. All miRNA primary transcripts need to fold into a stem-loop structure to yield short gene products ([Formula: see text]22 nt) that bind and repress their mRNA targets. While a substantial number of miRNA genes are ancient and highly conserved, short secondary structures coding for entirely novel miRNA genes have been shown to emerge in a lineage-specific manner. Template switching is a DNA-replication-related mutation mechanism that can introduce complex changes and generate perfect base pairing for entire hairpin structures in a single event. Here, we show that the template-switching mutations (TSMs) have participated in the emergence of over 6,000 suitable hairpin structures in the primate lineage to yield at least 18 new human miRNA genes, that is 26% of the miRNAs inferred to have arisen since the origin of primates. While the mechanism appears random, the TSM-generated miRNAs are enriched in introns where they can be expressed with their host genes. The high frequency of TSM events provides raw material for evolution. Being orders of magnitude faster than other mechanisms proposed for de novo creation of genes, TSM-generated miRNAs enable near-instant rewiring of genetic information and rapid adaptation to changing environments.


Asunto(s)
MicroARNs , Animales , Humanos , MicroARNs/metabolismo , Primates/genética , Intrones , Replicación del ADN/genética
13.
RNA ; 29(9): 1317-1324, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37286207

RESUMEN

The main goal of the origin of life (OoL) hypothesis is to reconstruct the missing link between the primordial soup and the extant biology. However, the OoL itself is just the initial part of the link representing the bootstrapping operation of Darwinian evolution. The rest of the link is the emergence of the evolution to the present day primary biological system-the ribosome-based translation apparatus. A valid hypothesis must (i) not invoke Darwinian evolution in the bootstrapping and (ii) transform the ab initio life form into the translation apparatus without violating the principle of continuity (i.e., only incremental steps without foresight). Currently, no such hypothesis exists. Here, I discuss the Quadruplex World hypothesis, which fully complies with these requirements and suggests a spontaneous emergence of the ab initio life form. The spontaneity of OoL arises from the physicochemical properties of guanine monomers in a manner of causal determinism: each step of the process (i.e., scaffolding, polymerization, and folding) is caused by the most recent past step such that in the end only the specific 3D architecture forms. The architecture (i) has a length-independent folding pattern; (ii) can play the role of the predecessor of tRNA and single-handedly conduct a primitive form of translation; and (iii) can evolve into the extant translation apparatus without any paradoxes.


Asunto(s)
Pollos , Guanina , Animales , ARN de Transferencia/genética , ARN de Transferencia/química , Ribosomas/genética
14.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38168672

RESUMEN

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Asunto(s)
Investigación Biomédica , Contención de Riesgos Biológicos , Virología , Humanos , COVID-19 , Estados Unidos , Virus , Investigación Biomédica/normas
15.
Annu Rev Psychol ; 75: 341-378, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37906949

RESUMEN

Social norms are the glue that holds society together, yet our knowledge of them remains heavily intellectually siloed. This article provides an interdisciplinary review of the emerging field of norm dynamics by integrating research across the social sciences through a cultural-evolutionary lens. After reviewing key distinctions in theory and method, we discuss research on norm psychology-the neural and cognitive underpinnings of social norm learning and acquisition. We then overview how norms emerge and spread through intergenerational transmission, social networks, and group-level ecological and historical factors. Next, we discuss multilevel factors that lead norms to persist, change, or erode over time. We also consider cultural mismatches that can arise when a changing environment leads once-beneficial norms to become maladaptive. Finally, we discuss potential future research directions and the implications of norm dynamics for theory and policy.


Asunto(s)
Evolución Cultural , Normas Sociales , Humanos , Aprendizaje , Red Social
16.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35046024

RESUMEN

Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are controlled within wildlife reservoirs. A key challenge that must be overcome is identifying viral vectors that can rapidly spread immunity through a reservoir population. Because they are broadly distributed taxonomically, species specific, and stable to genetic manipulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors. Here we evaluate the likely effectiveness of betaherpesvirus-vectored transmissible vaccines by developing and parameterizing a mathematical model using data from captive and free-living mouse populations infected with murine cytomegalovirus (MCMV). Simulations of our parameterized model demonstrate rapid and effective control for a range of pathogens, with pathogen elimination frequently occurring within a year of vaccine introduction. Our results also suggest, however, that the effectiveness of transmissible vaccines may vary across reservoir populations and with respect to the specific vector strain used to construct the vaccine.


Asunto(s)
Betaherpesvirinae/genética , Vectores Genéticos/genética , Inmunogenicidad Vacunal , Modelos Teóricos , Vacunación Basada en Ácidos Nucleicos/inmunología , Vacunas/inmunología , Algoritmos , Enfermedades de los Animales/prevención & control , Enfermedades de los Animales/transmisión , Enfermedades de los Animales/virología , Animales , Teorema de Bayes , Reservorios de Enfermedades , Vectores de Enfermedades , Vectores Genéticos/inmunología , Infecciones por Herpesviridae/veterinaria , Ratones , Muromegalovirus , Vacunación Basada en Ácidos Nucleicos/genética , Prevalencia , Vacunas/genética
17.
Proc Natl Acad Sci U S A ; 119(32): e2204967119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914142

RESUMEN

Networks are fundamental for our understanding of complex systems. The study of networks has uncovered common principles that underlie the behavior of vastly different fields of study, including physics, biology, sociology, and engineering. One of these common principles is the existence of network motifs-small recurrent patterns that can provide certain features that are important for the specific network. However, it remains unclear how network motifs are joined in real networks to make larger circuits and what properties emerge from interactions between network motifs. Here, we develop a framework to explore the mesoscale-level behavior of complex networks. Considering network motifs as hypernodes, we define the rules for their interaction at the network's next level of organization. We develop a method to infer the favorable arrangements of interactions between network motifs into hypermotifs from real evolved and designed network data. We mathematically explore the emergent properties of these higher-order circuits and their relations to the properties of the individual minimal circuit components they combine. We apply this framework to biological, neuronal, social, linguistic, and electronic networks and find that network motifs are not randomly distributed in real networks but are combined in a way that both maintains autonomy and generates emergent properties. This framework provides a basis for exploring the mesoscale structure and behavior of complex systems where it can be used to reveal intermediate patterns in complex networks and to identify specific nodes and links in the network that are the key drivers of the network's emergent properties.


Asunto(s)
Modelos Teóricos , Biología , Ingeniería , Retroalimentación , Lingüística , Modelos Biológicos , Neuronas/fisiología , Física , Sociología , Biología de Sistemas
18.
Proc Natl Acad Sci U S A ; 119(50): e2215600119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36472956

RESUMEN

The transmission of viruses between different host species is a major source of emerging diseases and is of particular concern in the case of zoonotic transmission from mammals to humans. Several zoonosis risk factors have been identified, but it is currently unclear which viral traits primarily determine this process as previous work has focused on a few hundred viruses that are not representative of actual viral diversity. Here, we investigate fundamental virological traits that influence cross-species transmissibility and zoonotic propensity by interrogating a database of over 12,000 mammalian virus-host associations. Our analysis reveals that enveloped viruses tend to infect more host species and are more likely to be zoonotic than nonenveloped viruses, while other viral traits such as genome composition, structure, size, or the viral replication compartment play a less obvious role. This contrasts with the previous notion that viral envelopes did not significantly impact or even reduce zoonotic risk and should help better prioritize outbreak prevention efforts. We suggest several mechanisms by which viral envelopes could promote cross-species transmissibility, including structural flexibility of receptor-binding proteins and evasion of viral entry barriers.


Asunto(s)
Virus , Humanos
19.
Proc Natl Acad Sci U S A ; 119(45): e2204993119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322765

RESUMEN

Community-associated, methicillin-resistant Staphylococcus aureus (MRSA) lineages have emerged in many geographically distinct regions around the world during the past 30 y. Here, we apply consistent phylodynamic methods across multiple community-associated MRSA lineages to describe and contrast their patterns of emergence and dissemination. We generated whole-genome sequencing data for the Australian sequence type (ST) ST93-MRSA-IV from remote communities in Far North Queensland and Papua New Guinea, and the Bengal Bay ST772-MRSA-V clone from metropolitan communities in Pakistan. Increases in the effective reproduction number (Re) and sustained transmission (Re > 1) coincided with spread of progenitor methicillin-susceptible S. aureus (MSSA) in remote northern Australian populations, dissemination of the ST93-MRSA-IV genotype into population centers on the Australian East Coast, and subsequent importation into the highlands of Papua New Guinea and Far North Queensland. Applying the same phylodynamic methods to existing lineage datasets, we identified common signatures of epidemic growth in the emergence and epidemiological trajectory of community-associated S. aureus lineages from America, Asia, Australasia, and Europe. Surges in Re were observed at the divergence of antibiotic-resistant strains, coinciding with their establishment in regional population centers. Epidemic growth was also observed among drug-resistant MSSA clades in Africa and northern Australia. Our data suggest that the emergence of community-associated MRSA in the late 20th century was driven by a combination of antibiotic-resistant genotypes and host epidemiology, leading to abrupt changes in lineage-wide transmission dynamics and sustained transmission in regional population centers.


Asunto(s)
Infecciones Comunitarias Adquiridas , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/genética , Infecciones Estafilocócicas/epidemiología , Australia/epidemiología , Antibacterianos/farmacología , Pakistán , Infecciones Comunitarias Adquiridas/epidemiología , Pruebas de Sensibilidad Microbiana
20.
J Infect Dis ; 229(6): 1904-1908, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38669235

RESUMEN

We are currently witnessing the endemization of urogenital schistosomiasis in southern Europe. The incriminated parasite is a hybrid between a human parasite and a livestock parasite. Using an experimental evolutionary protocol, we created hybrid lines from pure strains of both parasite species. We showed that the host spectrum of the human parasite is enlarged to the livestock parasite after genomic introgression. We also evidenced that the tropism of the parasites within the host changes and that some hybrid lines are more virulent than the parental strains. These results engage a paradigm shift from human to zoonotic transmission of urogenital schistosomiasis.


Asunto(s)
Hibridación Genética , Zoonosis , Animales , Humanos , Zoonosis/transmisión , Zoonosis/parasitología , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis Urinaria/parasitología , Schistosoma haematobium/genética , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA