Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(1)2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-35009841

RESUMEN

In this paper, we proposed and experimentally demonstrated an opto-mechatronics system to detect the micro-deformation of tracks caused by running trains. The fiber Bragg grating (FBG) array acting as sensing elements has a low peak reflectivity of around -40 dB. The center wavelengths were designed to alternate between 1551 nm and 1553 nm at 25 °C. Based on dual-wavelength, wavelength-division multiplexing (WDM)/time-division multiplexing (TDM) hybrid networking, we adopted optical time-domain reflectometry (OTDR) technology and a wavelength-scanning interrogation method to achieve FBG array signal demodulation. The field experimental results showed that the average wavelength shift of the FBG array caused by the passage of the lightest rail vehicle was -225 pm. Characteristics of the train-track system, such as track occupancy, train length, number of wheels, train speed, direction, and loading can be accurately obtained in real time. This opto-mechatronics system can meet the requirements of 600 mm spatial resolution, long distance, and large capacity for monitoring the train-track system. This method exhibits great potential for applications in large-scale train-track monitoring, which is meaningful for the safe operation of rail transport.

2.
Sensors (Basel) ; 20(15)2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32752307

RESUMEN

A high-energy nanosecond-pulsed ultraviolet (UV) laser Talbot interferometer for high-efficiency, mass production of fiber Bragg grating (FBG) array was experimentally demonstrated. High-quality FBG arrays were successfully inscribed in both H2-free and H2-loaded standard single-mode fibers (SMFs) with high inscription efficiency and excellent reproducibility. Compared with the femtosecond pulse that had a coherent length of several tens of micrometers, a longer coherent length (~10 mm) of the employed laser rendered a wider FBG wavelength versatility over 700 nm band (1200-1900 nm) without the need for optical path difference (OPD) compensation. Dense FBG array with center wavelength separation of ~0.4 nm was achieved and more than 1750 FBGs with separated center wavelength could be inscribed in a single H2-free or H2-loaded SMF in theory, which is promising for mass production of FBG arrays in industry. Moreover, precise focusing of laser beam was superfluous for the proposed system due to the high energy density of pulse. The proposed FBG inscription system was promising for industrialization production of dense FBG arrays.

3.
ACS Appl Mater Interfaces ; 16(32): 42986-42994, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39083246

RESUMEN

A flexible arc-shaped micro-Fiber Bragg Grating (mFBG) array three-dimensional tactile sensor for fingertip signal detection and human pulse monitoring is presented. It is based on a three mFBGs array which is embedded in an arc-shaped poly (dimethylsiloxane) (PDMS) elastomer, which can effectively discriminate the normal force, left force, and right force by monitoring the reflected intensity variation of the three mFBGs. Different from the traditional FBG sensors, this sensor measures force by detecting changes in light intensity, effectively avoiding the wavelength cross-sensitivity impact of temperature variations on the sensor performance. This design strategy simplifies the sensor structure, reduces the system complexity and signal interrogation cost, and enhances reliability and practicality. Through systematic experiments, we successfully validated the sensor's superior performance, achieving a minimum detection force of 0.01 N and providing robust data support for practical applications. In addition, the sensor has been used to monitor human pulse accurately. The successful fabrication and experimental validation of this sensor lay a foundation for its widespread application in fields such as robot perception and human vital signal detection.


Asunto(s)
Dedos , Tacto , Humanos , Dedos/fisiología , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Dispositivos Electrónicos Vestibles , Pulso Arterial , Diseño de Equipo , Dimetilpolisiloxanos/química , Tecnología de Fibra Óptica/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA