Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(3): 712-732.e38, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194967

RESUMEN

Human brain development involves an orchestrated, massive neural progenitor expansion while a multi-cellular tissue architecture is established. Continuously expanding organoids can be grown directly from multiple somatic tissues, yet to date, brain organoids can solely be established from pluripotent stem cells. Here, we show that healthy human fetal brain in vitro self-organizes into organoids (FeBOs), phenocopying aspects of in vivo cellular heterogeneity and complex organization. FeBOs can be expanded over long time periods. FeBO growth requires maintenance of tissue integrity, which ensures production of a tissue-like extracellular matrix (ECM) niche, ultimately endowing FeBO expansion. FeBO lines derived from different areas of the central nervous system (CNS), including dorsal and ventral forebrain, preserve their regional identity and allow to probe aspects of positional identity. Using CRISPR-Cas9, we showcase the generation of syngeneic mutant FeBO lines for the study of brain cancer. Taken together, FeBOs constitute a complementary CNS organoid platform.


Asunto(s)
Encéfalo , Organoides , Humanos , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Sistema Nervioso Central/metabolismo , Matriz Extracelular/metabolismo , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Técnicas de Cultivo de Tejidos , Células Madre/metabolismo , Morfogénesis
2.
J Neurosci ; 44(29)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38844343

RESUMEN

During the second-to-third trimester, the neuronal pathways of the fetal brain experience rapid development, resulting in the complex architecture of the interwired network at birth. While diffusion MRI-based tractography has been employed to study the prenatal development of structural connectivity network (SCN) in preterm neonatal and postmortem fetal brains, the in utero development of SCN in the normal fetal brain remains largely unknown. In this study, we utilized in utero dMRI data from human fetuses of both sexes between 26 and 38 gestational weeks to investigate the developmental trajectories of the fetal brain SCN, focusing on intrahemispheric connections. Our analysis revealed significant increases in global efficiency, mean local efficiency, and clustering coefficient, along with significant decrease in shortest path length, while small-worldness persisted during the studied period, revealing balanced network integration and segregation. Widespread short-ranged connectivity strengthened significantly. The nodal strength developed in a posterior-to-anterior and medial-to-lateral order, reflecting a spatiotemporal gradient in cortical network connectivity development. Moreover, we observed distinct lateralization patterns in the fetal brain SCN. Globally, there was a leftward lateralization in network efficiency, clustering coefficient, and small-worldness. The regional lateralization patterns in most language, motor, and visual-related areas were consistent with prior knowledge, except for Wernicke's area, indicating lateralized brain wiring is an innate property of the human brain starting from the fetal period. Our findings provided a comprehensive view of the development of the fetal brain SCN and its lateralization, as a normative template that may be used to characterize atypical development.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Red Nerviosa , Tercer Trimestre del Embarazo , Humanos , Femenino , Masculino , Embarazo , Imagen de Difusión por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/embriología , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/embriología , Segundo Trimestre del Embarazo , Vías Nerviosas/embriología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Feto/diagnóstico por imagen , Desarrollo Fetal/fisiología , Imagen de Difusión Tensora/métodos
3.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37948665

RESUMEN

We utilized motion-corrected diffusion tensor imaging (DTI) to evaluate microstructural changes in healthy fetal brains during the late second and third trimesters. Data were derived from fetal magnetic resonance imaging scans conducted as part of a prospective study spanning from 2013 March to 2019 May. The study included 44 fetuses between the gestational ages (GAs) of 23 and 36 weeks. We reconstructed fetal brain DTI using a motion-tracked slice-to-volume registration framework. Images were segmented into 14 regions of interest (ROIs) through label propagation using a fetal DTI atlas, with expert refinement. Statistical analysis involved assessing changes in fractional anisotropy (FA) and mean diffusivity (MD) throughout gestation using mixed-effects models, and identifying points of change in trajectory for ROIs with nonlinear trends. Results showed significant GA-related changes in FA and MD in all ROIs except in the thalamus' FA and corpus callosum's MD. Hemispheric asymmetries were found in the FA of the periventricular white matter (pvWM), intermediate zone, and subplate and in the MD of the ganglionic eminence and pvWM. This study provides valuable insight into the normal patterns of development of MD and FA in the fetal brain. These changes are closely linked with cytoarchitectonic changes and display indications of early functional specialization.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Femenino , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo , Estudios Prospectivos , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Anisotropía
4.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37885155

RESUMEN

Normal cortical growth and the resulting folding patterns are crucial for normal brain function. Although cortical development is largely influenced by genetic factors, environmental factors in fetal life can modify the gene expression associated with brain development. As the placenta plays a vital role in shaping the fetal environment, affecting fetal growth through the exchange of oxygen and nutrients, placental oxygen transport might be one of the environmental factors that also affect early human cortical growth. In this study, we aimed to assess the placental oxygen transport during maternal hyperoxia and its impact on fetal brain development using MRI in identical twins to control for genetic and maternal factors. We enrolled 9 pregnant subjects with monochorionic diamniotic twins (30.03 ± 2.39 gestational weeks [mean ± SD]). We observed that the fetuses with slower placental oxygen delivery had reduced volumetric and surface growth of the cerebral cortex. Moreover, when the difference between placenta oxygen delivery increased between the twin pairs, sulcal folding patterns were more divergent. Thus, there is a significant relationship between placental oxygen transport and fetal brain cortical growth and folding in monochorionic twins.


Asunto(s)
Placenta , Gemelos Monocigóticos , Femenino , Humanos , Embarazo , Desarrollo Fetal , Retardo del Crecimiento Fetal/metabolismo , Oxígeno/metabolismo , Placenta/diagnóstico por imagen , Placenta/metabolismo
5.
Neuroimage ; 297: 120723, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39029605

RESUMEN

Diffusion-weighted Magnetic Resonance Imaging (dMRI) is increasingly used to study the fetal brain in utero. An important computation enabled by dMRI is streamline tractography, which has unique applications such as tract-specific analysis of the brain white matter and structural connectivity assessment. However, due to the low fetal dMRI data quality and the challenging nature of tractography, existing methods tend to produce highly inaccurate results. They generate many false streamlines while failing to reconstruct the streamlines that constitute the major white matter tracts. In this paper, we advocate for anatomically constrained tractography based on an accurate segmentation of the fetal brain tissue directly in the dMRI space. We develop a deep learning method to compute the segmentation automatically. Experiments on independent test data show that this method can accurately segment the fetal brain tissue and drastically improve the tractography results. It enables the reconstruction of highly curved tracts such as optic radiations. Importantly, our method infers the tissue segmentation and streamline propagation direction from a diffusion tensor fit to the dMRI data, making it applicable to routine fetal dMRI scans. The proposed method can facilitate the study of fetal brain white matter tracts with dMRI.


Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Feto , Sustancia Blanca , Humanos , Imagen de Difusión Tensora/métodos , Encéfalo/embriología , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/embriología , Sustancia Blanca/anatomía & histología , Feto/diagnóstico por imagen , Feto/anatomía & histología , Femenino , Aprendizaje Profundo , Embarazo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen de Difusión por Resonancia Magnética/métodos
6.
Neuroimage ; 290: 120560, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38431181

RESUMEN

Brain extraction and image quality assessment are two fundamental steps in fetal brain magnetic resonance imaging (MRI) 3D reconstruction and quantification. However, the randomness of fetal position and orientation, the variability of fetal brain morphology, maternal organs around the fetus, and the scarcity of data samples, all add excessive noise and impose a great challenge to automated brain extraction and quality assessment of fetal MRI slices. Conventionally, brain extraction and quality assessment are typically performed independently. However, both of them focus on the brain image representation, so they can be jointly optimized to ensure the network learns more effective features and avoid overfitting. To this end, we propose a novel two-stage dual-task deep learning framework with a brain localization stage and a dual-task stage for joint brain extraction and quality assessment of fetal MRI slices. Specifically, the dual-task module compactly contains a feature extraction module, a quality assessment head and a segmentation head with feature fusion for simultaneous brain extraction and quality assessment. Besides, a transformer architecture is introduced into the feature extraction module and the segmentation head. We utilize a multi-step training strategy to guarantee a stable and successful training of all modules. Finally, we validate our method by a 5-fold cross-validation and ablation study on a dataset with fetal brain MRI slices in different qualities, and perform a cross-dataset validation in addition. Experiments show that the proposed framework achieves very promising performance.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Embarazo , Femenino , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Cabeza , Feto/diagnóstico por imagen
7.
Neurobiol Dis ; 199: 106577, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38914171

RESUMEN

Proper topographically organized neural connections between the thalamus and the cerebral cortex are mandatory for thalamus function. Thalamocortical (TC) fiber growth begins during the embryonic period and completes by the third trimester of gestation, so that human neonates at birth have a thalamus with a near-facsimile of adult functional parcellation. Whether congenital neocortical anomaly (e.g., lissencephaly) affects TC connection in humans is unknown. Here, via diffusion MRI fiber-tractography analysis of long-term formalin-fixed postmortem fetal brain diagnosed as lissencephaly in comparison with an age-matched normal one, we found similar topological patterns of thalamic subregions and of internal capsule parcellated by TC fibers. However, lissencephaly fetal brain showed white matter structural changes, including fewer/less organized TC fibers and optic radiations, and much less cortical plate invasion by TC fibers - particularly around the shallow central sulcus. Diffusion MRI fiber tractography of normal fetal brains at 15, 23, and 26 gestational weeks (GW) revealed dynamic volumetric change of each parcellated thalamic subregion, suggesting coupled developmental progress of the thalamus with the corresponding cortex. Moreover, from GW23 and GW26 normal fetal brains, TC endings in the cortical plate could be delineated to reflect cumulative progressive TC invasion of cortical plate. By contrast, lissencephaly brain showed a dramatic decrease in TC invasion of the cortical plate. Our study thus shows the feasibility of diffusion MRI fiber tractography in postmortem long-term formalin-fixed fetal brains to disclose the developmental progress of TC tracts coordinating with thalamic and neocortical growth both in normal and lissencephaly fetal brains at mid-gestational stage.


Asunto(s)
Corteza Cerebral , Imagen de Difusión Tensora , Lisencefalia , Vías Nerviosas , Tálamo , Humanos , Tálamo/diagnóstico por imagen , Tálamo/patología , Tálamo/embriología , Corteza Cerebral/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/embriología , Lisencefalia/patología , Lisencefalia/diagnóstico por imagen , Vías Nerviosas/patología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/embriología , Imagen de Difusión Tensora/métodos , Feto/patología , Feto/diagnóstico por imagen , Edad Gestacional , Femenino , Masculino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/embriología , Imagen de Difusión por Resonancia Magnética/métodos
8.
Mol Biol Evol ; 40(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36721950

RESUMEN

Genomic imprinting is a parent-of-origin-specific expression phenomenon that plays fundamental roles in many biological processes. In animals, imprinting is only observed in therian mammals, with ∼200 imprinted genes known in humans and mice. The imprinting pattern in marsupials has been minimally investigated by examining orthologs to known eutherian imprinted genes. To identify marsupial-specific imprinting in an unbiased way, we performed RNA-seq studies on samples of fetal brain and placenta from the reciprocal cross progeny of two laboratory opossum stocks. We inferred allele-specific expression for >3,000 expressed genes and discovered/validated 13 imprinted genes, including three previously known imprinted genes, Igf2r, Peg10, and H19. We estimate that marsupials imprint ∼60 autosomal genes, which is a much smaller set compared with eutherians. Among the nine novel imprinted genes, three noncoding RNAs have no known homologs in eutherian mammals, while the remaining genes have important functions in pluripotency, transcription regulation, nucleolar homeostasis, and neural differentiation. Methylation analyses at promoter CpG islands revealed differentially methylated regions in five of these marsupial-specific imprinted genes, suggesting that differential methylation is a common mechanism in the epigenetic regulation of marsupial imprinting. Clustering and co-regulation were observed at marsupial imprinting loci Pou5f3-Npdc1 and Nkrfl-Ipncr2, but eutherian-type multi-gene imprinting clusters were not detected. Also differing from eutherian mammals, the brain and placenta imprinting profiles are remarkably similar in opossums, presumably due to the shared origin of these organs from the trophectoderm. Our results contribute to a fuller understanding of the origin, evolution, and mechanisms of genomic imprinting in therian mammals.


Asunto(s)
Marsupiales , Embarazo , Humanos , Femenino , Animales , Ratones , Marsupiales/genética , Metilación de ADN , Epigénesis Genética , Duplicación de Gen , Impresión Genómica , Zarigüeyas/genética , Mamíferos , Euterios/genética
9.
J Neuroinflammation ; 21(1): 163, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918792

RESUMEN

BACKGROUND: The SARS-CoV-2 virus activates maternal and placental immune responses. Such activation in the setting of other infections during pregnancy is known to impact fetal brain development. The effects of maternal immune activation on neurodevelopment are mediated at least in part by fetal brain microglia. However, microglia are inaccessible for direct analysis, and there are no validated non-invasive surrogate models to evaluate in utero microglial priming and function. We have previously demonstrated shared transcriptional programs between microglia and Hofbauer cells (HBCs, or fetal placental macrophages) in mouse models. METHODS AND RESULTS: We assessed the impact of maternal SARS-CoV-2 on HBCs isolated from 24 term placentas (N = 10 SARS-CoV-2 positive cases, 14 negative controls). Using single-cell RNA-sequencing, we demonstrated that HBC subpopulations exhibit distinct cellular programs, with specific subpopulations differentially impacted by SARS-CoV-2. Assessment of differentially expressed genes implied impaired phagocytosis, a key function of both HBCs and microglia, in some subclusters. Leveraging previously validated models of microglial synaptic pruning, we showed that HBCs isolated from placentas of SARS-CoV-2 positive pregnancies can be transdifferentiated into microglia-like cells (HBC-iMGs), with impaired synaptic pruning behavior compared to HBC models from negative controls. CONCLUSION: These findings suggest that HBCs isolated at birth can be used to create personalized cellular models of offspring microglial programming.


Asunto(s)
COVID-19 , Macrófagos , Microglía , Placenta , Complicaciones Infecciosas del Embarazo , SARS-CoV-2 , Femenino , Embarazo , Microglía/virología , Humanos , Placenta/virología , COVID-19/inmunología , Macrófagos/virología , Complicaciones Infecciosas del Embarazo/virología , Complicaciones Infecciosas del Embarazo/patología , SARS-CoV-2/patogenicidad , Feto , Adulto , Encéfalo/virología , Encéfalo/patología , Ratones , Animales
10.
J Neuroinflammation ; 21(1): 118, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715090

RESUMEN

Maternal inflammation during gestation is associated with a later diagnosis of neurodevelopmental disorders including autism spectrum disorder (ASD). However, the specific impact of maternal immune activation (MIA) on placental and fetal brain development remains insufficiently understood. This study aimed to investigate the effects of MIA by analyzing placental and brain tissues obtained from the offspring of pregnant C57BL/6 dams exposed to polyinosinic: polycytidylic acid (poly I: C) on embryonic day 12.5. Cytokine and mRNA content in the placenta and brain tissues were assessed using multiplex cytokine assays and bulk-RNA sequencing on embryonic day 17.5. In the placenta, male MIA offspring exhibited higher levels of GM-CSF, IL-6, TNFα, and LT-α, but there were no differences in female MIA offspring. Furthermore, differentially expressed genes (DEG) in the placental tissues of MIA offspring were found to be enriched in processes related to synaptic vesicles and neuronal development. Placental mRNA from male and female MIA offspring were both enriched in synaptic and neuronal development terms, whereas females were also enriched for terms related to excitatory and inhibitory signaling. In the fetal brain of MIA offspring, increased levels of IL-28B and IL-25 were observed with male MIA offspring and increased levels of LT-α were observed in the female offspring. Notably, we identified few stable MIA fetal brain DEG, with no male specific difference whereas females had DEG related to immune cytokine signaling. Overall, these findings support the hypothesis that MIA contributes to the sex- specific abnormalities observed in ASD, possibly through altered neuron developed from exposure to inflammatory cytokines. Future research should aim to investigate how interactions between the placenta and fetal brain contribute to altered neuronal development in the context of MIA.


Asunto(s)
Encéfalo , Citocinas , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo , Placenta , Efectos Tardíos de la Exposición Prenatal , Caracteres Sexuales , Femenino , Animales , Embarazo , Masculino , Citocinas/metabolismo , Citocinas/genética , Ratones , Encéfalo/metabolismo , Encéfalo/inmunología , Encéfalo/embriología , Placenta/metabolismo , Placenta/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/inmunología , Trastornos del Neurodesarrollo/metabolismo , Poli I-C/toxicidad , Transcriptoma , Modelos Animales de Enfermedad , Feto/metabolismo
11.
Biol Reprod ; 110(4): 722-738, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38145492

RESUMEN

Maternal immune activation during pregnancy is a risk factor for offspring neuropsychiatric disorders. Among the mechanistic pathways by which maternal inflammation can affect fetal brain development and programming, those involving tryptophan (TRP) metabolism have drawn attention because various TRP metabolites have neuroactive properties. This study evaluates the effect of bacterial (lipopolysaccharides/LPS) and viral (polyinosinic:polycytidylic acid/poly I:C) placental infection on TRP metabolism using an ex vivo model. Human placenta explants were exposed to LPS or poly I:C, and the release of TRP metabolites was analyzed together with the expression of related genes and proteins and the functional activity of key enzymes in TRP metabolism. The rate-limiting enzyme in the serotonin pathway, tryptophan hydroxylase, showed reduced expression and functional activity in explants exposed to LPS or poly I:C. Conversely, the rate-limiting enzyme in the kynurenine pathway, indoleamine dioxygenase, exhibited increased activity, gene, and protein expression, suggesting that placental infection mainly promotes TRP metabolism via the kynurenine (KYN) pathway. Furthermore, we observed that treatment with LPS or poly I:C increased activity in the kynurenine monooxygenase branch of the KYN pathway. We conclude that placental infection impairs TRP homeostasis, resulting in decreased production of serotonin and an imbalance in the ratio between quinolinic acid and kynurenic acid. This disrupted homeostasis may eventually expose the fetus to suboptimal/toxic levels of neuroactive molecules and impair fetal brain development.


Asunto(s)
Quinurenina , Placenta , Humanos , Embarazo , Femenino , Placenta/metabolismo , Quinurenina/metabolismo , Triptófano/metabolismo , Lipopolisacáridos/toxicidad , Serotonina/metabolismo , Poli I/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo
12.
J Virol ; 97(5): e0031323, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37097169

RESUMEN

Human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Though the underlying mechanisms remain poorly characterized, mouse models of congenital CMV infection have demonstrated that the neuronal migration process is damaged. In this study, we evaluated the effects of HCMV infection on connexin 43 (Cx43), a crucial adhesion molecule mediating neuronal migration. We show in multiple cellular models that HCMV infection downregulated Cx43 posttranslationally. Further analysis identified the immediate early protein IE1 as the viral protein responsible for the reduction of Cx43. IE1 was found to bind the Cx43 C terminus and promote Cx43 degradation through the ubiquitin-proteasome pathway. Deletion of the Cx43-binding site in IE1 rendered it incapable of inducing Cx43 degradation. We validated the IE1-induced loss of Cx43 in vivo by introducing IE1 into the fetal mouse brain. Noteworthily, ectopic IE1 expression induced cortical atrophy and neuronal migration defects. Several lines of evidence suggest that these damages result from decreased Cx43, and restoration of Cx43 levels partially rescued IE1-induced interruption of neuronal migration. Taken together, the results of our investigation reveal a novel mechanism of HCMV-induced neural maldevelopment and identify a potential intervention target. IMPORTANCE Congenital CMV (cCMV) infection causes neurological sequelae in newborns. Recent studies of cCMV pathogenesis in animal models reveal ventriculomegaly and cortical atrophy associated with impaired neural progenitor cell (NPC) proliferation and migration. In this study, we investigated the mechanisms underlying these NPC abnormalities. We show that Cx43, a critical adhesion molecule mediating NPC migration, is downregulated by HCMV infection in vitro and HCMV-IE1 in vivo. We provide evidence that IE1 interacts with the C terminus of Cx43 to promote its ubiquitination and consequent degradation through the proteasome. Moreover, we demonstrate that introducing IE1 into mouse fetal brains led to neuronal migration defects, which was associated with Cx43 reduction. Deletion of the Cx43-binding region in IE1 or ectopic expression of Cx43 rescued the IE1-induced migration defects in vivo. Our study provides insight into how cCMV infection impairs neuronal migration and reveals a target for therapeutic interventions.


Asunto(s)
Conexina 43 , Infecciones por Citomegalovirus , Citomegalovirus , Proteínas Inmediatas-Precoces , Animales , Humanos , Recién Nacido , Ratones , Conexina 43/genética , Conexina 43/metabolismo , Citomegalovirus/fisiología , Infecciones por Citomegalovirus/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo
13.
Magn Reson Med ; 92(2): 715-729, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38623934

RESUMEN

PURPOSE: We propose a quantitative framework for motion-corrected T2 fetal brain measurements in vivo and validate the single-shot fast spin echo (SS-FSE) sequence to perform these measurements. METHODS: Stacks of two-dimensional SS-FSE slices are acquired with different echo times (TE) and motion-corrected with slice-to-volume reconstruction (SVR). The quantitative T2 maps are obtained by a fit to a dictionary of simulated signals. The sequence is selected using simulated experiments on a numerical phantom and validated on a physical phantom scanned on a 1.5T system. In vivo quantitative T2 maps are obtained for five fetuses with gestational ages (GA) 21-35 weeks on the same 1.5T system. RESULTS: The simulated experiments suggested that a TE of 400 ms combined with the clinically utilized TEs of 80 and 180 ms were most suitable for T2 measurements in the fetal brain. The validation on the physical phantom confirmed that the SS-FSE T2 measurements match the gold standard multi-echo spin echo measurements. We measured average T2s of around 200 and 280 ms in the fetal brain grey and white matter, respectively. This was slightly higher than fetal T2* and the neonatal T2 obtained from previous studies. CONCLUSION: The motion-corrected SS-FSE acquisitions with varying TEs offer a promising practical framework for quantitative T2 measurements of the moving fetus.


Asunto(s)
Encéfalo , Feto , Imagen por Resonancia Magnética , Fantasmas de Imagen , Humanos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Femenino , Embarazo , Feto/diagnóstico por imagen , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Edad Gestacional , Reproducibilidad de los Resultados , Simulación por Computador , Interpretación de Imagen Asistida por Computador/métodos , Movimiento (Física)
14.
Magn Reson Med ; 92(3): 1263-1276, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38650351

RESUMEN

PURPOSE: Widening the availability of fetal MRI with fully automatic real-time planning of radiological brain planes on 0.55T MRI. METHODS: Deep learning-based detection of key brain landmarks on a whole-uterus echo planar imaging scan enables the subsequent fully automatic planning of the radiological single-shot Turbo Spin Echo acquisitions. The landmark detection pipeline was trained on over 120 datasets from varying field strength, echo times, and resolutions and quantitatively evaluated. The entire automatic planning solution was tested prospectively in nine fetal subjects between 20 and 37 weeks. A comprehensive evaluation of all steps, the distance between manual and automatic landmarks, the planning quality, and the resulting image quality was conducted. RESULTS: Prospective automatic planning was performed in real-time without latency in all subjects. The landmark detection accuracy was 4.2 ± $$ \pm $$ 2.6 mm for the fetal eyes and 6.5 ± $$ \pm $$ 3.2 for the cerebellum, planning quality was 2.4/3 (compared to 2.6/3 for manual planning) and diagnostic image quality was 2.2 compared to 2.1 for manual planning. CONCLUSIONS: Real-time automatic planning of all three key fetal brain planes was successfully achieved and will pave the way toward simplifying the acquisition of fetal MRI thereby widening the availability of this modality in nonspecialist centers.


Asunto(s)
Encéfalo , Feto , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Imagen por Resonancia Magnética/métodos , Femenino , Embarazo , Feto/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo , Diagnóstico Prenatal/métodos , Estudios Prospectivos , Imagen Eco-Planar/métodos , Algoritmos , Interpretación de Imagen Asistida por Computador/métodos
15.
Magn Reson Med ; 92(4): 1556-1567, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38702999

RESUMEN

PURPOSE: To achieve high-resolution fetal brain anatomical imaging without introducing image artifacts by reducing the FOV, and to demonstrate improved image quality compared to conventional full-FOV fetal brain imaging. METHODS: Reduced FOV was achieved by applying outer volume suppression (OVS) pulses immediately prior to standard single-shot fast spin echo (SSFSE) imaging. In the OVS preparation, a saturation RF pulse followed by a gradient spoiler was repeated three times with optimized flip-angle weightings and a variable spoiler scheme to enhance signal suppression. Simulations and phantom and in-vivo experiments were performed to evaluate OVS performance. In-vivo high-resolution SSFSE images acquired using the proposed approach were compared with conventional and high-resolution SSFSE images with a full FOV, using image quality scores assessed by neuroradiologists and calculated image metrics. RESULTS: Excellent signal suppression in the saturation bands was confirmed in phantom and in-vivo experiments. High-resolution SSFSE images with a reduced FOV acquired using OVS demonstrated the improved depiction of brain structures without significant motion and blurring artifacts. The proposed method showed the highest image quality scores in the criteria of sharpness, contrast, and artifact and was selected as the best method based on overall image quality. The calculated image sharpness and tissue contrast ratio were also the highest with the proposed method. CONCLUSION: High-resolution fetal brain anatomical images acquired using a reduced FOV with OVS demonstrated improved image quality both qualitatively and quantitatively, suggesting the potential for enhanced diagnostic accuracy in detecting fetal brain abnormalities in utero.


Asunto(s)
Algoritmos , Artefactos , Encéfalo , Imagen por Resonancia Magnética , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Embarazo , Aumento de la Imagen/métodos , Reproducibilidad de los Resultados , Diagnóstico Prenatal/métodos , Interpretación de Imagen Asistida por Computador/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Sensibilidad y Especificidad , Imagenología Tridimensional/métodos
16.
NMR Biomed ; : e5248, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231762

RESUMEN

Slice-to-volume registration and super-resolution reconstruction are commonly used to generate 3D volumes of the fetal brain from 2D stacks of slices acquired in multiple orientations. A critical initial step in this pipeline is to select one stack with the minimum motion among all input stacks as a reference for registration. An accurate and unbiased motion assessment (MA) is thus crucial for successful selection. Here, we presented an MA method that determines the minimum motion stack based on 3D low-rank approximation using CANDECOMP/PARAFAC (CP) decomposition. Compared to the current 2D singular value decomposition (SVD) based method that requires flattening stacks into matrices to obtain ranks, in which the spatial information is lost, the CP-based method can factorize 3D stack into low-rank and sparse components in a computationally efficient manner. The difference between the original stack and its low-rank approximation was proposed as the motion indicator. Experiments on linearly and randomly simulated motion illustrated that CP demonstrated higher sensitivity in detecting small motion with a lower baseline bias, and achieved a higher assessment accuracy of 95.45% in identifying the minimum motion stack, compared to the SVD-based method with 58.18%. CP also showed superior motion assessment capabilities in real-data evaluations. Additionally, combining CP with the existing SRR-SVR pipeline significantly improved 3D volume reconstruction. The results indicated that our proposed CP showed superior performance compared to SVD-based methods with higher sensitivity to motion, assessment accuracy, and lower baseline bias, and can be used as a prior step to improve fetal brain reconstruction.

17.
J Magn Reson Imaging ; 60(5): 2055-2062, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38284561

RESUMEN

BACKGROUND: Tractography based on diffusion MRI (dMRI) is a useful tool to study white matter of the developing brain. However, its application in fetal brains is limited due to motion artifacts and low resolution of in utero dMRI, leading to reduced reliability, which was scarcely investigated in previous studies. PURPOSE: To identify reliably traceable fibers in fetal brains and assess whether reproducibility varies with gestational age (GA) and varies between brain regions. STUDY TYPE: Prospective cohort study. SUBJECTS: A total of 44 healthy fetuses with GAs between 25 and 37 (31 ± 6). FIELD STRENGTH/SEQUENCE: 3-T, diffusion-weighted echo-planar imaging sequence (2-5 repeated dMRI scans within the same session per subject). ASSESSMENT: We fitted dMRI with constrained spherical deconvolution model and conducted tractography on eight fibers. We extracted volume, fractional anisotropy, and fiber count for each fiber and assessed the reproducibility of these metrics between repeated scans within each subject. Data were divided into two age-based subgroups (≤30 weeks, N = 28, and >30 weeks, N = 16) for further tests. STATISTICAL TESTS: The reproducibility were compared between fibers by analysis of variance and two-sample t tests. Multiple comparisons were corrected by the false discovery rate (5% was accepted). RESULTS: The reproducibility of the anterior thalamic radiation, inferior longitudinal fasciculus (ILF), genu of the corpus callosum (GCC), and body of the corpus callosum (BCC) significantly decreased with advancing GA (correlation coefficient = 0.525-0.823), as confirmed by group comparisons between fetuses in early GA (≤30 weeks) and late GA (>30 weeks) groups. Corticospinal tract, inferior fronto-occipital fasciculus, and GCC showed high reproducibility for fiber count (weighted dice average = 0.846 vs. 0.814), while BCC and ILF exhibited the lowest reproducibility in both age groups. DATA CONCLUSION: The study indicates that the reliability of fetal brain tractography depends on GA and varies among different fibers. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Feto , Edad Gestacional , Sustancia Blanca , Humanos , Reproducibilidad de los Resultados , Femenino , Estudios Prospectivos , Encéfalo/diagnóstico por imagen , Encéfalo/embriología , Embarazo , Imagen de Difusión Tensora/métodos , Feto/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/embriología , Procesamiento de Imagen Asistido por Computador/métodos , Anisotropía , Imagen Eco-Planar/métodos , Adulto
18.
J Magn Reson Imaging ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445838

RESUMEN

BACKGROUND: Intrauterine growth restriction (IUGR) is an obstetrical condition where a fetus has not achieved its genetic potential. A consequence of IUGR is a decrease in brain myelin content. Myelin water imaging (MWI) has been used to assess fetal myelin water fraction (MWF) and might potentially assess myelination changes associated with IUGR. PURPOSE: To quantify and compare the MWF of non-IUGR and IUGR fetal guinea pigs (GPs) in late gestation. STUDY TYPE: Prospective animal model. ANIMAL MODEL: Dunkin-Hartley GP model of spontaneous IUGR (mean ± SD: 60 ± 1.2 days gestation; 19 IUGR, 52 control). FIELD STRENGTH/SEQUENCE: Eight spoiled gradient-recalled (SPGR) gradient echo volumes (flip angles [α]: 2°-16°), and two sets of eight balanced steady-state free precession (bSSFP) gradient echo volumes (α: 8° - 64°), at 0° and 180° phase increments, at 3.0 T. ASSESSMENT: MWF maps were generated for each fetal GP brain using multicomponent driven equilibrium single pulse observation of T1 /T2 (mcDESPOT). MWF was quantified in the fetal corpus callosum (CC), fornix (FOR), parasagittal white matter (PSW), and whole fetal brain. STATISTICAL TESTS: Linear regression was performed between five fetal IUGR markers (body volume, body-to-pregnancy volume ratio, brain-to-liver volume ratio, brain-to-placenta volume ratio, and brain-to-body volume ratio) and MWF (coefficient of determination, R2 ). A t-test with a linear mixed model compared the MWF of non-IUGR and IUGR fetal GPs (significance was determined at α < 0.05). RESULTS: The MWF of the control fetuses are (mean ± SD): 0.23 ± 0.02 (CC), 0.31 ± 0.02 (FOR), 0.28 ± 0.02 (PSW), and 0.20 ± 0.01 (whole brain). The MWF of the IUGR fetuses are (mean ± SD): 0.19 ± 0.02 (CC), 0.27 ± 0.01 (FOR), 0.24 ± 0.03 (PSW), and 0.16 ± 0.01 (whole brain). Significant differences in MWF were found between the non-IUGR and IUGR fetuses in every comparison. DATA CONCLUSION: The mean MWF of IUGR fetal GPs is significantly lower than non-IUGR fetal GPs. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 1.

19.
J Magn Reson Imaging ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994701

RESUMEN

BACKGROUND: Congenital heart disease (CHD) has been linked to impaired placental and fetal brain development. Assessing the placenta and fetal brain in parallel may help further our understanding of the relationship between development of these organs. HYPOTHESIS: 1) Placental and fetal brain oxygenation are correlated, 2) oxygenation in these organs is reduced in CHD compared to healthy controls, and 3) placental structure is altered in CHD. STUDY TYPE: Retrospective case-control. POPULATION: Fifty-one human fetuses with CHD (32 male; median [IQR] gestational age [GA] = 32.0 [30.9-32.9] weeks) and 30 from uncomplicated pregnancies with normal birth outcomes (18 male; median [IQR] GA = 34.5 [31.9-36.7] weeks). FIELD STRENGTH/SEQUENCE: 1.5 T single-shot multi-echo-gradient-echo echo-planar imaging. ASSESSMENT: Masking was performed using an automated nnUnet model. Mean brain and placental T2* and quantitative measures of placental texture, volume, and morphology were calculated. STATISTICAL TESTS: Spearman's correlation coefficient for determining the association between brain and placental T2*, and between brain and placental characteristics with GA. P-values for comparing brain T2*, placenta T2*, and placental characteristics between groups derived from ANOVA. Significance level P < 0.05. RESULTS: There was a significant positive association between placental and fetal brain T2* (⍴ = 0.46). Placental and fetal brain T2* showed a significant negative correlation with GA (placental T2* ⍴ = -0.65; fetal brain T2* ⍴ = -0.32). Both placental and fetal brain T2* values were significantly reduced in CHD, after adjusting for GA (placental T2*: control = 97 [±24] msec, CHD = 83 [±23] msec; brain T2*: control = 218 [±26] msec, CHD = 202 [±25] msec). Placental texture and morphology were also significantly altered in CHD (Texture: control = 0.84 [0.83-0.87], CHD = 0.80 [0.78-0.84]; Morphology: control = 9.9 [±2.2], CHD = 10.8 [±2.0]). For all fetuses, there was a significant positive association between placental T2* and placental texture (⍴ = 0.46). CONCLUSION: Placental and fetal brain T2* values are associated in healthy fetuses and those with CHD. Placental and fetal brain oxygenation are reduced in CHD. Placental appearance is significantly altered in CHD and shows associations with placental oxygenation, suggesting altered placental development and function may be related. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 3.

20.
FASEB J ; 37(10): e23172, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37665328

RESUMEN

Prenatal alcohol exposure (PAE) impairs fetal growth and neurodevelopment. Although alcohol is well known to alter metabolism, its impact on these processes during pregnancy is largely unexplored. Here, we investigate how alcohol affects maternal-fetal glucose metabolism using our established mouse binge model of PAE. In the dam, alcohol reduces the hepatic abundance of glucose and glycolytic intermediates, and the gluconeogenic enzymes glucose-6-phosphtase and phosphoenolpyruvate carboxykinase. Fasting blood glucose is also reduced. In a healthy pregnancy, elevated maternal gluconeogenesis and insulin resistance ensures glucose availability for the fetus. Glucose and insulin tolerance tests reveal that alcohol impairs the dam's ability to acquire insulin resistance. Alcohol-exposed dams have enhanced glucose clearance (p < .05) in early gestation, after just two days of alcohol, and this persists through late term when fetal glucose needs are maximal. However, maternal plasma insulin levels, hepatic insulin signaling, and the abundance of glucose transporter proteins remain unchanged. In the PAE fetus, the expression of hepatic gluconeogenic genes is elevated, and there is a trend for elevated blood and liver glucose levels. In contrast, fetal brain and placental glucose levels remain low. This reduced maternal fasting glucose, reduced hepatic glucose, and elevated glucose clearance inversely correlated with fetal body and brain weight. Taken together, these data suggest that alcohol blunts the adaptive changes in maternal glucose metabolism that otherwise enhance fetal glucose availability. Compensatory attempts by the fetus to increase glucose pools via gluconeogenesis do not normalize brain glucose. These metabolic changes may contribute to the impaired fetal growth and brain development that typifies PAE.


Asunto(s)
Resistencia a la Insulina , Insulinas , Efectos Tardíos de la Exposición Prenatal , Femenino , Embarazo , Animales , Ratones , Humanos , Gluconeogénesis , Glucosa , Peso Fetal , Placenta , Etanol/toxicidad , Feto , Encéfalo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA