Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.339
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(4): 931-944.e12, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38320549

RESUMEN

Differentiation is crucial for multicellularity. However, it is inherently susceptible to mutant cells that fail to differentiate. These mutants outcompete normal cells by excessive self-renewal. It remains unclear what mechanisms can resist such mutant expansion. Here, we demonstrate a solution by engineering a synthetic differentiation circuit in Escherichia coli that selects against these mutants via a biphasic fitness strategy. The circuit provides tunable production of synthetic analogs of stem, progenitor, and differentiated cells. It resists mutations by coupling differentiation to the production of an essential enzyme, thereby disadvantaging non-differentiating mutants. The circuit selected for and maintained a positive differentiation rate in long-term evolution. Surprisingly, this rate remained constant across vast changes in growth conditions. We found that transit-amplifying cells (fast-growing progenitors) underlie this environmental robustness. Our results provide insight into the stability of differentiation and demonstrate a powerful method for engineering evolutionarily stable multicellular consortia.


Asunto(s)
Escherichia coli , Biología Sintética , Diferenciación Celular , Escherichia coli/citología , Escherichia coli/genética , Integrasas/metabolismo , Biología Sintética/métodos , Aptitud Genética , Farmacorresistencia Bacteriana
2.
Cell ; 186(23): 5151-5164.e13, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37875109

RESUMEN

The large-scale evolution of the SARS-CoV-2 virus has been marked by rapid turnover of genetic clades. New variants show intrinsic changes, notably increased transmissibility, and antigenic changes that reduce cross-immunity induced by previous infections or vaccinations. How this functional variation shapes global evolution has remained unclear. Here, we establish a predictive fitness model for SARS-CoV-2 that integrates antigenic and intrinsic selection. The model is informed by tracking of time-resolved sequence data, epidemiological records, and cross-neutralization data of viral variants. Our inference shows that immune pressure, including contributions of vaccinations and previous infections, has become the dominant force driving the recent evolution of SARS-CoV-2. The fitness model can serve continued surveillance in two ways. First, it successfully predicts the short-term evolution of circulating strains and flags emerging variants likely to displace the previously predominant variant. Second, it predicts likely antigenic profiles of successful escape variants prior to their emergence.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Vacunación , Modelos Genéticos , Monitoreo Epidemiológico
3.
Cell ; 186(18): 3810-3825.e18, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37552983

RESUMEN

A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción , Factores de Transcripción/genética , Saccharomyces cerevisiae/genética , Genoma
4.
Cell ; 185(11): 1905-1923.e25, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35523183

RESUMEN

Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relationships between cancer cells provides key insights into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcriptional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor progression.


Asunto(s)
Neoplasias , Animales , Genes ras , Ratones , Neoplasias/genética , Filogenia , Secuenciación del Exoma
5.
Cell ; 185(3): 513-529.e21, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35120663

RESUMEN

The human gut microbiota resides within a diverse chemical environment challenging our ability to understand the forces shaping this ecosystem. Here, we reveal that fitness of the Bacteroidales, the dominant order of bacteria in the human gut, is an emergent property of glycans and one specific metabolite, butyrate. Distinct sugars serve as strain-variable fitness switches activating context-dependent inhibitory functions of butyrate. Differential fitness effects of butyrate within the Bacteroides are mediated by species-level variation in Acyl-CoA thioesterase activity and nucleotide polymorphisms regulating an Acyl-CoA transferase. Using in vivo multi-omic profiles, we demonstrate Bacteroides fitness in the human gut is associated together, but not independently, with Acyl-CoA transferase expression and butyrate. Our data reveal that each strain of the Bacteroides exists within a unique fitness landscape based on the interaction of chemical components unpredictable by the effect of each part alone mediated by flexibility in the core genome.


Asunto(s)
Microbioma Gastrointestinal , Metaboloma , Polisacáridos/metabolismo , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Aminoácidos de Cadena Ramificada/metabolismo , Bacteroidetes/efectos de los fármacos , Bacteroidetes/genética , Bacteroidetes/crecimiento & desarrollo , Butiratos/química , Butiratos/farmacología , Coenzima A Transferasas/química , Coenzima A Transferasas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Variación Genética/efectos de los fármacos , Concentración de Iones de Hidrógeno , Metaboloma/efectos de los fármacos , Metaboloma/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Especificidad de la Especie , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcripción Genética/efectos de los fármacos
6.
Cell ; 184(16): 4237-4250.e19, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34297924

RESUMEN

The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of "minimalist" histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of "organisms" that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses.


Asunto(s)
Virus ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Amoeba/virología , Colorantes Fluorescentes/metabolismo , Histonas/química , Modelos Moleculares , Proteómica , Virión/metabolismo
7.
Cell ; 181(5): 1112-1130.e16, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32470399

RESUMEN

Acute physical activity leads to several changes in metabolic, cardiovascular, and immune pathways. Although studies have examined selected changes in these pathways, the system-wide molecular response to an acute bout of exercise has not been fully characterized. We performed longitudinal multi-omic profiling of plasma and peripheral blood mononuclear cells including metabolome, lipidome, immunome, proteome, and transcriptome from 36 well-characterized volunteers, before and after a controlled bout of symptom-limited exercise. Time-series analysis revealed thousands of molecular changes and an orchestrated choreography of biological processes involving energy metabolism, oxidative stress, inflammation, tissue repair, and growth factor response, as well as regulatory pathways. Most of these processes were dampened and some were reversed in insulin-resistant participants. Finally, we discovered biological pathways involved in cardiopulmonary exercise response and developed prediction models revealing potential resting blood-based biomarkers of peak oxygen consumption.


Asunto(s)
Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Anciano , Biomarcadores/metabolismo , Femenino , Humanos , Insulina/metabolismo , Resistencia a la Insulina , Leucocitos Mononucleares/metabolismo , Estudios Longitudinales , Masculino , Metaboloma , Persona de Mediana Edad , Oxígeno/metabolismo , Consumo de Oxígeno , Proteoma , Transcriptoma
8.
Cell ; 178(2): 385-399.e20, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257025

RESUMEN

To uncover the selective forces shaping life-history trait evolution across species, we investigate the genomic basis underlying adaptations to seasonal habitat desiccation in African killifishes, identifying the genetic variants associated with positive and relaxed purifying selection in 45 killifish species and 231 wild individuals distributed throughout sub-Saharan Africa. In annual species, genetic drift led to the expansion of nuclear and mitochondrial genomes and caused the accumulation of deleterious genetic variants in key life-history modulating genes such as mtor, insr, ampk, foxo3, and polg. Relaxation of purifying selection is also significantly associated with mitochondrial function and aging in human populations. We find that relaxation of purifying selection prominently shapes genomes and is a prime candidate force molding the evolution of lifespan and the distribution of genetic variants associated with late-onset diseases in different species. VIDEO ABSTRACT.


Asunto(s)
Longevidad , Selección Genética , Envejecimiento , Animales , Replicación del ADN , Evolución Molecular , Frecuencia de los Genes , Genoma Mitocondrial , Peces Killi/clasificación , Peces Killi/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Filogenia , Filogeografía
9.
Immunity ; 57(1): 40-51.e5, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38171362

RESUMEN

Individuals who clear primary hepatitis C virus (HCV) infections clear subsequent reinfections more than 80% of the time, but the mechanisms are poorly defined. Here, we used HCV variants and plasma from individuals with repeated clearance to characterize longitudinal changes in envelope glycoprotein E2 sequences, function, and neutralizing antibody (NAb) resistance. Clearance of infection was associated with early selection of viruses with NAb resistance substitutions that also reduced E2 binding to CD81, the primary HCV receptor. Later, peri-clearance plasma samples regained neutralizing capacity against these variants. We identified a subset of broadly NAbs (bNAbs) for which these loss-of-fitness substitutions conferred resistance to unmutated bNAb ancestors but increased sensitivity to mature bNAbs. These data demonstrate a mechanism by which neutralizing antibodies contribute to repeated immune-mediated HCV clearance, identifying specific bNAbs that exploit fundamental vulnerabilities in E2. The induction of bNAbs with these specificities should be a goal of HCV vaccine development.


Asunto(s)
Anticuerpos Neutralizantes , Hepatitis C , Humanos , Anticuerpos ampliamente neutralizantes , Anticuerpos contra la Hepatitis C/química , Hepacivirus , Proteínas del Envoltorio Viral/genética
10.
Cell ; 175(2): 544-557.e16, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30245013

RESUMEN

A major challenge in genetics is to identify genetic variants driving natural phenotypic variation. However, current methods of genetic mapping have limited resolution. To address this challenge, we developed a CRISPR-Cas9-based high-throughput genome editing approach that can introduce thousands of specific genetic variants in a single experiment. This enabled us to study the fitness consequences of 16,006 natural genetic variants in yeast. We identified 572 variants with significant fitness differences in glucose media; these are highly enriched in promoters, particularly in transcription factor binding sites, while only 19.2% affect amino acid sequences. Strikingly, nearby variants nearly always favor the same parent's alleles, suggesting that lineage-specific selection is often driven by multiple clustered variants. In sum, our genome editing approach reveals the genetic architecture of fitness variation at single-base resolution and could be adapted to measure the effects of genome-wide genetic variation in any screen for cell survival or cell-sortable markers.


Asunto(s)
Edición Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas , Mapeo Cromosómico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Variación Genética/genética , Vectores Genéticos , Genoma , Levaduras/genética
11.
Cell ; 173(1): 196-207.e14, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29502970

RESUMEN

Microbial populations can maximize fitness in dynamic environments through bet hedging, a process wherein a subpopulation assumes a phenotype not optimally adapted to the present environment but well adapted to an environment likely to be encountered. Here, we show that oxygen induces fluctuating expression of the trimethylamine oxide (TMAO) respiratory system of Escherichia coli, diversifying the cell population and enabling a bet-hedging strategy that permits growth following oxygen loss. This regulation by oxygen affects the variance in gene expression but leaves the mean unchanged. We show that the oxygen-sensitive transcription factor IscR is the key regulator of variability. Oxygen causes IscR to repress expression of a TMAO-responsive signaling system, allowing stochastic effects to have a strong effect on the output of the system and resulting in heterogeneous expression of the TMAO reduction machinery. This work reveals a mechanism through which cells regulate molecular noise to enhance fitness.


Asunto(s)
Escherichia coli/metabolismo , Transducción de Señal , Aerobiosis , Anaerobiosis , Secuencia de Bases , Sitios de Unión , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Metilaminas/metabolismo , Metilaminas/farmacología , Oxígeno/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Fosfotransferasas/química , Fosfotransferasas/genética , Fosfotransferasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Regulación hacia Arriba
12.
Mol Cell ; 84(17): 3288-3301.e3, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39084218

RESUMEN

Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.


Asunto(s)
Tamaño de la Célula , ARN Polimerasa II , Saccharomyces cerevisiae , Transcriptoma , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Animales , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Ratones , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Proliferación Celular , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Cell ; 84(13): 2553-2572.e19, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38917794

RESUMEN

CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.


Asunto(s)
Exones , Humanos , Exones/genética , Sistemas CRISPR-Cas , Factor de Transcripción TFIID/genética , Factor de Transcripción TFIID/metabolismo , Aptitud Genética , Células HEK293 , Factores Asociados con la Proteína de Unión a TATA/genética , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Sitios de Empalme de ARN , Mutación , Regulación de la Expresión Génica , Empalme Alternativo
14.
Annu Rev Cell Dev Biol ; 32: 411-439, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27501445

RESUMEN

Cell-competitive interactions are widespread in nature and determine the outcome of a vast variety of biological processes. A particular class of competitive interactions takes place when alterations in intrinsic cellular properties are sensed nonautonomously by comparison between neighboring cells, resulting in the selective elimination of one cell population. This type of cell competition was first described four decades ago in developing epithelia of Drosophila. In the last 15 years, further molecular and cellular analyses have provided essential knowledge about the mechanisms, universality, and physiological relevance of cell competition. The two main phenomena triggering cell competition are alterations in cellular metabolic status and alterations in epithelial apico-basal polarity, while other reported pathways are less characterized. Cell competition plays essential roles in quality control, homeostasis, and repair of developing and adult tissues, and depending on the context, it may function as a tumor-suppressing or tumor-promoting mechanism.


Asunto(s)
Células/metabolismo , Animales , Enfermedad , Salud , Humanos , Modelos Biológicos , Transducción de Señal
15.
Trends Biochem Sci ; 48(8): 665-672, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37270322

RESUMEN

Metamorphic proteins switch reversibly between multiple distinct, stable structures, often with different functions. It was previously hypothesized that metamorphic proteins arose as intermediates in the evolution of a new fold - rare and transient exceptions to the 'one sequence, one fold' paradigm. However, as described herein, mounting evidence suggests that metamorphic folding is an adaptive feature, preserved and optimized over evolutionary time as exemplified by the NusG family and the chemokine XCL1. Analysis of extant protein families and resurrected protein ancestors demonstrates that large regions of sequence space are compatible with metamorphic folding. As a category that enhances biological fitness, metamorphic proteins are likely to employ fold switching to perform important biological functions and may be more common than previously thought.


Asunto(s)
Pliegue de Proteína , Proteínas , Proteínas/química
16.
Trends Genet ; 40(4): 364-378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38453542

RESUMEN

Dominance is usually considered a constant value that describes the relative difference in fitness or phenotype between heterozygotes and the average of homozygotes at a focal polymorphic locus. However, the observed dominance can vary with the genetic background of the focal locus. Here, alleles at other loci modify the observed phenotype through position effects or dominance modifiers that are sometimes associated with pathogen resistance, lineage, sex, or mating type. Theoretical models have illustrated how variable dominance appears in the context of multi-locus interaction (epistasis). Here, we review empirical evidence for variable dominance and how the observed patterns may be captured by proposed epistatic models. We highlight how integrating epistasis and dominance is crucial for comprehensively understanding adaptation and speciation.


Asunto(s)
Epistasis Genética , Modelos Genéticos , Heterocigoto , Fenotipo , Homocigoto , Alelos
17.
Trends Genet ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278786

RESUMEN

Tandem-repeat DNA sequences appear to be singularly capable of yielding abundant repeat-number mutations with a potentially advantageous distribution of fitness effects. Although knowing the rates and relative proportions of deleterious, neutral and beneficial mutations is fundamental for understanding evolvability, analysis of adaptation routinely overlooks small-effect mutations arising in tandem repeats.

18.
Annu Rev Genet ; 53: 93-116, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31505135

RESUMEN

Wolbachia is an endosymbiotic Alphaproteobacteria that can suppress insect-borne diseases through decreasing host virus transmission (population replacement) or through decreasing host population density (population suppression). We contrast natural Wolbachia infections in insect populations with Wolbachia transinfections in mosquitoes to gain insights into factors potentially affecting the long-term success of Wolbachia releases. Natural Wolbachia infections can spread rapidly, whereas the slow spread of transinfections is governed by deleterious effects on host fitness and demographic factors. Cytoplasmic incompatibility (CI) generated by Wolbachia is central to both population replacement and suppression programs, but CI in nature can be variable and evolve, as can Wolbachia fitness effects and virus blocking. Wolbachia spread is also influenced by environmental factors that decrease Wolbachia titer and reduce maternal Wolbachia transmission frequency. More information is needed on the interactions between Wolbachia and host nuclear/mitochondrial genomes, the interaction between invasion success and local ecological factors, and the long-term stability of Wolbachia-mediated virus blocking.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Interacciones Huésped-Patógeno/fisiología , Insectos Vectores/virología , Wolbachia/fisiología , Animales , Evolución Biológica , Citoplasma , Ambiente , Aptitud Genética , Insectos Vectores/microbiología , Insectos/microbiología , Insectos/virología , Mosquitos Vectores/microbiología , Mosquitos Vectores/virología
19.
Mol Cell ; 74(4): 729-741.e7, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30982745

RESUMEN

The nascent polypeptide-associated complex (NAC) is a conserved ribosome-associated protein biogenesis factor. Whether NAC exerts chaperone activity and whether this function is restricted to de novo protein synthesis is unknown. Here, we demonstrate that NAC directly exerts chaperone activity toward structurally diverse model substrates including polyglutamine (PolyQ) proteins, firefly luciferase, and Aß40. Strikingly, we identified the positively charged ribosome-binding domain in the N terminus of the ßNAC subunit (N-ßNAC) as a major chaperone entity of NAC. N-ßNAC by itself suppressed aggregation of PolyQ-expanded proteins in vitro, and the positive charge of this domain was critical for this activity. Moreover, we found that NAC also exerts a ribosome-independent chaperone function in vivo. Consistently, we found that a substantial fraction of NAC is non-ribosomal bound in higher eukaryotes. In sum, NAC is a potent suppressor of aggregation and proteotoxicity of mutant PolyQ-expanded proteins associated with human diseases like Huntington's disease and spinocerebellar ataxias.


Asunto(s)
Péptidos beta-Amiloides/genética , Chaperonas Moleculares/genética , Agregación Patológica de Proteínas/genética , Péptidos beta-Amiloides/química , Sitios de Unión/genética , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Luciferasas/química , Luciferasas/genética , Chaperonas Moleculares/química , Péptidos/química , Péptidos/genética , Unión Proteica/genética , Biosíntesis de Proteínas/genética , Dominios Proteicos/genética , Pliegue de Proteína , Ribosomas/genética , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
20.
Semin Immunol ; 70: 101840, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37729825

RESUMEN

Population aging, a pervasive global demographic trend, is anticipated to challenge health and social systems worldwide. This phenomenon is due to medical advancements enabling longer lifespans, with 20% of the US population soon to be over 65 years old. Consequently, there will be a surge in age-related diseases. Senescence, characterized by the loss of biological maintenance and homeostasis at molecular and cellular levels, either correlates with or directly causes age-related phenotypic changes. Decline of the immune system is a critical factor in the senescence process, with cancer being a primary cause of death in elderly populations. Chimeric antigen receptor (CAR) T cell therapy, an innovative approach, has demonstrated success mainly in pediatric and young adult hematological malignancies but remains largely ineffective for diseases affecting older populations, such as late-in-life B cell malignancies and most solid tumor indications. This limitation arises because CAR T cell efficacy heavily relies on the fitness of the patient-derived starting T cell material. Numerous studies suggest that T cell senescence may be a key driver of CAR T cell deficiency. This review examines correlates and underlying factors associated with favorable CAR T cell outcomes and explores potential experimental and clinically actionable strategies for T cell rejuvenation.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Adolescente , Humanos , Niño , Anciano , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T , Inmunoterapia Adoptiva , Envejecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA