Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell ; 187(14): 3638-3651.e18, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838667

RESUMEN

Telomere maintenance requires the extension of the G-rich telomeric repeat strand by telomerase and the fill-in synthesis of the C-rich strand by Polα/primase. At telomeres, Polα/primase is bound to Ctc1/Stn1/Ten1 (CST), a single-stranded DNA-binding complex. Like mutations in telomerase, mutations affecting CST-Polα/primase result in pathological telomere shortening and cause a telomere biology disorder, Coats plus (CP). We determined cryogenic electron microscopy structures of human CST bound to the shelterin heterodimer POT1/TPP1 that reveal how CST is recruited to telomeres by POT1. Our findings suggest that POT1 hinge phosphorylation is required for CST recruitment, and the complex is formed through conserved interactions involving several residues mutated in CP. Our structural and biochemical data suggest that phosphorylated POT1 holds CST-Polα/primase in an inactive, autoinhibited state until telomerase has extended the telomere ends. We propose that dephosphorylation of POT1 releases CST-Polα/primase into an active state that completes telomere replication through fill-in synthesis.


Asunto(s)
ADN Polimerasa I , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Humanos , Microscopía por Crioelectrón , ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , ADN Primasa/genética , Modelos Moleculares , Fosforilación , Complejo Shelterina/metabolismo , Telomerasa/metabolismo , Telómero/metabolismo , Proteínas de Unión a Telómeros/metabolismo
2.
J Math Biol ; 80(4): 1039-1076, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31728621

RESUMEN

Telomeres are repetitive DNA sequences located at the ends of chromosomes. During cell division, an incomplete copy of each chromosome's DNA is made, causing telomeres to shorten on successive generations. When a threshold length is reached replication ceases and the cell becomes 'senescent'. In this paper, we consider populations of telomeres and, from discrete models, we derive partial differential equations which describe how the distribution of telomere lengths evolves over many generations. We initially consider a population of cells each containing just a single telomere. We use continuum models to compare the effects of various mechanisms of telomere shortening and rates of cell division during normal ageing. For example, the rate (or probability) of cell replication may be fixed or it may decrease as the telomeres shorten. Furthermore, the length of telomere lost on each replication may be constant, or may decrease as the telomeres shorten. Where possible, explicit solutions for the evolution of the distribution of telomere lengths are presented. In other cases, expressions for the mean of the distribution are derived. We extend the models to describe cell populations in which each cell contains a distinct subpopulation of chromosomes. As for the simpler models, constant telomere shortening leads to a linear reduction in telomere length over time, whereas length-dependent shortening results in initially rapid telomere length reduction, slowing at later times. Our analysis also reveals that constant telomere loss leads to a Gaussian (normal) distribution of telomere lengths, whereas length-dependent loss leads to a log-normal distribution. We show that stochastic models, which include a replication probability, also lead to telomere length distributions which are skewed.


Asunto(s)
Modelos Genéticos , Homeostasis del Telómero/genética , Envejecimiento/genética , División Celular/genética , Senescencia Celular/genética , Cromosomas Humanos/genética , Simulación por Computador , Replicación del ADN/genética , Humanos , Conceptos Matemáticos , Modelos Estadísticos , Distribución Normal , Procesos Estocásticos , Telómero/genética , Acortamiento del Telómero/genética
3.
RNA Biol ; 13(8): 720-32, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27359343

RESUMEN

Telomerase is the eukaryotic solution to the 'end-replication problem' of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function. TR accomplishes this by having evolved structural elements for stable assembly with the TERT protein and the regulation of the telomerase catalytic cycle. Despite its prominence and prevalence, TR has profoundly diverged in length, sequence, and biogenesis pathway among distinct evolutionary lineages. This diversity has generated numerous structural and mechanistic solutions for ensuring proper RNP formation and high fidelity telomeric DNA synthesis. Telomerase provides unique insights into RNA and protein coevolution within RNP enzymes.


Asunto(s)
Evolución Biológica , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Telomerasa/química , Telomerasa/genética , Animales , Replicación del ADN , Activación Enzimática , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos , Ribonucleoproteínas/metabolismo , Relación Estructura-Actividad , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Moldes Genéticos
4.
ACS Synth Biol ; 9(7): 1771-1780, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32674580

RESUMEN

DNA replication is one of the central functions of the cell. The complexity of modern DNA replication systems raises a question: is it possible to achieve a simpler continuous isothermal DNA replication using fewer proteins? Here, we searched such replication using an evolutionary approach. Through a long-term serial dilution experiment with phi29 DNA polymerase, we found that large repetitive DNAs spontaneously appear and continuously replicate. The repetitive sequence is critical for replication. Arbitrary sequences can replicate if they contain many repeats. We also demonstrated continuous DNA replication using expressed polymerase from the DNA for 10 rounds. This study revealed that continuous isothermal DNA replication can be achieved in a scheme simpler than that employed by modern organisms, providing an alternative strategy for simpler artificial cell synthesis and a clue to possible primitive forms of DNA replication.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/genética , ADN/genética , Plásmidos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Temperatura , Sistema Libre de Células , Expresión Génica , Reacción en Cadena de la Polimerasa/métodos , Biosíntesis de Proteínas , Pirofosfatasas/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA