Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.410
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Neurosci ; 44(34)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39048314

RESUMEN

Recent studies suggest that time estimation relies on bodily rhythms and interoceptive signals. We provide the first direct electrophysiological evidence suggesting an association between the brain's processing of heartbeat and duration judgment. We examined heartbeat-evoked potential (HEP) and contingent negative variation (CNV) during an auditory duration-reproduction task and a control reaction-time task spanning 4, 8, and 12 s intervals, in both male and female participants. Interoceptive awareness was assessed with the Self-Awareness Questionnaire (SAQ) and interoceptive accuracy through the heartbeat-counting task (HCT). Results revealed that SAQ scores, but not the HCT, correlated with mean reproduced durations with higher SAQ scores associating with longer and more accurate duration reproductions. Notably, the HEP amplitude changes during the encoding phase of the timing task, particularly within 130-270 ms (HEP1) and 470-520 ms (HEP2) after the R-peak, demonstrated interval-specific modulations that did not emerge in the control task. A significant ramp-like increase in HEP2 amplitudes occurred during the duration-encoding phase of the timing but not during the control task. This increase within the reproduction phase of the timing task correlated significantly with the reproduced durations for the 8 s and the 4 s intervals. The larger the increase in HEP2, the greater the under-reproduction of the estimated duration. CNV components during the encoding phase of the timing task were more negative than those in the reaction-time task, suggesting greater executive resources orientation toward time. We conclude that interoceptive awareness (SAQ) and cortical responses to heartbeats (HEP) predict duration reproductions, emphasizing the embodied nature of time.


Asunto(s)
Encéfalo , Electroencefalografía , Frecuencia Cardíaca , Interocepción , Percepción del Tiempo , Humanos , Masculino , Femenino , Percepción del Tiempo/fisiología , Frecuencia Cardíaca/fisiología , Adulto Joven , Adulto , Interocepción/fisiología , Encéfalo/fisiología , Concienciación/fisiología , Potenciales Evocados/fisiología , Tiempo de Reacción/fisiología , Variación Contingente Negativa/fisiología
2.
Brain ; 147(9): 3204-3215, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38436939

RESUMEN

The subthalamic nucleus (STN) of the basal ganglia is key to the inhibitory control of movement. Consequently, it is a primary target for the neurosurgical treatment of movement disorders like Parkinson's disease, where modulating the STN via deep brain stimulation (DBS) can release excess inhibition of thalamocortical motor circuits. However, the STN is also anatomically connected to other thalamocortical circuits, including those underlying cognitive processes like attention. Notably, STN-DBS can also affect these processes. This suggests that the STN may also contribute to the inhibition of non-motor activity and that STN-DBS may cause changes to this inhibition. Here we tested this hypothesis in humans. We used a novel, wireless outpatient method to record intracranial local field potentials (LFP) from STN DBS implants during a visual attention task (Experiment 1, n = 12). These outpatient measurements allowed the simultaneous recording of high-density EEG, which we used to derive the steady state visual evoked potential (SSVEP), a well established neural index of visual attentional engagement. By relating STN activity to this neural marker of attention (instead of overt behaviour), we avoided possible confounds resulting from STN's motor role. We aimed to test whether the STN contributes to the momentary inhibition of the SSVEP caused by unexpected, distracting sounds. Furthermore, we causally tested this association in a second experiment, where we modulated STN via DBS across two sessions of the task, spaced at least 1 week apart (n = 21, no sample overlap with Experiment 1). The LFP recordings in Experiment 1 showed that reductions of the SSVEP after distracting sounds were preceded by sound-related γ-frequency (>60 Hz) activity in the STN. Trial-to-trial modelling further showed that this STN activity statistically mediated the sounds' suppressive effect on the SSVEP. In Experiment 2, modulating STN activity via DBS significantly reduced these sound-related SSVEP reductions. This provides causal evidence for the role of the STN in the surprise-related inhibition of attention. These findings suggest that the human STN contributes to the inhibition of attention, a non-motor process. This supports a domain-general view of the inhibitory role of the STN. Furthermore, these findings also suggest a potential mechanism underlying some of the known cognitive side effects of STN-DBS treatment, especially on attentional processes. Finally, our newly established outpatient LFP recording technique facilitates the testing of the role of subcortical nuclei in complex cognitive tasks, alongside recordings from the rest of the brain, and in much shorter time than peri-surgical recordings.


Asunto(s)
Atención , Estimulación Encefálica Profunda , Potenciales Evocados Visuales , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Masculino , Femenino , Atención/fisiología , Estimulación Encefálica Profunda/métodos , Adulto , Persona de Mediana Edad , Potenciales Evocados Visuales/fisiología , Electroencefalografía/métodos , Estimulación Luminosa/métodos , Inhibición Neural/fisiología , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/fisiopatología
3.
J Neurosci ; 43(27): 5114-5127, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37328290

RESUMEN

The therapeutic mechanisms of subthalamic nucleus (STN) deep brain stimulation (DBS) may depend on antidromic activation of cortex via the hyperdirect pathway. However, hyperdirect pathway neurons cannot reliably follow high-stimulation frequencies, and the spike failure rate appears to correlate with symptom relief as a function of stimulation frequency. We hypothesized that antidromic spike failure contributes to the cortical desynchronization caused by DBS. We measured in vivo evoked cortical activity in female Sprague Dawley rats and developed a computational model of cortical activation from STN DBS. We modeled stochastic antidromic spike failure to determine how spike failure affected the desynchronization of pathophysiological oscillatory activity in cortex. We found that high-frequency STN DBS desynchronized pathologic oscillations via the masking of intrinsic spiking through a combination of spike collision, refractoriness, and synaptic depletion. Antidromic spike failure shaped the parabolic relationship between DBS frequency and cortical desynchronization, with maximum desynchronization at ∼130 Hz. These findings reveal that antidromic spike failure plays a critical role in mediating the dependency of symptom relief on stimulation frequency.SIGNIFICANCE STATEMENT Deep brain stimulation (DBS) is a highly effective neuromodulation therapy, yet it remains uncertain why conventionally used stimulation frequencies (e.g., ∼130 Hz) are optimal. In this study, we demonstrate a potential explanation for the stimulation frequency dependency of DBS through a combination of in vivo experimental measurements and computational modeling. We show that high-frequency stimulation can desynchronize pathologic firing patterns in populations of neurons by inducing an informational lesion. However, sporadic spike failure at these high frequencies limits the efficacy of the informational lesion, yielding a parabolic profile with optimal effects at ∼130 Hz. This work provides a potential explanation for the therapeutic mechanism of DBS, and highlights the importance of considering spike failure in mechanistic models of DBS.


Asunto(s)
Estimulación Encefálica Profunda , Núcleo Subtalámico , Ratas , Femenino , Animales , Núcleo Subtalámico/fisiología , Ratas Sprague-Dawley , Neuronas/fisiología , Simulación por Computador
4.
BMC Bioinformatics ; 25(1): 227, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956454

RESUMEN

BACKGROUND: Multivariate synchronization index (MSI) has been successfully applied for frequency detection in steady state visual evoked potential (SSVEP) based brain-computer interface (BCI) systems. However, the standard MSI algorithm and its variants cannot simultaneously take full advantage of the time-local structure and the harmonic components in SSVEP signals, which are both crucial for frequency detection performance. To overcome the limitation, we propose a novel filter bank temporally local MSI (FBTMSI) algorithm to further improve SSVEP frequency detection accuracy. The method explicitly utilizes the temporal information of signal for covariance matrix estimation and employs filter bank decomposition to exploits SSVEP-related harmonic components. RESULTS: We employed the cross-validation strategy on the public Benchmark dataset to optimize the parameters and evaluate the performance of the FBTMSI algorithm. Experimental results show that FBTMSI outperforms the standard MSI, temporally local MSI (TMSI) and filter bank driven MSI (FBMSI) algorithms across multiple experimental settings. In the case of data length of one second, the average accuracy of FBTMSI is 9.85% and 3.15% higher than that of the FBMSI and the TMSI, respectively. CONCLUSIONS: The promising results demonstrate the effectiveness of the FBTMSI algorithm for frequency recognition and show its potential in SSVEP-based BCI applications.


Asunto(s)
Algoritmos , Interfaces Cerebro-Computador , Electroencefalografía , Potenciales Evocados Visuales , Humanos , Potenciales Evocados Visuales/fisiología , Electroencefalografía/métodos , Procesamiento de Señales Asistido por Computador
5.
J Physiol ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814805

RESUMEN

Stroke is a leading cause of adult disability that results in motor deficits and reduced independence. Regaining independence relies on motor recovery, particularly regaining function of the hand and arm. This review presents evidence from human studies that have used transcranial magnetic stimulation (TMS) to identify neurophysiological mechanisms underlying upper limb motor recovery early after stroke. TMS studies undertaken at the subacute stage after stroke have identified several neurophysiological factors that can drive motor impairment, including membrane excitability, the recruitment of corticomotor neurons, and glutamatergic and GABAergic neurotransmission. However, the inherent variability and subsequent poor reliability of measures derived from motor evoked potentials (MEPs) limit the use of TMS for prognosis at the individual patient level. Currently, prediction tools that provide the most accurate information about upper limb motor outcomes for individual patients early after stroke combine clinical measures with a simple neurophysiological biomarker based on MEP presence or absence, i.e. MEP status. Here, we propose a new compositional framework to examine MEPs across several upper limb muscles within a threshold matrix. The matrix can provide a more comprehensive view of corticomotor function and recovery after stroke by quantifying the evolution of subthreshold and suprathreshold MEPs through compositional analyses. Our contention is that subthreshold responses might be the most sensitive to reduced output of corticomotor neurons, desynchronized firing of the remaining neurons, and myelination processes that occur early after stroke. Quantifying subthreshold responses might provide new insights into post-stroke neurophysiology and improve the accuracy of prediction of upper limb motor outcomes.

6.
Glia ; 72(9): 1555-1571, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38829008

RESUMEN

As one of the top causes of blindness worldwide, glaucoma leads to diverse optic neuropathies such as degeneration of retinal ganglion cells (RGCs). It is widely accepted that the level of intraocular pressure (IOP) is a major risk factor in human glaucoma, and reduction of IOP level is the principally most well-known method to prevent cell death of RGCs. However, clinical studies show that lowering IOP fails to prevent RGC degeneration in the progression of glaucoma. Thus, a comprehensive understanding of glaucoma pathological process is required for developing new therapeutic strategies. In this study, we provide functional and histological evidence showing that optic nerve defects occurred before retina damage in an ocular hypertension glaucoma mouse model, in which oligodendroglial lineage cells were responsible for the subsequent neuropathology. By treatment with clemastine, an Food and Drug Administration (FDA)-approved first-generation antihistamine medicine, we demonstrate that the optic nerve and retina damages were attenuated via promoting oligodendrocyte precursor cell (OPC) differentiation and enhancing remyelination. Taken together, our results reveal the timeline of the optic neuropathies in glaucoma and highlight the potential role of oligodendroglial lineage cells playing in its treatment. Clemastine may be used in future clinical applications for demyelination-associated glaucoma.


Asunto(s)
Clemastina , Glaucoma , Ratones Endogámicos C57BL , Remielinización , Retina , Animales , Clemastina/farmacología , Clemastina/uso terapéutico , Glaucoma/patología , Glaucoma/tratamiento farmacológico , Retina/patología , Retina/efectos de los fármacos , Remielinización/efectos de los fármacos , Remielinización/fisiología , Ratones , Nervio Óptico/efectos de los fármacos , Nervio Óptico/patología , Modelos Animales de Enfermedad , Enfermedades del Nervio Óptico/tratamiento farmacológico , Enfermedades del Nervio Óptico/patología , Oligodendroglía/efectos de los fármacos , Oligodendroglía/patología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología
7.
Stroke ; 55(6): 1629-1640, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639087

RESUMEN

BACKGROUND: Cortical excitation/inhibition dynamics have been suggested as a key mechanism occurring after stroke. Their supportive or maladaptive role in the course of recovery is still not completely understood. Here, we used transcranial magnetic stimulation (TMS)-electroencephalography coupling to study cortical reactivity and intracortical GABAergic inhibition, as well as their relationship to residual motor function and recovery longitudinally in patients with stroke. METHODS: Electroencephalography responses evoked by TMS applied to the ipsilesional motor cortex were acquired in patients with stroke with upper limb motor deficit in the acute (1 week), early (3 weeks), and late subacute (3 months) stages. Readouts of cortical reactivity, intracortical inhibition, and complexity of the evoked dynamics were drawn from TMS-evoked potentials induced by single-pulse and paired-pulse TMS (short-interval intracortical inhibition). Residual motor function was quantified through a detailed motor evaluation. RESULTS: From 76 patients enrolled, 66 were included (68.2±13.2 years old, 18 females), with a Fugl-Meyer score of the upper extremity of 46.8±19. The comparison with TMS-evoked potentials of healthy older revealed that most affected patients exhibited larger and simpler brain reactivity patterns (Pcluster<0.05). Bayesian ANCOVA statistical evidence for a link between abnormally high motor cortical excitability and impairment level. A decrease in excitability in the following months was significantly correlated with better motor recovery in the whole cohort and the subgroup of recovering patients. Investigation of the intracortical GABAergic inhibitory system revealed the presence of beneficial disinhibition in the acute stage, followed by a normalization of inhibitory activity. This was supported by significant correlations between motor scores and the contrast of local mean field power and readouts of signal dynamics. CONCLUSIONS: The present results revealed an abnormal motor cortical reactivity in patients with stroke, which was driven by perturbations and longitudinal changes within the intracortical inhibition system. They support the view that disinhibition in the ipsilesional motor cortex during the first-week poststroke is beneficial and promotes neuronal plasticity and recovery.


Asunto(s)
Electroencefalografía , Potenciales Evocados Motores , Corteza Motora , Inhibición Neural , Recuperación de la Función , Accidente Cerebrovascular , Estimulación Magnética Transcraneal , Humanos , Femenino , Masculino , Estimulación Magnética Transcraneal/métodos , Anciano , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Corteza Motora/fisiopatología , Recuperación de la Función/fisiología , Potenciales Evocados Motores/fisiología , Inhibición Neural/fisiología , Anciano de 80 o más Años
8.
BMC Genomics ; 25(1): 391, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649797

RESUMEN

Developmental delay (DD), or intellectual disability (ID) is a very large group of early onset disorders that affects 1-2% of children worldwide, which have diverse genetic causes that should be identified. Genetic studies can elucidate the pathogenesis underlying DD/ID. In this study, whole-exome sequencing (WES) was performed on 225 Chinese DD/ID children (208 cases were sequenced as proband-parent trio) who were classified into seven phenotype subgroups. The phenotype and genomic data of patients with DD/ID were further retrospectively analyzed. There were 96/225 (42.67%; 95% confidence interval [CI] 36.15-49.18%) patients were found to have causative single nucleotide variants (SNVs) and small insertions/deletions (Indels) associated with DD/ID based on WES data. The diagnostic yields among the seven subgroups ranged from 31.25 to 71.43%. Three specific clinical features, hearing loss, visual loss, and facial dysmorphism, can significantly increase the diagnostic yield of WES in patients with DD/ID (P = 0.005, P = 0.005, and P = 0.039, respectively). Of note, hearing loss (odds ratio [OR] = 1.86%; 95% CI = 1.00-3.46, P = 0.046) or abnormal brainstem auditory evoked potential (BAEP) (OR = 1.91, 95% CI = 1.02-3.50, P = 0.042) was independently associated with causative genetic variants in DD/ID children. Our findings enrich the variation spectrums of SNVs/Indels associated with DD/ID, highlight the value genetic testing for DD/ID children, stress the importance of BAEP screen in DD/ID children, and help to facilitate early diagnose, clinical management and reproductive decisions, improve therapeutic response to medical treatment.


Asunto(s)
Discapacidades del Desarrollo , Secuenciación del Exoma , Discapacidad Intelectual , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , Pueblos del Este de Asia/genética , Mutación INDEL , Discapacidad Intelectual/genética , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Neuroimage ; 299: 120808, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39182709

RESUMEN

Internal bodily signals, such as heartbeats, can influence conscious perception of external sensory information. Spontaneous shifts of attention between interoception and exteroception have been proposed as the underlying mechanism, but direct evidence is lacking. Here, we used steady-state visual evoked potential (SSVEP) frequency tagging to independently measure the neural processing of visual stimuli that were concurrently presented but varied in heartbeat coupling in healthy participants. Although heartbeat coupling was irrelevant to participants' task of detecting brief color changes, we found decreased SSVEPs for systole-coupled stimuli and increased SSVEPs for diastole-coupled stimuli, compared to non-coupled stimuli. These results suggest that attentional and representational resources allocated to visual stimuli vary according to fluctuations in cardiac-related signals across the cardiac cycle, reflecting spontaneous and immediate competition between cardiac-related signals and visual events. Furthermore, frequent coupling of visual stimuli with stronger cardiac-related signals not only led to a larger heartbeat evoked potential (HEP) but also resulted in a smaller color change evoked N2 component, with the increase in HEP amplitude associated with a decrease in N2 amplitude. These findings indicate an overall or longer-term increase in brain resources allocated to the internal domain at the expense of reduced resources available for the external domain. Our study highlights the dynamic reallocation of limited processing resources across the internal-external axis and supports the trade-off between interoception and exteroception.


Asunto(s)
Potenciales Evocados Visuales , Frecuencia Cardíaca , Interocepción , Humanos , Interocepción/fisiología , Masculino , Femenino , Potenciales Evocados Visuales/fisiología , Adulto , Adulto Joven , Frecuencia Cardíaca/fisiología , Electroencefalografía , Percepción Visual/fisiología , Atención/fisiología , Estimulación Luminosa/métodos , Encéfalo/fisiología
10.
J Neurophysiol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292872

RESUMEN

Background: The ability to perform intricate movements is crucial for human motor function. The neural mechanisms underlying precision and power grips are incompletely understood. Corticospinal output from M1 is thought to be modulated by GABAA-ergic intracortical networks within M1. Objectives: To investigate the contribution of M1 intracortical inhibition to fine motor control using adaptive threshold hunting with paired-pulse TMS during pinching and grasping tasks. We hypothesised that SICI could be assessed during voluntary activation, and that corticomotor excitability and SICI modulation would be greater during pinch than grasp reflecting corticospinal control. Methods: Seventeen healthy participants performed gradual pinch and grasp tasks. Using an adaptive threshold-hunting method, paired-pulse TMS was applied in the anterior-posterior current direction to assess cortical excitability and SICI in the dominant FDI muscle. SICI and corticomotor excitability were analysed using an LMM. MEP latencies were obtained in LM, PA and AP current directions and compared using paired t-tests. Results: MEP latencies were prolonged with PA and AP coil orientations compared to LM, with AP showing the largest latency. During single-pulse TMS, there was no difference in the TMS intensity required to reach the MEP target during pinching and grasping. Greater inhibition was found during pinching compared to grasping. Conclusion: ATH with paired-pulse TMS permits investigation of intracortical inhibitory networks and their modulation during the performance of dexterous motor tasks revealing a greater modulation of GABAA-ergic inhibition contributing to SICI during pinching compared to grasping.

11.
J Neurophysiol ; 132(3): 809-821, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38985934

RESUMEN

Efficient communication and regulation are crucial for advancing brain-computer interfaces (BCIs), with the steady-state visual-evoked potential (SSVEP) paradigm demonstrating high accuracy and information transfer rates. However, the conventional SSVEP paradigm encounters challenges related to visual occlusion and fatigue. In this study, we propose an improved SSVEP paradigm that addresses these issues by lowering the contrast of visual stimulation. The improved paradigms outperform the traditional paradigm in the experiments, significantly reducing the visual stimulation of the SSVEP paradigm. Furthermore, we apply this enhanced paradigm to a BCI navigation system, enabling two-dimensional navigation of unmanned aerial vehicles (UAVs) through a first-person perspective. Experimental results indicate the enhanced SSVEP-based BCI system's accuracy in performing navigation and search tasks. Our findings highlight the feasibility of the enhanced SSVEP paradigm in mitigating visual occlusion and fatigue issues, presenting a more intuitive and natural approach for BCIs to control external equipment.NEW & NOTEWORTHY In this article, we proposed an improved steady-state visual-evoked potential (SSVEP) paradigm and constructed an SSVEP-based brain-computer interface (BCI) system to navigate the unmanned aerial vehicle (UAV) in two-dimensional (2-D) physical space. We proposed a modified method for evaluating visual fatigue including subjective score and objective indices. The results indicated that the improved SSVEP paradigm could effectively reduce visual fatigue while maintaining high accuracy.


Asunto(s)
Interfaces Cerebro-Computador , Potenciales Evocados Visuales , Humanos , Potenciales Evocados Visuales/fisiología , Masculino , Adulto , Femenino , Adulto Joven , Electroencefalografía/métodos , Estimulación Luminosa/métodos , Aeronaves
12.
Eur J Neurosci ; 59(8): 2087-2101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234172

RESUMEN

Understanding how inhibitory pathways influence motor cortical activity during fatiguing contractions may provide valuable insight into mechanisms associated with multiple sclerosis (MS) muscle activation. Short-latency afferent inhibition (SAI) reflects inhibitory interactions between the somatosensory cortex and the motor cortex, and although SAI is typically reduced with MS, it is unknown how SAI is regulated during exercise-induced fatigue. The current study examined how SAI modulates motor evoked potentials (MEPs) during fatiguing contractions. Fourteen people with relapsing-remitting MS (39 ± 6 years, nine female) and 10 healthy individuals (36 ± 6 years, six female) participated. SAI was induced by stimulation of the median nerve that was paired with TMS over the motor representation of the abductor pollicis brevis. A contraction protocol was employed that depressed force generating capacity using a sustained 3-min 15% MVC, immediately followed by a low-intensity (15% MVC) intermittent contraction protocol so that MEP and SAI could be measured during the rest phases of each duty cycle. Similar force, electromyography and MEP responses were observed between groups. However, the MS group had significantly reduced SAI during the contraction protocol compared to the healthy control group (p < .001). Despite the MS group reporting greater scores on the Fatigue Severity Scale and Modified Fatigue Impact Scale, these scales did not correlate with inhibitory measures. As there were no between-group differences in SSEPs, MS-related SAI differences during the fatiguing contractions were most likely associated with disease-related changes in central integration.


Asunto(s)
Esclerosis Múltiple , Fatiga Muscular , Humanos , Femenino , Inhibición Neural/fisiología , Estimulación Magnética Transcraneal/métodos , Potenciales Evocados Motores/fisiología , Músculo Esquelético/fisiología , Electromiografía , Contracción Muscular/fisiología , Estimulación Eléctrica , Vías Aferentes/fisiología
13.
Eur J Neurosci ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258329

RESUMEN

Paired associative stimulation (PAS) is a combination of transcranial magnetic stimulation (TMS) and peripheral nerve stimulation (PNS). PAS can induce long-term potentiation (LTP)-like plasticity in humans, manifested as motor-evoked potential (MEP) enhancement. We have developed a variant of PAS ("high-PAS"), which consists of high-frequency PNS and high-intensity TMS and targets spinal plasticity and promotes rehabilitation after spinal cord injury (SCI). Vagus nerve stimulation (VNS) promotes LTP-like plasticity and enhances recovery in SCI and stroke in humans and animals when combined with repetitive motor training. We combined high-PAS with simultaneous noninvasive transcutaneous auricular VNS (aVNS) to determine if aVNS enhances the extent of PAS-induced MEP amplitude increase. Sixteen healthy participants were stimulated for 20 min in four different sessions (PAS, PAS + aVNS, PAS + shamVNS, and aVNS) in a randomized single-blind setup. MEPs were measured before, immediately after, and at 30, 60, and 90 min post-stimulation. Stimulation protocols with PAS significantly potentiated MEPs (p = 0.005) when compared with aVNS (p = 0.642). Although not significant, MEP enhancement observed after PAS (43.5%) is further increased by aVNS (49.7%) and electrical earlobe stimulation (63.9%). Our aVNS setup failed to significantly enhance the effect of PAS, but sham VNS revealed a trend towards enhanced plasticity. Optimization of auricular VNS stimulation setup is required for possible tests of patients with SCI.

14.
Eur J Neurosci ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358929

RESUMEN

To assess reticulospinal tract excitability, high-intensity transcranial magnetic stimulation (TMS) has been used to elicit ipsilateral motor-evoked potentials (iMEPs). However, there is no consensus on robust and valid methods for use in human studies. The present study proposes a standardized method for eliciting and analysing iMEPs in the biceps brachii. Twenty-four healthy young adults participated in this study. Electromyography (EMG) electrodes recorded contralateral MEPs (cMEPs) from the right and iMEPs from the left biceps brachii. A dynamic preacher curl task was used with ~15% of the subject's one-repetition maximum load. The protocol included maximal compound action potential (M-max) determination of the right biceps brachii muscle, TMS hotspot determination, and four sets of five repetitions where 100% stimulator output was delivered at an elbow angle of 110° of flexion. We normalized cMEP amplitude by M-max (% M-max) and iMEP by cMEP amplitude ratio (ICAR). Clear iMEPs above background EMG were observed in 21 subjects (88%, ICAR = .31 ± .19). Good-to-excellent agreement (intraclass correlation coefficient [ICC] = .795-1.000) and low bias (.01-.08 mV and .60-1.11 ms) were demonstrated when comparing two different analysis methods (i.e. fixed time-window vs. manual onset detection) to determine the cMEP and iMEP amplitude and latency, respectively. Most subjects demonstrated clear iMEPs above background EMG triggered at a pre-determined joint angle during a light-load dynamic preacher curl exercise. Similar results were obtained when comparing a single-trial manual identification of iMEP and a semi-automated time-window data analysis approach.

15.
Eur J Neurosci ; 59(5): 1016-1028, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38275099

RESUMEN

This study aimed to examine whether observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery (AOMI). Twelve young males performed motor imagery of motor tasks with different difficulties while observing the actions of an expert performer and an expert performer with a swapped face. Motor tasks included bilateral wrist dorsiflexion (EASY) and unilateral two-ball rotating motions (DIFF). During the AOMI of EASY and DIFF, single-pulse transcranial magnetic stimulation was delivered to the left primary motor cortex, and motor-evoked potentials (MEPs) were obtained from the extensor carpi ulnaris and first dorsal interosseous muscles of the right upper limb, respectively. Visual analogue scale (VAS) assessed the subjective similarity of the expert performer with the swapped face in the EASY and DIFF to the participants themselves. The MEP amplitude in DIFF was larger in the observation of the expert performer with the swapped face than that of the expert performer (P = 0.012); however, the corresponding difference was not observed in EASY (P = 1.000). The relative change in the MEP amplitude from observing the action of the expert performer to that of the expert performer with the swapped face was positively correlated with VAS only in DIFF (r = 0.644, P = 0.024). These results indicate that observing the action of an expert performer with the observer's face enhances corticospinal excitability during AOMI, depending on the task difficulty and subjective similarity between the expert performer being observed and the observer.


Asunto(s)
Imaginación , Corteza Motora , Masculino , Humanos , Imaginación/fisiología , Músculo Esquelético/fisiología , Mano , Potenciales Evocados Motores/fisiología , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos , Tractos Piramidales/fisiología , Electromiografía/métodos
16.
J Neurosci Res ; 102(6): e25362, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895852

RESUMEN

Sudden infant death syndrome (SIDS)-the sudden and unexplained death of a seemingly healthy infant, <1 year old-may be associated with abnormalities in the brain regions that underlie breathing and arousal during sleep. While post-mortem studies suggest abnormalities in SIDS infants' brainstems, there are no studies of these infants' brainstem function before death. One way to assess the function of the brainstem is with auditory brainstem response (ABR), a routine hearing-screening method that noninvasively measures the brainstem's response to sound. We hypothesize that anomalies in newborns' ABR measures may predict SIDS. Indeed, previous studies identified abnormalities in ABR characteristics in small samples of near-miss SIDS infants hospitalized for infant apnea syndrome. However, there is a need to examine the ABRs of infants who died of SIDS. Therefore, in the current study, we propose integrating two secondary datasets to examine newborns' ABRs (N = 156,972), including those who later died of SIDS (n = ~42; .27 out of every 1000 infants), using existing archived records of neonatal ABR results from a sample of newborns born in Florida. We hypothesize that infants who die from SIDS are more likely than non-SIDS infants to have abnormal ABRs as newborns. Understanding the association between SIDS and ABR may facilitate more accurate identification of an infant's risk for SIDS at birth, enabling increased monitoring, which may facilitate interventions and improve survivorship.


Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Muerte Súbita del Lactante , Humanos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Recién Nacido , Masculino , Femenino , Tronco Encefálico/fisiopatología , Lactante
17.
Artículo en Inglés | MEDLINE | ID: mdl-39242199

RESUMEN

BACKGROUND: Evaluation of the structural integrity and functional excitability of the corticospinal tract (CST) is likely to be important in predicting motor recovery after stroke. Previous reports are inconsistent regarding a possible link between CST structure and CST function in this setting. This study aims to investigate the structure‒function relationship of the CST at the acute phase of stroke (<7 days). METHODS: We enrolled 70 patients who had an acute ischaemic stroke with unilateral upper extremity (UE) weakness. They underwent a multimodal assessment including clinical severity (UE Fugl Meyer at day 7 and 3 months), MRI to evaluate the CST lesion load and transcranial magnetic stimulation to measure the maximum amplitude of motor evoked potential (MEP). RESULTS: A cross-sectional lesion load above 87% predicted the absence of MEPs with an accuracy of 80.4%. In MEP-positive patients, the CST structure/function relationship was bimodal with a switch from a linear relationship (rho=-0.600, 95% CI -0.873; -0.039, p<0.03) for small MEP amplitudes (<0.703 mV) to a non-linear relationship for higher MEP amplitudes (p=0.72). In MEP-positive patients, recovery correlated with initial severity. In patients with a positive MEP <0.703 mV but not in patients with an MEP ≥0.703 mV, MEP amplitude was an additional independent predictor of recovery. In MEP-negative patients, we failed to identify any factor predicting recovery. CONCLUSION: This large multimodal study on the structure/function of the CST and stroke recovery proposes a paradigm change for the MEP-positive patients phenotypes and refines the nature of the link between structural integrity and neurophysiological function, with implications for study design and prognostic information.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38367051

RESUMEN

The matched filter hypothesis proposes a close match between senders and receivers and is supported by several studies on variation in signal properties and sensory-processing mechanisms among species and populations. Importantly, within populations, individual variation in sensory processing may affect how receivers perceive signals. Our main goals were to characterize hearing sensitivity of Pacific treefrogs (Pseudacris regilla), assess patterns of individual variation in hearing sensitivity, and evaluate how among-individual variation in hearing sensitivity and call frequency content affect auditory processing of communication signals. Overall, males and females are most sensitive to frequencies between 2.0 and 2.5 kHz, which matches the dominant frequency of the call, and have a second region of high sensitivity between 400 and 800 Hz that does not match the fundamental frequency of the call. We found high levels of among-individual variation in hearing sensitivity, primarily driven by subject size. Importantly, patterns of among-individual variation in hearing differ between males and females. Cross-correlation analyses reveal that among-individual variation in hearing sensitivity may lead to differences on how receivers, particularly females, perceive male calls. Our results suggest that individual variation in sensory processing may affect signal perception and influence the evolution of sexually selected traits.


Asunto(s)
Anuros , Audición , Animales , Masculino , Femenino , Audición/fisiología , Anuros/fisiología , Caracteres Sexuales , Vocalización Animal/fisiología , Tamaño Corporal , Percepción Auditiva/fisiología , Estimulación Acústica , Selección Sexual , Umbral Auditivo/fisiología
19.
J Exp Biol ; 227(2)2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38099450

RESUMEN

Anthropogenic noise is becoming a major underwater pollutant because of rapidly increasing boat traffic worldwide. But its impact on aquatic organisms remains largely unknown. Previous studies have focused mainly on high-frequency and impulsive noises (i.e. sonar); however, boat noise is more pervasive, continuous, and its highest intensity and component frequencies overlap the auditory bandwidth of most fishes. We assessed the impacts of boat noise on saccular sensory hair cell density and hearing thresholds of a soniferous species, Atlantic croaker (Micropogonias undulatus). In two laboratory experiments, individuals were subjected to simulated boat noise: a single 15-min exposure and 3 days of intermittent noise (simulating passing vessels). Immediately after both experiments, fish were either (1) tested for hearing sensitivity with auditory evoked potential (AEP) tests or (2) euthanized for fluorescent phalloidin and TUNEL labeling for hair cell density counts. Relative to controls, no differences were observed in auditory thresholds nor hair cell density between individuals subjected to a single 15-min noise exposure. However, fish from the 3-day experiment showed decreased sensory hair cell density, increased apoptotic cells, and higher hearing thresholds than control fish at 300, 800 and 1000 Hz. Our results demonstrate that impacts from boat noise depend upon the duration and frequency of exposure. For a species reliant on vocalization for communication, these impacts may hinder spawning success, increase predation risks and significantly alter the ecosystem.


Asunto(s)
Perciformes , Navíos , Animales , Ecosistema , Audición , Perciformes/fisiología , Células Ciliadas Auditivas/fisiología , Peces/fisiología , Umbral Auditivo/fisiología
20.
Eur J Vasc Endovasc Surg ; 68(2): 171-179, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38499146

RESUMEN

OBJECTIVE: This study investigated the usefulness of motor evoked potentials (MEPs) for intra-operative monitoring to detect the risk of spinal cord ischaemia (SCI) during thoracic endovascular aortic repair (TEVAR). Risk factors for SCI in TEVAR were also analysed. METHODS: Among 330 TEVARs performed from February 2009 to October 2018, 300 patients underwent intra-operative MEP monitoring. SCI risk groups were extracted based on MEP amplitude changes using a cutoff value of 50%. When the amplitude decreased to < 50% of the pre-operative value, intra-operative mean arterial pressure (MAP) was increased by about 20 mmHg using noradrenaline, whereas MAP was usually controlled to about 80 mmHg during surgery. Other efforts were also made to increase MEP amplitude by increasing cardiac output, correcting anaemia, and finishing the surgery promptly. Based on MEP amplitude data, SCI risk groups were extracted and risk factors for SCI in TEVAR were analysed. RESULTS: A total of 283 non-SCI risk patients and 17 SCI risk patients by MEP monitoring were extracted; only 1.0% developed immediate paraplegia and none developed delayed paraplegia. Bivariable analysis showed significant differences in chronic kidney disease, haemodialysis, artery of Adamkiewicz closure, and stent graft (SG) covered length ≥ 8 vertebral bodies. Logistic regression analysis showed hyperlipidaemia (odds ratio [OR] 3.55, 95% confidence interval [CI] 1.08 - 11.67; p = .037), SG covered length ≥ 8 vertebral bodies (OR 1.35, 95% CI 1.02 - 1.78; p = .034), and haemodialysis (OR 27.78, 95% CI 6.02 - 128.22; p < .001) were the most influential risk factors for SCI in TEVAR. CONCLUSION: MEPs might be a useful monitoring tool to predict SCI in TEVAR. In addition, hyperlipidaemia, SG covered length ≥ 8 vertebral bodies, and haemodialysis represent key risk factors for SCI during TEVAR.


Asunto(s)
Reparación Endovascular de Aneurismas , Potenciales Evocados Motores , Isquemia de la Médula Espinal , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aorta Torácica/cirugía , Aorta Torácica/fisiopatología , Aneurisma de la Aorta Torácica/cirugía , Aneurisma de la Aorta Torácica/fisiopatología , Reparación Endovascular de Aneurismas/efectos adversos , Monitorización Neurofisiológica Intraoperatoria/métodos , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Medición de Riesgo/métodos , Factores de Riesgo , Isquemia de la Médula Espinal/etiología , Isquemia de la Médula Espinal/diagnóstico , Isquemia de la Médula Espinal/prevención & control , Isquemia de la Médula Espinal/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA