RESUMEN
Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.
Asunto(s)
Autofagia/fisiología , Ácidos Grasos/metabolismo , Fagosomas/metabolismo , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Membrana Celular/metabolismo , Coenzima A Ligasas/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Fagosomas/fisiología , Fosfolípidos/biosíntesis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains â¼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.
Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromosomas Humanos Par 17/metabolismo , Técnicas de Silenciamiento del Gen , Haplotipos , Hepatocitos/metabolismo , Heterocigoto , Código de Histonas , Humanos , Hígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/químicaRESUMEN
Only a small percentage of patients afflicted with gastric cancer (GC) respond to immune checkpoint blockade (ICB). To study the mechanisms underlying this resistance, we examined the immune landscape of GC. A subset of these tumors was characterized by high frequencies of regulatory T (Treg) cells and low numbers of effector T cells. Genomic analyses revealed that these tumors bore mutations in RHOA that are known to drive tumor progression. RHOA mutations in cancer cells activated the PI3K-AKT-mTOR signaling pathway, increasing production of free fatty acids that are more effectively consumed by Treg cells than effector T cells. RHOA mutant tumors were resistant to PD-1 blockade but responded to combination of PD-1 blockade with inhibitors of the PI3K pathway or therapies targeting Treg cells. We propose that the metabolic advantage conferred by RHOA mutations enables Treg cell accumulation within GC tumors, generating an immunosuppressive TME that underlies resistance to ICB.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias Gástricas/genética , Linfocitos T Reguladores/metabolismo , Proteína de Unión al GTP rhoA/genética , Animales , Recuento de Linfocito CD4 , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Quimiocina CXCL10/biosíntesis , Quimiocina CXCL11/biosíntesis , Ácidos Grasos no Esterificados/biosíntesis , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Receptor de Muerte Celular Programada 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/inmunología , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología , Linfocitos T Reguladores/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Microambiente Tumoral/inmunologíaRESUMEN
The kidney proximal tubule is a key organ for human metabolism. The kidney responds to stress with altered metabolite transformation and perturbed metabolic pathways, an ultimate cause for kidney disease. Here, we review the proximal tubule's metabolic function through an integrative view of transport, metabolism, and function, and embed it in the context of metabolome-wide data-driven research. Function (filtration, transport, secretion, and reabsorption), metabolite transformation, and metabolite signaling determine kidney metabolic rewiring in disease. Energy metabolism and substrates for key metabolic pathways are orchestrated by metabolite sensors. Given the importance of renal function for the inner milieu, we also review metabolic communication routes with other organs. Exciting research opportunities exist to understand metabolic perturbation of kidney and proximal tubule function, for example, in hypertension-associated kidney disease. We argue that, based on the integrative view outlined here, kidney diseases without genetic cause should be approached scientifically as metabolic diseases.
Asunto(s)
Enfermedades Renales , Túbulos Renales Proximales , Humanos , Túbulos Renales Proximales/metabolismo , Riñón/metabolismo , Metabolismo EnergéticoRESUMEN
Breast cancer (BC) is the most common malignancy affecting Western women today. It is estimated that as many as 10% of BC cases can be attributed to germline variants. However, the genetic basis of the majority of familial BC cases has yet to be identified. Discovering predisposing genes contributing to familial BC is challenging due to their presumed rarity, low penetrance, and complex biological mechanisms. Here, we focused on an analysis of rare missense variants in a cohort of 12 families of Middle Eastern origins characterized by a high incidence of BC cases. We devised a novel, high-throughput, variant analysis pipeline adapted for family studies, which aims to analyze variants at the protein level by employing state-of-the-art machine learning models and three-dimensional protein structural analysis. Using our pipeline, we analyzed 1218 rare missense variants that are shared between affected family members and classified 80 genes as candidate pathogenic. Among these genes, we found significant functional enrichment in peroxisomal and mitochondrial biological pathways which segregated across seven families in the study and covered diverse ethnic groups. We present multiple evidence that peroxisomal and mitochondrial pathways play an important, yet underappreciated, role in both germline BC predisposition and BC survival.
Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Predisposición Genética a la Enfermedad , Humanos , Neoplasias de la Mama/genética , Femenino , Mutación Missense , Linaje , Mutación de Línea GerminalRESUMEN
MCL-1 is a BCL-2 family protein implicated in the development and chemoresistance of human cancer. Unlike its anti-apoptotic homologs, Mcl-1 deletion has profound physiologic consequences, indicative of a broader role in homeostasis. We report that the BCL-2 homology 3 (BH3) α helix of MCL-1 can directly engage very long-chain acyl-CoA dehydrogenase (VLCAD), a key enzyme of the mitochondrial fatty acid ß-oxidation (FAO) pathway. Proteomic analysis confirmed that the mitochondrial matrix isoform of MCL-1 (MCL-1Matrix) interacts with VLCAD. Mcl-1 deletion, or eliminating MCL-1Matrix alone, selectively deregulated long-chain FAO, causing increased flux through the pathway in response to nutrient deprivation. Transient elevation in MCL-1 upon serum withdrawal, a striking increase in MCL-1 BH3/VLCAD interaction upon palmitic acid titration, and direct modulation of enzymatic activity by the MCL-1 BH3 α helix are consistent with dynamic regulation. Thus, the MCL-1 BH3 interaction with VLCAD revealed a separable, gain-of-function role for MCL-1 in the regulation of lipid metabolism.
Asunto(s)
Acil-CoA Deshidrogenasa de Cadena Larga/metabolismo , Metabolismo de los Lípidos/fisiología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Ácido Palmítico/metabolismo , Acil-CoA Deshidrogenasa de Cadena Larga/genética , Animales , Línea Celular , Ratones , Ratones Noqueados , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Oxidación-Reducción , Estructura Secundaria de ProteínaRESUMEN
A hallmark of multiple sclerosis (MS) is the formation of multiple focal demyelinating lesions within the central nervous system (CNS). These lesions mainly consist of phagocytes that play a key role in lesion progression and remyelination, and therefore represent a promising therapeutic target in MS. We recently showed that unsaturated fatty acids produced by stearoyl-CoA desaturase-1 induce inflammatory foam cell formation during demyelination. These fatty acids are elongated by the "elongation of very long chain fatty acids" proteins (ELOVLs), generating a series of functionally distinct lipids. Here, we show that the expression and activity of ELOVLs are altered in myelin-induced foam cells. Especially ELOVL6, an enzyme responsible for converting saturated and monounsaturated C16 fatty acids into C18 species, was found to be up-regulated in myelin phagocytosing phagocytes in vitro and in MS lesions. Depletion of Elovl6 induced a repair-promoting phagocyte phenotype through activation of the S1P/PPARγ pathway. Elovl6-deficient foamy macrophages showed enhanced ABCA1-mediated lipid efflux, increased production of neurotrophic factors, and reduced expression of inflammatory mediators. Moreover, our data show that ELOVL6 hampers CNS repair, as Elovl6 deficiency prevented demyelination and boosted remyelination in organotypic brain slice cultures and the mouse cuprizone model. These findings indicate that targeting ELOVL6 activity may be an effective strategy to stimulate CNS repair in MS and other neurodegenerative diseases.
Asunto(s)
Esclerosis Múltiple , Remielinización , Animales , Ratones , Adipogénesis , Modelos Animales de Enfermedad , Ácidos Grasos , Ácidos Grasos Monoinsaturados , Células EspumosasRESUMEN
From bacterial quorum sensing to human language, communication is essential for social interactions. Nematodes produce and sense pheromones to communicate among individuals and respond to environmental changes. These signals are encoded by different types and mixtures of ascarosides, whose modular structures further enhance the diversity of this nematode pheromone language. Interspecific and intraspecific differences in this ascaroside pheromone language have been described previously, but the genetic basis and molecular mechanisms underlying the variation remain largely unknown. Here, we analyzed natural variation in the production of 44 ascarosides across 95 wild Caenorhabditis elegans strains using high-performance liquid chromatography coupled to high-resolution mass spectrometry. We discovered wild strains defective in the production of specific subsets of ascarosides (e.g., the aggregation pheromone icas#9) or short- and medium-chain ascarosides, as well as inversely correlated patterns between the production of two major classes of ascarosides. We investigated genetic variants that are significantly associated with the natural differences in the composition of the pheromone bouquet, including rare genetic variants in key enzymes participating in ascaroside biosynthesis, such as the peroxisomal 3-ketoacyl-CoA thiolase, daf-22, and the carboxylesterase cest-3. Genome-wide association mappings revealed genomic loci harboring common variants that affect ascaroside profiles. Our study yields a valuable dataset for investigating the genetic mechanisms underlying the evolution of chemical communication.
Asunto(s)
Caenorhabditis elegans , Nematodos , Animales , Humanos , Caenorhabditis elegans/genética , Feromonas/química , Estudio de Asociación del Genoma Completo , Variación GenéticaRESUMEN
Thioesterase superfamily member 2 (Them2), a long-chain fatty acyl-CoA thioesterase that is highly expressed in oxidative tissues, interacts with phosphatidylcholine transfer protein (PC-TP) to regulate hepatic lipid and glucose metabolism and to suppress insulin signaling. High-fat diet (HFD)-fed mice lacking Them2 globally or specifically in skeletal muscle, but not liver, exhibit reduced hepatic steatosis and insulin resistance. Here, we report that the capacity of Them2 in skeletal muscle to promote hepatic steatosis and insulin resistance depends on both its catalytic activity and interaction with PC-TP. Two residues of Them2 catalytic site were mutated (N50A/D65A) to produce the inactive enzyme while maintaining its homotetrameric structure and interaction with PC-TP. Restoration of skeletal muscle expression in Them2-/- mice using recombinant adeno-associated virus revealed that wild-type (WT), but not N50A/D65A Them2, promoted HFD-induced weight gain and hepatic steatosis. This was accompanied by greater impairment of insulin sensitivity in WT compared with N50A/D65A Them2. Pharmacological inhibition or genetic ablation of PC-TP attenuated these effects. In reductionist experiments, conditioned medium collected from WT primary cultured myotubes promoted excess lipid accumulation in oleic acid-treated primary cultured hepatocytes relative to Them2-/- myotubes, which was attributable to secreted extracellular vesicles (EV). Reconstitution of Them2 expression in Them2-/- myotubes affirmed the requirements for catalytic activity and PC-TP interactions for EV to promote lipid accumulation in hepatocytes. These studies provide valuable mechanistic insights whereby Them2 in skeletal muscle promotes hepatic steatosis and establish both Them2 and PC-TP as represent attractive targets for managing metabolic dysfunction-associated steatotic liver disease.
RESUMEN
The fatty acid (FA) elongation cycle produces very-long-chain FAs with ≥C21, which have unique physiological functions. Trans-2-enoyl-CoA reductases (yeast, Tsc13; mammals, TECR) catalyze the reduction reactions in the fourth step of the FA elongation cycle and in the sphingosine degradation pathway. However, their catalytic residues and coordinated action in the FA elongation cycle complex are unknown. To reveal these, we generated and analyzed Ala-substituted mutants of 15 residues of Tsc13. An in vitro FA elongation assay showed that nine of these mutants were less active than WT protein, with E91A and Y256A being the least active. Growth complementation analysis, measurement of ceramide levels, and deuterium-sphingosine labeling revealed that the function of the E91A mutant was substantially impaired in vivo. In addition, we found that the activity of FA elongases, which catalyze the first step of the FA elongation cycle, were reduced in the absence of Tsc13. Similar results were observed in Tsc13 E91A-expressing cells, which is attributable to reduced interaction between the Tsc13 E91A mutant and the FA elongases Elo2/Elo3. Finally, we found that E94A and Y248A mutants of human TECR, which correspond to E91A and Y256A mutants of Tsc13, showed reduced and almost no activity, respectively. Based on these results and the predicted three-dimensional structure of Tsc13, we speculate that Tyr256/Tyr248 of Tsc13/TECR is the catalytic residue that supplies a proton to trans-2-enoyl-CoAs. Our findings provide a clue concerning the catalytic mechanism of Tsc13/TECR and the coordinated action in the FA elongation cycle complex.
Asunto(s)
Ácido Graso Desaturasas , Esfingosina , Humanos , Ácido Graso Desaturasas/metabolismo , Elongasas de Ácidos Grasos/metabolismo , Ácidos Grasos/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Esfingosina/metabolismoRESUMEN
Gram-positive bacteria utilize a Fatty Acid Kinase (FAK) complex to harvest fatty acids from the environment. This complex consists of the fatty acid kinase, FakA, and an acyl carrier protein, FakB, and is known to impact virulence and disease outcomes. Despite some recent studies, there remains many outstanding questions as to the enzymatic mechanism and structure of FAK . To better address this gap in knowledge, we used a combination of modeling, biochemical, and cell-based approaches to build on prior proposed models and identify critical details of FAK activity. Using bio-layer interferometry, we demonstrated nanomolar affinity between FakA and FakB that also indicates that FakA is dimer when binding FakB. Additionally, targeted mutagenesis of the FakA Middle domain demonstrates it possesses a metal binding pocket that is critical for FakA dimer stability and FAK function in vitro and in vivo. Lastly, we solved structures of the apo and ligand-bound FakA kinase domain to capture the molecular changes in the protein following ATP binding and hydrolysis. Together, these data provide critical insight into the structure and function of the FAK complex which is essential for understanding its mechanism.
RESUMEN
The essence of wound healing is the accumulation of suberin at wounds, which is formed by suberin polyphenolic (SPP) and suberin polyaliphatic (SPA). The biosynthesis of SPP and SPA monomers is catalyzed by several enzyme classes related to phenylpropanoid metabolism and fatty acid metabolism, respectively. However, how suberin biosynthesis is regulated at the transcriptional level during potato (Solanum tuberosum) tuber wound healing remains largely unknown. Here, 6 target genes and 15 transcription factors related to suberin biosynthesis in tuber wound healing were identified by RNA-seq technology and qRT-PCR. Dual luciferase and yeast one-hybrid assays showed that StMYB168 activated the target genes StPAL, StOMT, and St4CL in phenylpropanoid metabolism. Meanwhile, StMYB24 and StMYB144 activated the target genes StLTP, StLACS, and StCYP in fatty acid metabolism, and StFHT involved in the assembly of SPP and SPA domains in both native and wound periderms. More importantly, virus-induced gene silencing in S. tuberosum and transient overexpression in Nicotiana benthamiana assays confirmed that StMYB168 regulates the biosynthesis of free phenolic acids, such as ferulic acid. Furthermore, StMYB24/144 regulated the accumulation of suberin monomers, such as ferulates, α, ω-diacids, and ω-hydroxy acids. In conclusion, StMYB24, StMYB144, and StMYB168 have an elaborate division of labor in regulating the synthesis of suberin during tuber wound healing.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lípidos , Proteínas de Plantas , Tubérculos de la Planta , Solanum tuberosum , Factores de Transcripción , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Lípidos/biosíntesis , Nicotiana/genética , Nicotiana/metabolismo , Plantas Modificadas Genéticamente , Ácidos Cumáricos/metabolismoRESUMEN
BACKGROUND & AIMS: Gastric carcinogenesis develops within a sequential carcinogenic cascade from precancerous metaplasia to dysplasia and adenocarcinoma, and oncogenic gene activation can drive the process. Metabolic reprogramming is considered a key mechanism for cancer cell growth and proliferation. However, how metabolic changes contribute to the progression of metaplasia to dysplasia remains unclear. We have examined metabolic dynamics during gastric carcinogenesis using a novel mouse model that induces Kras activation in zymogen-secreting chief cells. METHODS: We generated a Gif-rtTA;TetO-Cre;KrasG12D (GCK) mouse model that continuously induces active Kras expression in chief cells after doxycycline treatment. Histologic examination and imaging mass spectrometry were performed in the GCK mouse stomachs at 2 to 14 weeks after doxycycline treatment. Mouse and human gastric organoids were used for metabolic enzyme inhibitor treatment. The GCK mice were treated with a stearoyl- coenzyme A desaturase (SCD) inhibitor to inhibit the fatty acid desaturation. Tissue microarrays were used to assess the SCD expression in human gastrointestinal cancers. RESULTS: The GCK mice developed metaplasia and high-grade dysplasia within 4 months. Metabolic reprogramming from glycolysis to fatty acid metabolism occurred during metaplasia progression to dysplasia. Altered fatty acid desaturation through SCD produces a novel eicosenoic acid, which fuels dysplastic cell hyperproliferation and survival. The SCD inhibitor killed both mouse and human dysplastic organoids and selectively targeted dysplastic cells in vivo. SCD was up-regulated during carcinogenesis in human gastrointestinal cancers. CONCLUSIONS: Active Kras expression only in gastric chief cells drives the full spectrum of gastric carcinogenesis. Also, oncogenic metabolic rewiring is an essential adaptation for high-energy demand in dysplastic cells.
Asunto(s)
Metabolismo Energético , Ácidos Grasos , Metaplasia , Organoides , Proteínas Proto-Oncogénicas p21(ras) , Neoplasias Gástricas , Animales , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Ácidos Grasos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Organoides/metabolismo , Ratones , Modelos Animales de Enfermedad , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Células Principales Gástricas/metabolismo , Células Principales Gástricas/patología , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/genética , Ratones Transgénicos , Glucólisis , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Adenocarcinoma/genética , Progresión de la Enfermedad , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/genéticaRESUMEN
To meet the energetic requirements associated with activation, proliferation, and survival, T cells switch their metabolic signatures from energetically quiescent to activated. However, little is known about the role of metabolic pathway controlling the development of invariant natural killer T (iNKT) cells. In the present study, we found that acetyl-CoA carboxylase 1 (ACC1), a rate-limiting enzyme for the fatty acid biosynthesis pathway, plays an essential role in the development of iNKT cells in the thymus. Mice lacking T-cell specific ACC1 showed a reduced number of iNKT cells with an increased proportion of iNKT cells at immature stages 0 and 1. Furthermore, mixed bone marrow (BM) chimera experiments revealed that T-cell intrinsic ACC1 expression was selectively important for the development of thymic iNKT cells, especially for the differentiation of the NKT1 cell subset. Our single-cell RNA-sequencing (scRNA-seq) data and functional analysis demonstrated that ACC1 is responsible for survival of developing iNKT cells. Thus, these findings highlighted a novel role of ACC1 in controlling thymic iNKT cell development mediated by the control of cell survival.
Asunto(s)
Células T Asesinas Naturales , Ratones , Animales , Timo , Diferenciación Celular , Adipogénesis , Ácidos Grasos/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismoRESUMEN
Ectopic lipid deposition and mitochondrial dysfunction are common etiologies of obesity and metabolic disorders. Excessive dietary uptake of saturated fatty acids (SFAs) causes mitochondrial dysfunction and metabolic disorders, while unsaturated fatty acids (UFAs) counterbalance these detrimental effects. It remains elusive how SFAs and UFAs differentially signal toward mitochondria for mitochondrial performance. We report here that saturated dietary fatty acids such as palmitic acid (PA), but not unsaturated oleic acid (OA), increase lysophosphatidylinositol (LPI) production to impact on the stability of the mitophagy receptor FUNDC1 and on mitochondrial quality. Mechanistically, PA shifts FUNDC1 from dimer to monomer via enhanced production of LPI. Monomeric FUNDC1 shows increased acetylation at K104 due to dissociation of HDAC3 and increased interaction with Tip60. Acetylated FUNDC1 can be further ubiquitinated by MARCH5 for proteasomal degradation. Conversely, OA antagonizes PA-induced accumulation of LPI, and FUNDC1 monomerization and degradation. A fructose-, palmitate-, and cholesterol-enriched (FPC) diet also affects FUNDC1 dimerization and promotes its degradation in a non-alcoholic steatohepatitis (NASH) mouse model. We thus uncover a signaling pathway that orchestrates lipid metabolism with mitochondrial quality.
Asunto(s)
Ácidos Grasos , Mitofagia , Ratones , Animales , Ácidos Grasos/metabolismo , Dimerización , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismoRESUMEN
m6A modification has been studied in tumors, but its role in host anti-tumor immune response and TAMs polarization remains unclear. The fatty acid oxidation (FAO) process of TAMs is also attracting attention. A co-culture model of colorectal cancer (CRC) cells and macrophages was used to simulate the tumor microenvironment. Expression changes of m6A demethylase genes FTO and ALKBH5 were screened. ALKBH5 was further investigated. Gain-of-function experiments were conducted to study ALKBH5's effects on macrophage M2 polarization, CRC cell viability, proliferation, migration, and more. Me-RIP and Actinomycin D assays were performed to study ALKBH5's influence on CPT1A, the FAO rate-limiting enzyme. AMP, ADP, and ATP content detection, OCR measurement, and ECAR measurement were used to explore ALKBH5's impact on macrophage FAO level. Rescue experiments validated ALKBH5's mechanistic role in macrophage M2 polarization and CRC malignant development. In co-culture, CRC cells enhance macrophage FAO and suppress m6A modification in M2 macrophages. ALKBH5 was selected as the gene for further investigation. ALKBH5 mediates CPT1A upregulation by removing m6A modification, promoting M2 macrophage polarization and facilitating CRC development. These findings indicate that ALKBH5 enhances fatty acid metabolism and M2 polarization of macrophages by upregulating CPT1A, thereby promoting CRC development.
Asunto(s)
Neoplasias Colorrectales , Macrófagos , Humanos , Regulación hacia Arriba/genética , Macrófagos/metabolismo , Neoplasias Colorrectales/patología , Ácidos Grasos/metabolismo , Microambiente Tumoral , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismoRESUMEN
Reputable evidence from multiple studies suggests that excessive and uncontrolled inflammation plays an indispensable role in mediating, amplifying, and protracting acute lung injury (ALI). Traditionally, immunity and energy metabolism are regarded as separate functions regulated by distinct mechanisms, but recently, more and more evidence show that immunity and energy metabolism exhibit a strong interaction which has given rise to an emerging field of immunometabolism. Mammalian lungs are organs with active fatty acid metabolism, however, during ALI, inflammation and oxidative stress lead to a series metabolic reprogramming such as impaired fatty acid oxidation, increased expression of proteins involved in fatty acid uptake and transport, enhanced synthesis of fatty acids, and accumulation of lipid droplets. In addition, obesity represents a significant risk factor for ALI/ARDS. Thus, we have further elucidated the mechanisms of obesity exacerbating ALI from the perspective of fatty acid metabolism. To sum up, this paper presents a systematical review of the relationship between extensive fatty acid metabolic pathways and acute lung injury and summarizes recent advances in understanding the involvement of fatty acid metabolism-related pathways in ALI. We hold an optimistic believe that targeting fatty acid metabolism pathway is a promising lung protection strategy, but the specific regulatory mechanisms are way too complex, necessitating further extensive and in-depth investigations in future studies.
Asunto(s)
Lesión Pulmonar Aguda , Ácidos Grasos , Animales , Ácidos Grasos/metabolismo , Inflamación , Lipopolisacáridos , Pulmón/metabolismo , Obesidad/metabolismo , HumanosRESUMEN
This report expands on our previous research, highlighting a unique inverse correlation between MYC expression in tumor cells and immune cells during the development of EGFR-TKI resistance. It is observed that MYC expression and fatty acid oxidation (FAO) metabolism in tissue-resident memory (TRM) CD8 + T cells are significantly impaired. These findings offer new insights into the mechanisms of TKI resistance. Although the study is preliminary, it suggests caution when interpreting the effectiveness of MYC inhibitors in reversing TKI resistance, especially when immune factors are not considered.
Asunto(s)
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Receptores ErbB/genética , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Ácidos Grasos/uso terapéutico , MutaciónRESUMEN
Ketone bodies are energy-rich metabolites and signaling molecules whose production is mainly regulated by diet. Caloric restriction (CR) is a dietary intervention that improves metabolism and extends longevity across the taxa. We found that CR induced high-amplitude daily rhythms in blood ketone bodies (beta-hydroxybutyrate [ßOHB]) that correlated with liver ßOHB level. Time-restricted feeding, another periodic fasting-based diet, also led to rhythmic ßOHB but with reduced amplitude. CR induced strong circadian rhythms in the expression of fatty acid oxidation and ketogenesis genes in the liver. The transcriptional factor peroxisome-proliferator-activated-receptor α (PPARα) and its transcriptional target hepatokine fibroblast growth factor 21 (FGF21) are primary regulators of ketogenesis. Fgf21 expression and the PPARα transcriptional network became highly rhythmic in the CR liver, which implicated the involvement of the circadian clock. Mechanistically, the circadian clock proteins CLOCK, BMAL1, and cryptochromes (CRYs) interfered with PPARα transcriptional activity. Daily rhythms in the blood ßOHB level and in the expression of PPARα target genes were significantly impaired in circadian clock-deficient Cry1,2-/- mice. These data suggest that blood ßOHB level is tightly controlled and that the circadian clock is a regulator of diet-induced ketogenesis.
Asunto(s)
Relojes Circadianos , Redes Reguladoras de Genes , Cuerpos Cetónicos , PPAR alfa , Ácido 3-Hidroxibutírico/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Criptocromos/metabolismo , Cuerpos Cetónicos/metabolismo , Hígado/metabolismo , Ratones , PPAR alfa/genética , PPAR alfa/metabolismoRESUMEN
BACKGROUND: Inherited retinal dystrophies (IRDs) are a group of debilitating visual disorders characterized by the progressive degeneration of photoreceptors, which ultimately lead to blindness. Among the causes of this condition, mutations in the PCYT1A gene, which encodes the rate-limiting enzyme responsible for phosphatidylcholine (PC) de novo synthesis via the Kennedy pathway, have been identified. However, the precise mechanisms underlying the association between PCYT1A mutations and IRDs remain unclear. To address this knowledge gap, we focused on elucidating the functions of PCYT1A in the retina. RESULTS: We found that PCYT1A is highly expressed in Müller glial (MG) cells in the inner nuclear layer (INL) of the retina. Subsequently, we generated a retina-specific knockout mouse model in which the Pcyt1a gene was targeted (Pcyt1a-RKO or RKO mice) to investigate the molecular mechanisms underlying IRDs caused by PCYT1A mutations. Our findings revealed that the deletion of Pcyt1a resulted in retinal degenerative phenotypes, including reduced scotopic electroretinogram (ERG) responses and progressive degeneration of photoreceptor cells, accompanied by loss of cells in the INL. Furthermore, through proteomic and bioinformatic analyses, we identified dysregulated retinal fatty acid metabolism and activation of the ferroptosis signalling pathway in RKO mice. Importantly, we found that PCYT1A deficiency did not lead to an overall reduction in PC synthesis within the retina. Instead, this deficiency appeared to disrupt free fatty acid metabolism and ultimately trigger ferroptosis. CONCLUSIONS: This study reveals a novel mechanism by which mutations in PCYT1A contribute to the development of IRDs, shedding light on the interplay between fatty acid metabolism and retinal degenerative diseases, and provides new insights into the treatment of IRDs.