Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(3): e0122223, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265216

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stems from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trial results for recent antibiotic candidates, underscores the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an Minimum inhibitory concentration (MIC90) of 2 µg/mL, which was comparable to vancomycin (1 µg/mL), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK, therefore, represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Vancomicina/farmacología , Oxidorreductasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fidaxomicina/farmacología , Infecciones por Clostridium/tratamiento farmacológico
2.
Biochem Biophys Res Commun ; 705: 149740, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38458032

RESUMEN

Clostridioides difficile, a gram-positive anaerobic bacterium, is one of the most frequent causes of nosocomial infections. C. difficile infection (CDI) results in almost a half a million infections and approximately 30,000 deaths in the U.S. each year. Broad-spectrum antibacterial use is a strong risk factor for development of recurring CDI. There is a critical need for narrow-spectrum antibacterials with activity limited to C. difficile. The C. difficile enoyl-acyl carrier protein (ACP) reductase II enzyme (CdFabK), an essential and rate-limiting enzyme in the organism's fatty acid biosynthesis pathway (FAS-2), is an attractive target for narrow-spectrum CDI therapeutics as it is not present in many of the non-pathogenic gut organisms. We have previously characterized inhibitors of the CdFabK enzyme with narrow-spectrum anti-difficile activity and favorable in vivo efficacy, ADME, and low dysbiosis. To expand our knowledge of the structural requirements for CdFabK inhibition, we seek to identify new inhibitors with novel chemical scaffolds. Herein we present the optimization of a thermo-FMN biophysical assay based on the principles of differential scanning fluorimetry, or thermal shift, which leverages the fluorescence signal of the FabK enzyme's FMN prosthetic group. The optimized assay was validated by pilot testing a 10K diversity-based chemical library and novel scaffold hit compounds were identified and biochemically characterized. Additionally, we show that the thermo-FMN assay can be used to determine the thermodynamic dissociation constant, Kd, of CdFabK inhibitors.


Asunto(s)
Clostridioides difficile , Enoil-ACP Reductasa (NADH) , Enoil-ACP Reductasa (NADH)/genética , Enoil-ACP Reductasa (NADH)/metabolismo , Clostridioides difficile/metabolismo , Composición de Base , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Antibacterianos/farmacología , Antibacterianos/química
3.
Bioorg Chem ; 146: 107250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460337

RESUMEN

Multidrug-resistant tuberculosis continues to pose a health security risk and remains a public health emergency. Antimicrobial resistance result from treatment regimens that are both insufficient and incomplete leading to the emergence of multidrug-resistant tuberculosis, extensively drug-resistant tuberculosis and totally drug-resistant tuberculosis. The impact of tuberculosis on the people suffering from HIV (Human immunodeficiency virus infection) have resulted in the increased research efforts in designing and discovery of novel antitubercular drugs that may result in decreasing treatment duration, minimising the need for multiple drug intake, minimising cytotoxicity and enhancing the mechanism of action of drug. While many drugs are available to treat tuberculosis, a precise and timely cure is still absent. Consequently, further investigation is needed to identify more recent molecular equivalents that have the potential to swiftly remove this disease. Isoniazid (INH), a treatment for tuberculosis (TB), targets the enzyme InhA (mycobacterium enoyl acyl carrier protein reductase), the Mycobacterium tuberculosis enoyl-acyl carrier protein (ACP) reductase, most common INH resistance is circumvented by InhA inhibitors that do not require KatG (catalase-peroxidase) activation, as a result, researchers are trying to work in the area of development of InhA inhibitors which could help in eradicating the era of tuberculosis from the world.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Proteína Transportadora de Acilo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Isoniazida/farmacología , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Proteínas Bacterianas/metabolismo , Mutación , Pruebas de Sensibilidad Microbiana
4.
Mol Microbiol ; 118(5): 541-551, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36100979

RESUMEN

The Enterococcus faecalis genome contains two enoyl-ACP reductases genes, fabK and fabI, which encode proteins having very different structures. Enoyl-ACP reductase catalyzes the last step of the elongation cycle of type II fatty acid synthesis pathway. The fabK gene is located within the large fatty acid synthesis operon whereas fabI is located together with two genes fabN and fabO required for unsaturated fatty acid synthesis. Prior work showed that FabK is weakly expressed due to poor translational initiation and hence virtually all the cellular enoyl ACP reductase activity is that encoded by fabI. Since FabK is a fully functional enzyme, the question is why FabI is an essential enzyme. Why not increase FabK activity? We report that overproduction of FabK is lethal whereas FabI overproduction only slows the growth and is not lethal. In both cases, normal growth is restored by the addition of oleic acid, an unsaturated fatty acid, to the medium indicating that enoyl ACP reductase overproduction disrupts unsaturated fatty acid synthesis. We report that this is due to competition with FabO, a putative 3-ketoacyl-ACP synthase I via FabN, a dehydratase/isomerase providing evidence that the enoyl-ACP reductase must be matched to the unsaturated fatty acid synthetic genes. FabO has been ascribed the same activity as E. coli FabB and we report in vitro evidence that this is the case, whereas FabN is a dehydratase/isomerase, having the activity of E. coli FabA. However, FabN is much larger than FabA, it is a hexamer rather than a dimer like FabA.


Asunto(s)
Enoil-ACP Reductasa (NADH) , Enterococcus faecalis , Enterococcus faecalis/metabolismo , Enoil-ACP Reductasa (NADH)/genética , Enoil-ACP Reductasa (NADH)/metabolismo , Escherichia coli/metabolismo , Ácidos Grasos Insaturados , Hidroliasas/genética
5.
Bioorg Med Chem ; 88-89: 117330, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37224699

RESUMEN

Previously, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea bearing a p-bromine substitution was shown to possess selective inhibitory activity against the Clostridioides difficile enoyl-acyl carrier protein (ACP) reductase II enzyme, FabK. Inhibition of CdFabK by this compound translated to promising antibacterial activity in the low micromolar range. In these studies, we sought to expand our knowledge of the SAR of the phenylimidazole CdFabK inhibitor series while improving the potency of the compounds. Three main series of compounds were synthesized and evaluated based on: 1) pyridine head group modifications including the replacement with a benzothiazole moiety, 2) linker explorations, and 3) phenylimidazole tail group modifications. Overall, improvement in the CdFabK inhibition was achieved, while maintaining the whole cell antibacterial activity. Specifically, compounds 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-((3-(trifluoromethyl)pyridin-2-yl)thio)thiazol-2-yl)urea, 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-(trifluoromethyl)benzo[d]thiazol-2-yl)urea, and 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(6-chlorobenzo[d]thiazol-2-yl)urea showed CdFabK inhibition (IC50 = 0.10 to 0.24 µM), a 5 to 10-fold improvement in biochemical activity relative to 1-((4-(4-bromophenyl)-1H-imidazol-2-yl)methyl)-3-(5-(pyridin-2-ylthio)thiazol-2-yl)urea, with anti-C. difficile activity ranging from 1.56 to 6.25 µg/mL. Detailed analysis of the expanded SAR, supported by computational analysis, is presented.


Asunto(s)
Enoil-ACP Reductasa (NADH) , Urea , Urea/farmacología , Antibacterianos/química , Relación Estructura-Actividad
6.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33429999

RESUMEN

Online Chemical Modeling Environment (OCHEM) was used for QSAR analysis of a set of ionic liquids (ILs) tested against multi-drug resistant (MDR) clinical isolate Acinetobacter baumannii and Staphylococcus aureus strains. The predictive accuracy of regression models has coefficient of determination q2 = 0.66 - 0.79 with cross-validation and independent test sets. The models were used to screen a virtual chemical library of ILs, which was designed with targeted activity against MDR Acinetobacter baumannii and Staphylococcus aureus strains. Seven most promising ILs were selected, synthesized, and tested. Three ILs showed high activity against both these MDR clinical isolates.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Imidazoles/química , Piridinas/química , Acinetobacter baumannii/patogenicidad , Infecciones Bacterianas/microbiología , Resistencia a Múltiples Medicamentos , Humanos , Imidazoles/síntesis química , Líquidos Iónicos/síntesis química , Líquidos Iónicos/química , Piridinas/síntesis química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Relación Estructura-Actividad
7.
Bioorg Med Chem Lett ; 30(24): 127651, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33130290

RESUMEN

Xanthorrhizol, isolated from the Indonesian Java turmeric Curcuma xanthorrhiza, displays broad-spectrum antibacterial activity. We report herein the evidence that mechanism of action of xanthorrhizol may involve FabI, an enoyl-(ACP) reductase, inhibition. The predicted Y156V substitution in the FabI enzyme promoted xanthorrhizol resistance, while the G93V mutation originally known for triclosan resistance was not effective against xanthorrhizol. Two other mutations, F203L and F203V, conferred FabI enzyme resistance to both xanthorrhizol and triclosan. These results showed that xanthorrhizol is a food-grade antimicrobial compound targeting FabI but with a different mode of binding from triclosan.


Asunto(s)
Antibacterianos/farmacología , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Escherichia coli/enzimología , Aditivos Alimentarios/farmacología , Fenoles/farmacología , Enoil-ACP Reductasa (NADH)/metabolismo , Escherichia coli/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/metabolismo , Acido Graso Sintasa Tipo II/antagonistas & inhibidores , Acido Graso Sintasa Tipo II/metabolismo , Humanos , Simulación del Acoplamiento Molecular
8.
Bioorg Chem ; 95: 103498, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31855823

RESUMEN

Two macrocyclic derivatives based on the triclosan frame were designed and synthesized as inhibitors of Mycobacterium tuberculosis InhA enzyme. One of the two molecules M02 displayed promising inhibitory activity against InhA enzyme with an IC50 of 4.7 µM. Molecular docking studies of these two compounds were performed and confirmed that M02 was more efficient as inhibitor of InhA activity. These molecules are the first macrocyclic direct inhibitors of InhA enzyme able to bind into the substrate pocket. Furthermore, these biaryl ether compounds exhibited antitubercular activities comparable to that of triclosan against M. tuberculosis H37Rv strain.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Compuestos Macrocíclicos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Triclosán/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/metabolismo , Relación Estructura-Actividad , Triclosán/síntesis química , Triclosán/química
9.
Parasitol Res ; 119(6): 1879-1887, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32382989

RESUMEN

Malaria, caused by protozoa of the genus Plasmodium, is a disease that infects hundreds of millions of people annually, causing an enormous social burden in many developing countries. Since current antimalarial drugs are starting to face resistance by the parasite, the development of new therapeutic options has been prompted. The enzyme Plasmodium falciparum enoyl-ACP reductase (PfENR) has a determinant role in the fatty acid biosynthesis of this parasite and is absent in humans, making it an ideal target for new antimalarial drugs. In this sense, the present study aimed at evaluating the in silico binding affinity of natural and synthetic amides through molecular docking, in addition to their in vitro activity against P. falciparum by means of the SYBR Green Fluorescence Assay. The in vitro results revealed that the natural amide piplartine (1a) presented partial antiplasmodial activity (20.54 µM), whereas its synthetic derivatives (1m-IC50 104.45 µM), (1b, 1g, 1k, and 14f) and the natural amide piperine (18a) were shown to be inactive (IC50 > 200 µM). The in silico physicochemical analyses demonstrated that compounds 1m and 14f violated the Lipinski's rule of five. The in silico analyses showed that 14f presented the best binding affinity (- 13.047 kcal/mol) to PfENR and was also superior to the reference inhibitor triclosan (- 7.806 kcal/mol). In conclusion, we found that the structural modifications in 1a caused a significant decrease in antiplasmodial activity. Therefore, new modifications are encouraged in order to improve the activity observed.


Asunto(s)
Amidas/farmacología , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Amidas/química , Animales , Chlorocebus aethiops , Simulación por Computador , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Enoil-ACP Reductasa (NADH)/metabolismo , Células Hep G2 , Humanos , Malaria Falciparum , Simulación del Acoplamiento Molecular , Piper nigrum , Plasmodium falciparum/enzimología , Triclosán/farmacología , Células Vero
10.
J Biol Chem ; 293(43): 16741-16750, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30185616

RESUMEN

Isoniazid (INH) and ethambutol (EMB) are two major first-line drugs for managing tuberculosis (TB), caused by the microbe Mycobacterium tuberculosis Although co-use of these two drugs is common in clinical practice, the mechanism for the potential synergistic interplay between them remains unclear. Here, we present first evidence that INH and EMB act synergistically through a transcriptional repressor of the inhA gene, the target gene of INH encoding an enoyl-acyl carrier protein reductase of the fatty acid synthase type II system required for bacterial cell wall integrity. We report that EMB binds a hypothetical transcription factor encoded by the Rv0273c gene, designated here as EtbR. Using DNA footprinting, we found that EtbR specifically recognizes a motif sequence in the upstream region of the inhA gene. Using isothermal titration calorimetry and surface plasmon resonance assays, we observed that EMB binds EtbR in a 1:1 ratio and thereby stimulates its DNA-binding activity. When a nonlethal dose of EMB was delivered in combination with INH, EMB increased the INH susceptibility of cultured M. tuberculosis cells. In summary, EMB induces EtbR-mediated repression of inhA and thereby enhances the mycobactericidal effect of INH. Our findings uncover a molecular mechanism for the synergistic activity of two important anti-TB drugs.


Asunto(s)
Antituberculosos/farmacología , Sinergismo Farmacológico , Etambutol/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Quimioterapia Combinada , Humanos , Mycobacterium tuberculosis/fisiología , Tuberculosis/metabolismo , Tuberculosis/microbiología
11.
Plasmid ; 101: 35-42, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529129

RESUMEN

DNA vaccines require a vector to replicate genes and express encoding antigens. Antibiotic resistance genes are often used as selection markers, which must not be released to the environment upon final product commercialization. For this reason, generation of antibiotic resistance-free vectors is imperative. The pPAL vector contains the cytomegalovirus enhancer and promoter for expression in mammalian cells and the E. coli fabI chromosomal gene as a selectable marker. The fabI gene encodes the enoyl-ACP reductase (FabI). The bacteriostatic compound triclosan is an inhibitor of this enzyme. Therefore, the selection of positive clones depends on the enzyme:inhibitor molar ratio. According to western blot analysis, the pPAL vector is functional for expression of the Leishmania infantum (Kinetoplastid: Trypanosomatidae) gene encoding for the protein kinase C receptor analog (LACK/p36) in the HEK293T human cell line transfected with pPAL-LACK. The fabI gene sequence contains a 210 bp CpG island, suggesting a potential role as an adjuvant of the antibiotic resistance-free pPAL vector. In fact, Th1 response induction levels against canine leishmaniasis only using pPAL-LACK was shown to be as strong as in previous strategies using a recombinant vaccinia virus in combination with standard mammalian expression plasmid vectors. In summary, the pPAL plasmid contains the essential elements for manipulation and expression of any cloned DNA sequence in prokaryotic and mammalian cells using an E. coli endogenous gene as a selectable marker, which also provides a long CpG island. This element enhances Th1 immune response against L. infantum infection in dogs using the gene encoding for the LACK antigen. Therefore, this antibiotic resistance-free plasmid is a vaccine vector actively participating in protection against canine leishmaniasis and may be potentially tested as a vaccine vector with other antigens against different pathogens.


Asunto(s)
Antígenos de Protozoos/genética , Leishmania infantum/efectos de los fármacos , Vacunas contra la Leishmaniasis/inmunología , Leishmaniasis Visceral/prevención & control , Plásmidos/inmunología , Proteínas Protozoarias/genética , Vacunas de ADN/inmunología , Animales , Antígenos de Protozoos/inmunología , Islas de CpG , Citomegalovirus/genética , Perros , Farmacorresistencia Microbiana , Elementos de Facilitación Genéticos , Enoil-ACP Reductasa (NADH)/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Acido Graso Sintasa Tipo II/genética , Marcadores Genéticos , Células HEK293 , Humanos , Leishmania infantum/inmunología , Vacunas contra la Leishmaniasis/administración & dosificación , Vacunas contra la Leishmaniasis/genética , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Plásmidos/administración & dosificación , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Proteínas Protozoarias/inmunología , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/parasitología , Triclosán/farmacología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética
12.
Artículo en Inglés | MEDLINE | ID: mdl-29891603

RESUMEN

Enoyl-acyl carrier protein reductases (ENR), such as FabI, FabL, FabK, and FabV, catalyze the last reduction step in bacterial type II fatty acid biosynthesis. Previously, we reported metagenome-derived ENR homologs resistant to triclosan (TCL) and highly similar to 7-α hydroxysteroid dehydrogenase (7-AHSDH). These homologs are commonly found in Epsilonproteobacteria, a class that contains several human-pathogenic bacteria, including the genera Helicobacter and Campylobacter Here we report the biochemical and predicted structural basis of TCL resistance in a novel 7-AHSDH-like ENR. The purified protein exhibited NADPH-dependent ENR activity but no 7-AHSDH activity, despite its high homology with 7-AHSDH (69% to 96%). Because this ENR was similar to FabL (41%), we propose that this metagenome-derived ENR be referred to as FabL2. Homology modeling, molecular docking, and molecular dynamic simulation analyses revealed the presence of an extrapolated six-amino-acid loop specific to FabL2 ENR, which prevented the entry of TCL into the active site of FabL2 and was likely responsible for TCL resistance. Elimination of this extrapolated loop via site-directed mutagenesis resulted in the complete loss of TCL resistance but not enzyme activity. Phylogenetic analysis suggested that FabL, FabL2, and 7-AHSDH diverged from a common short-chain dehydrogenase reductase family. This study is the first to report the role of the extrapolated loop of FabL2-type ENRs in conferring TCL resistance. Thus, the FabL2 ENR represents a new drug target specific for pathogenic Epsilonproteobacteria.


Asunto(s)
Enoil-ACP Reductasa (NADH)/metabolismo , Triclosán/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter/efectos de los fármacos , Campylobacter/genética , Farmacorresistencia Bacteriana , Enoil-ACP Reductasa (NADH)/genética , Helicobacter/efectos de los fármacos , Helicobacter/genética , Humanos , Simulación del Acoplamiento Molecular
13.
Bioorg Chem ; 81: 440-453, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30223149

RESUMEN

In an effort to produce new lead antimycobacterial compounds, herein we have reported the synthesis of a sequence of new pyrrolyl benzamide derivatives. The new chemical entities were screened to target enoyl-ACP reductase enzyme, which is one of the key enzymes of M. tuberculosis that are involved in type II fatty acid biosynthetic pathway. Compound 3q exhibited H-bonding interactions with Tyr158, Thr196 and co-factor NAD+ that binds the active site of InhA. All the pyrrolyl benzamide compounds were evaluated as inhibitors of M. tuberculosis H37Rv as well as inhibitors of InhA. Among them, few representative compounds were tested for mammalian cell toxicity on the human lung cancer cell-line (A549) and MV cell line that presented no cytotoxicity. Five of these compounds exhibited a good activity against InhA.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Benzamidas/química , Benzamidas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Células A549 , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Dominio Catalítico/efectos de los fármacos , Diseño de Fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/metabolismo , Oxidorreductasas/química , Oxidorreductasas/metabolismo
14.
Bioorg Chem ; 75: 181-200, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28961440

RESUMEN

In efforts to develop new antitubercular agents, we report here the synthesis of a series of novel pyrrole hydrazine derivatives. The molecules were evaluated against inhibitors of InhA, which is one of the key enzymes involved in type II fatty acid biosynthetic pathway of the mycobacterial cell wall as well as inhibitors of Mycobacterium tuberculosis H37Rv. The binding mode of compounds at the active site of enoyl-ACP reductase was explored using the surflex-docking method. The model suggests one or two H-bonding interactions between the compounds and the InhA enzyme. Some compounds exhibited good activities against InhA in addition to promising activities against M. tuberculosis.


Asunto(s)
Antituberculosos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Hidrazinas/química , Oxidorreductasas/antagonistas & inhibidores , Pirroles/química , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Dominio Catalítico , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Hidrazinas/síntesis química , Hidrazinas/farmacología , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/metabolismo
15.
Molecules ; 22(3)2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28335571

RESUMEN

A series of substituted N-benzyl-3-chloropyrazine-2-carboxamides were prepared as positional isomers of 5-chloro and 6-chloro derivatives, prepared previously. During the aminolysis of the acyl chloride, the simultaneous substitution of chlorine with benzylamino moiety gave rise to N-benzyl-3-(benzylamino)pyrazine-2-carboxamides as side products, in some cases. Although not initially planned, the reaction conditions were modified to populate this double substituted series. The final compounds were tested against four mycobacterial strains. N-(2-methylbenzyl)-3-((2-methylbenzyl)amino)pyrazine-2-carboxamide (1a) and N-(3,4-dichlorobenzyl)-3-((3,4-dichlorobenzyl)amino)pyrazine-2-carboxamide (9a) proved to be the most effective against Mycobacterium tuberculosis H37Rv, with MIC = 12.5 µg·mL-1. Compounds were screened for antibacterial activity. The most active compound was 3-chloro-N-(2-chlorobenzyl)pyrazine-2-carboxamide (5) against Staphylococcus aureus with MIC = 7.81 µM, and Staphylococcus epidermidis with MIC = 15.62 µM. HepG2 in vitro cytotoxicity was evaluated for the most active compounds; however, no significant toxicity was detected. Compound 9a was docked to several conformations of the enoyl-ACP-reductase of Mycobacterium tuberculosis. In some cases, it was capable of H-bond interactions, typical for most of the known inhibitors.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Pirazinas/síntesis química , Pirazinas/farmacología , Antibacterianos/química , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Pirazinas/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Relación Estructura-Actividad
16.
J Struct Biol ; 190(3): 328-37, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25891098

RESUMEN

InhA is an enoyl-ACP reductase of Mycobacterium tuberculosis implicated in the biosynthesis of mycolic acids, essential constituents of the mycobacterial cell wall. To date, this enzyme is considered as a promising target for the discovery of novel antitubercular drugs. In this work, we describe the first crystal structure of the apo form of the wild-type InhA at 1.80Å resolution as well as the crystal structure of InhA in complex with the synthetic metabolite of the antitubercular drug isoniazid refined to 1.40Å. This metabolite, synthesized in the absence of InhA, is able to displace and replace the cofactor NADH in the enzyme active site. This work provides a unique opportunity to enlighten the structural adaptation of apo-InhA to the binding of the NADH cofactor or of the isoniazid adduct. In addition, a differential scanning fluorimetry study of InhA, in the apo-form as well as in the presence of NAD(+), NADH and INH-NADH was performed showing that binding of the INH-NADH adduct had a strong stabilizing effect.


Asunto(s)
Proteínas Bacterianas/química , Isoniazida/química , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/química , Biomimética/métodos , Dominio Catalítico , NAD/química , Unión Proteica/fisiología
17.
J Biol Chem ; 289(23): 15987-6005, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24739388

RESUMEN

Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.


Asunto(s)
Antibacterianos/farmacología , Diseño de Fármacos , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Piridonas/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Secuencia de Bases , Cristalografía por Rayos X , Cartilla de ADN , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Femenino , Ratones , Ratones Endogámicos ICR , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Reacción en Cadena de la Polimerasa , Piridonas/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
18.
Chembiochem ; 16(4): 631-40, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25662938

RESUMEN

Streptomyces coelicolor produces fatty acids for both primary metabolism and for biosynthesis of the secondary metabolite undecylprodiginine. The first and last reductive steps during the chain elongation cycle of fatty acid biosynthesis are catalyzed by FabG and FabI. The S. coelicolor genome sequence has one fabI gene (SCO1814) and three likely fabG genes (SCO1815, SCO1345, and SCO1846). We report the expression, purification, and characterization of the corresponding gene products. Kinetic analyses revealed that all three FabGs and FabI are capable of utilizing both straight and branched-chain ß-ketoacyl-NAC and enoyl-NAC substrates, respectively. Furthermore, only SCO1345 differentiates between ACPs from both biosynthetic pathways. The data presented provide the first experimental evidence that SCO1815, SCO1346, and SCO1814 have the catalytic capability to process intermediates in both fatty acid and undecylprodiginine biosynthesis.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/metabolismo , Enoil-ACP Reductasa (NADH)/metabolismo , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/metabolismo , Streptomyces coelicolor/enzimología , 3-Oxoacil-(Proteína Transportadora de Acil) Reductasa/genética , Enoil-ACP Reductasa (NADH)/genética , Genes Bacterianos , Genes Fúngicos , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo
19.
Anal Biochem ; 474: 40-9, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25684450

RESUMEN

The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-acyl carrier protein (enoyl-ACP) reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-(32)P]NAD(P(+)) cofactor. In total, 23 FabI inhibitors were analyzed, and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percentage drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady-state kinetic methods for compounds with tR values of 10 to 100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 to 37 °C.


Asunto(s)
Bioquímica/métodos , Enoil-ACP Reductasa (NADH)/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , NAD/metabolismo , Proteína Transportadora de Acilo , Simulación por Computador , Enoil-ACP Reductasa (NADH)/metabolismo , Estudios de Factibilidad , Ensayos Analíticos de Alto Rendimiento , Cinética , Radioisótopos de Fósforo , Reproducibilidad de los Resultados , Temperatura , Factores de Tiempo
20.
Bioorg Med Chem Lett ; 25(21): 4782-4786, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26227776

RESUMEN

PT70 is a diaryl ether inhibitor of InhA, the enoyl-ACP reductase in the Mycobacterium tuberculosis fatty acid biosynthesis pathway. It has a residence time of 24 min on the target, and also shows antibacterial activity in a mouse model of tuberculosis infection. Due to the interest in studying target tissue pharmacokinetics of PT70, we developed a method to radiolabel PT70 with carbon-11 and have studied its pharmacokinetics in mice and baboons using positron emission tomography.


Asunto(s)
Antibacterianos/farmacología , Antirreumáticos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/antagonistas & inhibidores , Éteres Fenílicos/farmacología , Tomografía de Emisión de Positrones , Animales , Antibacterianos/química , Antibacterianos/farmacocinética , Antirreumáticos/química , Antirreumáticos/farmacocinética , Proteínas Bacterianas/metabolismo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Ratones , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/metabolismo , Papio , Éteres Fenílicos/química , Éteres Fenílicos/farmacocinética , Relación Estructura-Actividad , Factores de Tiempo , Distribución Tisular , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA