Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102899

RESUMEN

Elevated temperatures impair pollen performance and reproductive success, resulting in lower crop yields. The tomato (Solanum lycopersicum) anthocyanin reduced (are) mutant harbors a mutation in FLAVANONE 3-HYDROXYLASE (F3H), resulting in impaired flavonol antioxidant biosynthesis. The are mutant has reduced pollen performance and seed set relative to the VF36 parental line, phenotypes that are accentuated at elevated temperatures. Transformation of are with the wild-type F3H gene, or chemical complementation with flavonols, prevented temperature-dependent reactive oxygen species (ROS) accumulation in pollen and restored the reduced viability, germination, and tube elongation of are to VF36 levels. Overexpression of F3H in VF36 prevented temperature-driven ROS increases and impaired pollen performance, revealing that flavonol biosynthesis promotes thermotolerance. Although stigmas of are had reduced flavonol and elevated ROS levels, the growth of are pollen tubes was similarly impaired in both are and VF36 pistils. RNA-seq was performed at optimal and stress temperatures in are, VF36, and the F3H overexpression line at multiple timepoints across pollen tube elongation. The number of differentially expressed genes increased over time under elevated temperatures in all genotypes, with the greatest number in are. These findings suggest potential agricultural interventions to combat the negative effects of heat-induced ROS in pollen that lead to reproductive failure.

2.
Plant J ; 119(2): 796-813, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733630

RESUMEN

Skin color is an important trait that determines the cosmetic appearance and quality of fruits. In cucumber, the skin color ranges from white to brown in mature fruits. However, the genetic basis for this important trait remains unclear. We conducted a genome-wide association study of natural cucumber populations, along with map-based cloning techniques, on an F2 population resulting from a cross between Pepino (with yellow-brown fruit skin) and Zaoer-N (with creamy fruit skin). We identified CsMYB60 as a candidate gene responsible for skin coloration in mature cucumber fruits. In cucumber accessions with white to pale yellow skin color, a premature stop mutation (C to T) was found in the second exon region of CsMYB60, whereas light yellow cucumber accessions exhibited splicing premature termination caused by an intronic mutator-like element insertion in CsMYB60. Transgenic CsMYB60c cucumber plants displayed a yellow-brown skin color by promoting accumulation of flavonoids, especially hyperoside, a yellow-colored flavonol. CsMYB60c encodes a nuclear protein that primarily acts as a transcriptional activator through its C-terminal activation motif. RNA sequencing and DNA affinity purification sequencing assays revealed that CsMYB60c promotes skin coloration by directly binding to the YYTACCTAMYT motif in the promoter regions of flavonoid biosynthetic genes, including CsF3'H, which encodes flavonoid 3'-hydroxylase. The findings of our study not only offer insight into the function of CsMYB60 as dominantly controlling fruit coloration, but also highlight that intronic DNA mutations can have a similar phenotypic impact as exonic mutations, which may be valuable in future cucumber breeding programs.


Asunto(s)
Cucumis sativus , Flavonoides , Frutas , Regulación de la Expresión Génica de las Plantas , Pigmentación , Proteínas de Plantas , Factores de Transcripción , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Flavonoides/metabolismo , Pigmentación/genética , Estudio de Asociación del Genoma Completo , Plantas Modificadas Genéticamente
3.
Artículo en Inglés | MEDLINE | ID: mdl-39263763

RESUMEN

BACKGROUND: Flavonoids may play a role in mitigating atherosclerotic cardiovascular diseases, with evidence suggesting effects may differ between vascular beds. Studies examining associations with subclinical markers of atherosclerosis between subpopulations with different underlying risks of atherosclerosis are lacking. METHODS: Among 5599 participants from the MESA (Multi-Ethnic Study of Atherosclerosis), associations between dietary flavonoid intakes (estimated from a food frequency questionnaire) and subclinical measures of atherosclerosis (ankle-brachial index, carotid plaques and intima-media thickness, and coronary artery calcification) were examined using repeated measures models. Exposures and outcomes were measured at exam 1 (2000-2002) and exam 5 (2010-2011). Stratified analyses and interaction terms were used to explore effect modification by time, sex, race/ethnicity, and smoking status. RESULTS: In the analytic population, at baseline, ≈46% were males with a median age of 62 (interquartile range, 53-70) years and total flavonoid intakes of 182 (interquartile range, 98-308) mg/d. After multivariable adjustments, participants with the highest (quartile 4) versus lowest (quartile 1) total flavonoid intakes had 26% lower odds of having an ankle-brachial index <1 (odds ratio, 0.74 [95% CI, 0.60-0.92]) and 18% lower odds of having a carotid plaque (odds ratio, 0.82 [95% CI, 0.69-0.99]), averaged over exams 1 and 5. Moderate (quartile 3) to high (quartile 4) intakes of flavonols, flavanol monomers, and anthocyanins were associated with 19% to 34% lower odds of having an ankle-brachial index <1 and 18% to 20% lower odds of having carotid plaque. Participants with the highest intakes of anthocyanins (quartile 4) at baseline had a marginally slower rate of carotid plaque progression than those with moderate intakes (quartiles 2 and 3). There were no significant associations with intima-media thickness or coronary artery calcification. Observed associations did not differ by sex, race/ethnicity, or smoking status. CONCLUSIONS: In this multi-ethnic population, higher dietary flavonoid intakes were associated with lower odds of peripheral and carotid artery atherosclerosis. Increasing intakes of healthy, flavonoid-rich foods may protect against atherosclerosis in the peripheral and carotid arteries.

4.
Plant J ; 115(2): 577-594, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058123

RESUMEN

Flavonols are health-promoting bioactive compounds important for human nutrition, health, and plant defense. The transcriptional regulation of kaempferol and quercetin biosynthesis has been studied extensively, while little is known about the regulatory mechanisms underlying myricetin biosynthesis, which has strong antioxidant, anticancer, antidiabetic, and anti-inflammatory activities. In this study, the flavonol-specific MrMYB12 in Morella rubra preferred activating the promoter of flavonol synthase 2 (MrFLS2) (6.4-fold) rather than MrFLS1 (1.4-fold) and upregulated quercetin biosynthesis. Furthermore, two SG44 R2R3-MYB members, MrMYB5 and MrMYB5L, were identified by yeast one-hybrid library screening using the promoter of flavonoid 3',5'-hydroxylase (MrF3'5'H), and transcript levels of these R2R3-MYBs were correlated with accumulation of myricetin derivatives during leaf development. Dual-luciferase and electrophoretic mobility shift assays demonstrated that both MrMYB5 and MrMYB5L could bind directly to MYB recognition sequence elements in promoters of MrF3'5'H or MrFLS1 and activate their expression. Protein-protein interactions of MrMYB5 or MrMYB5L with MrbHLH2 were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. MrMYB5L-MrbHLH2 showed much higher synergistic activation of MrF3'5'H or MrFLS1 promoters than MrMYB5-MrbHLH2. Studies with Arabidopsis thaliana homologs AtMYB5 and AtTT8 indicated that similar synergistic regulatory effects occur with promoters of MrF3'5'H or MrFLS1. Transient overexpression of MrMYB5L-MrbHLH2 in Nicotiana benthamiana induced a higher accumulation of myricetin derivatives (57.70 µg g-1 FW) than MrMYB5-MrbHLH2 (7.43 µg g-1 FW) when MrMYB12 was coexpressed with them. This study reveals a novel transcriptional mechanism regulating myricetin biosynthesis with the potential use for future metabolic engineering of health-promoting flavonols.


Asunto(s)
Arabidopsis , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Quercetina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flavonoles/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Planta ; 259(6): 147, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714547

RESUMEN

MAIN CONCLUSION: CsNAC086 was found to promote the expression of CsFLS, thus promoting the accumulation of flavonols in Camellia sinensis. Flavonols, the main flavonoids in tea plants, play an important role in the taste and quality of tea. In this study, a NAC TF gene CsNAC086 was isolated from tea plants and confirmed its regulatory role in the expression of flavonol synthase which is a key gene involved in the biosynthesis of flavonols in tea plant. Yeast transcription-activity assays showed that CsNAC086 has self-activation activity. The transcriptional activator domain of CsNAC086 is located in the non-conserved C-terminal region (positions 171-550), while the conserved NAC domain (positions 1-170) does not have self-activation activity. Silencing the CsNAC086 gene using antisense oligonucleotides significantly decreased the expression of CsFLS. As a result, the concentration of flavonols decreased significantly. In overexpressing CsNAC086 tobacco leaves, the expression of NtFLS was significantly increased. Compared with wild-type tobacco, the flavonols concentration increased. Yeast one-hybrid assays showed CsNAC086 did not directly regulate the gene expression of CsFLS. These findings indicate that CsNAC086 plays a role in regulating flavonols biosynthesis in tea plants, which has important implications for selecting and breeding of high-flavonols-concentration containing tea-plant cultivars.


Asunto(s)
Camellia sinensis , Flavonoles , Regulación de la Expresión Génica de las Plantas , Nicotiana , Proteínas de Plantas , Camellia sinensis/genética , Camellia sinensis/metabolismo , Flavonoles/biosíntesis , Flavonoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Plantas Modificadas Genéticamente
6.
J Transl Med ; 22(1): 205, 2024 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409037

RESUMEN

BACKGROUND AND AIMS: Flavonoids are a class of secondary plant metabolites that have been shown to have multiple health benefits, including antioxidant and anti-inflammatory. This study was to explore the association between dietary flavonoid consumption and the prevalence of chronic respiratory diseases (CRDs) in adults. METHODS AND RESULTS: The six main types of flavonoids, including isoflavones, anthocyanidins, flavan-3-ols, flavanones, flavones, and flavonols, were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 and 2017-2018 by the two 24-h recall interviews. The prevalence of CRDs, including asthma, emphysema, and chronic bronchitis, was determined through a self-administered questionnaire. The analysis included 15,753 participants aged 18 years or older who had completed a diet history interview. After adjustment for potential confounders, the inverse link was found with total flavonoids, anthocyanidins, flavanones, and flavones, with an OR (95%CI) of 0.86 (0.75-0.98), 0.84 (0.72-0.97), 0.80(0.69-0.92), and 0.85(0.73-0.98) for the highest group compared to the lowest group. WQS regression revealed that the mixture of flavonoids was negatively linked with the prevalence of CRDs (OR = 0.88 [0.82-0.95], P < 0.01), and the largest effect was mainly from flavanones (weight = 0.41). In addition, we found that flavonoid intake was negatively linked with inflammatory markers, and systemic inflammation significantly mediated the associations of flavonoids with CRDs, with a mediation rate of 12.64% for CRP (P < 0.01). CONCLUSION: Higher flavonoid intake was related with a lower prevalence of CRDs in adults, and this relationship may be mediated through systemic inflammation.


Asunto(s)
Flavanonas , Flavonas , Enfermedades Respiratorias , Adulto , Humanos , Flavonoides , Encuestas Nutricionales , Antocianinas , Prevalencia , Dieta , Inflamación/epidemiología , Factores de Riesgo
7.
Plant Cell Environ ; 47(8): 3111-3131, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38686847

RESUMEN

In plants, salicylic acid (SA) hydroxylation regulates SA homoeostasis, playing an essential role during plant development and response to pathogens. This reaction is catalysed by SA hydroxylase enzymes, which hydroxylate SA producing 2,3-dihydroxybenzoic acid (2,3-DHBA) and/or 2,5-dihydroxybenzoic acid (2,5-DHBA). Several SA hydroxylases have recently been identified and characterised from different plant species, but no such activity has yet been reported in maize. In this work, we describe the identification and characterisation of a new SA hydroxylase in maize plants. This enzyme, with high sequence similarity to previously described SA hydroxylases from Arabidopsis and rice, converts SA into 2,5-DHBA; however, it has different kinetic properties to those of previously characterised enzymes, and it also catalysers the conversion of the flavonoid dihydroquercetin into quercetin in in vitro activity assays, suggesting that the maize enzyme may have different roles in vivo to those previously reported from other species. Despite this, ZmS5H can complement the pathogen resistance and the early senescence phenotypes of Arabidopsis s3h mutant plants. Finally, we characterised a maize mutant in the S5H gene (s5hMu) that has altered growth, senescence and increased resistance against Colletotrichum graminicola infection, showing not only alterations in SA and 2,5-DHBA but also in flavonol levels. Together, the results presented here provide evidence that SA hydroxylases in different plant species have evolved to show differences in catalytic properties that may be important to fine tune SA levels and other phenolic compounds such as flavonols, to regulate different aspects of plant development and pathogen defence.


Asunto(s)
Colletotrichum , Resistencia a la Enfermedad , Enfermedades de las Plantas , Proteínas de Plantas , Ácido Salicílico , Zea mays , Zea mays/genética , Zea mays/enzimología , Zea mays/microbiología , Ácido Salicílico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Colletotrichum/fisiología , Cinética , Ácidos Cetoglutáricos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/enzimología , Arabidopsis/microbiología , Gentisatos/metabolismo , Filogenia , Quercetina/metabolismo , Hidroxibenzoatos
8.
J Exp Bot ; 75(1): 219-240, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37813680

RESUMEN

Flavonols are structurally and functionally diverse biomolecules involved in plant biotic and abiotic stress tolerance, pollen development, and inhibition of auxin transport. However, their effects on global gene expression and signaling pathways are unclear. To explore the roles of flavonol metabolites in signaling, we performed comparative transcriptome and targeted metabolite profiling of seedlings from the flavonol-deficient Arabidopsis loss-of-function mutant flavonol synthase1 (fls1) with and without exogenous supplementation of flavonol derivatives (kaempferol, quercetin, and rutin). RNA-seq results indicated that flavonols modulate various biological and metabolic pathways, with significant alterations in camalexin and aliphatic glucosinolate synthesis. Flavonols negatively regulated camalexin biosynthesis but appeared to promote the accumulation of aliphatic glucosinolates via transcription factor-mediated up-regulation of biosynthesis genes. Interestingly, upstream amino acid biosynthesis genes involved in methionine and tryptophan synthesis were altered under flavonol deficiency and exogenous supplementation. Quercetin treatment significantly up-regulated aliphatic glucosinolate biosynthesis genes compared with kaempferol and rutin. In addition, expression and metabolite analysis of the transparent testa7 mutant, which lacks hydroxylated flavonol derivatives, clarified the role of quercetin in the glucosinolate biosynthesis pathway. This study elucidates the molecular mechanisms by which flavonols interfere with signaling pathways, their molecular targets, and the multiple biological activities of flavonols in plants.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Flavonoles/metabolismo , Glucosinolatos/metabolismo , Quempferoles/metabolismo , Quempferoles/farmacología , Quercetina/metabolismo , Quercetina/farmacología , Vías Biosintéticas , Rutina
9.
Mol Divers ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225906

RESUMEN

A series of flavonol derivatives containing piperazine and quinoxaline had been designed and synthesized. The biological activity test results showed that some of the target compounds had good antifungal activity against various fungi. N5 had the best antifungal activity against Phomopsis sp (P.s.) and Phytophthora capsica (P.c.). The half maximal effective concentration (EC50) was 12.9 and 25.8 µg/mL against P.s. and P.c., respectively, which were better than azoxystrobin (Az, 25.4 and 71.1 µg/mL). In addition, the protective and curative activities of N5 against kiwifruit were 85.9 and 67.0% at 200 µg/mL in vivo, which were better than that of Az (65.9 and 57.0%). The protective and curative activities against chili leaves were 80.6 and 66.5% at 200 µg/mL, which were better than that of Az (77.6 and 60.0%). The scanning electron microscopy (SEM) experiment showed that the action of N5 caused the mycelium to bend and fold, changed its morphology and caused damaged to the mycelium. Through the measurement of relative conductivity, leakage of cytoplasmic contents and determination of malondialdehyde (MDA) content indicated that N5 could damage the integrity of pathogenic fungal cell membranes, change the permeability of cell membranes, and affect the normal growth of mycelium.

10.
Cell Biochem Funct ; 42(1): e3920, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269510

RESUMEN

Mitochondria, a cellular metabolic center, efficiently fulfill cellular energy needs and regulate crucial metabolic processes, including cellular proliferation, differentiation, apoptosis, and generation of reactive oxygen species. Alteration in the mitochondrial functions leads to metabolic imbalances and altered extracellular matrix dynamics in the host, utilized by solid tumors like pancreatic cancer (PC) to get energy benefits for fast-growing cancer cells. PC is highly heterogeneous and remains unidentified for a longer time because of its complex pathophysiology, retroperitoneal position, and lack of efficient diagnostic approaches, which is the foremost reason for accounting for the seventh leading cause of cancer-related deaths worldwide. PC cells often respond poorly to current therapeutics because of dense stromal barriers in the pancreatic tumor microenvironment, which limit the drug delivery and distribution of antitumor immune cell populations. As an alternative approach, various natural compounds like flavonoids are reported to possess potent antioxidant and anticancerous properties and are less toxic than current chemotherapeutic drugs. Therefore, we aim to summarize the current state of knowledge regarding the pharmacological properties of flavonols in PC in this review from the perspective of mitigating mitochondrial dysfunctions associated with cancer cells. Our literature survey indicates that flavonols efficiently regulate cellular metabolism by scavenging reactive oxygen species, mitigating inflammation, and arresting the cell cycle to promote apoptosis in tumor cells via intrinsic mitochondrial pathways. In particular, flavonols proficiently inhibit the cancer-associated proliferation and inflammatory pathways such as EGFR/MAPK, PI3K/Akt, and nuclear factor κB in PC. Overall, this review provides in-depth evidence about the therapeutic potential of flavonols for future anticancer strategies against PC; still, more multidisciplinary human interventional studies are required to dissect their pharmacological effect accurately.


Asunto(s)
Enfermedades Mitocondriales , Neoplasias Pancreáticas , Humanos , Flavonoles , Fosfatidilinositol 3-Quinasas , Especies Reactivas de Oxígeno , Carcinogénesis , Transformación Celular Neoplásica , Neoplasias Pancreáticas/tratamiento farmacológico , Microambiente Tumoral
11.
Chem Biodivers ; 21(8): e202400393, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946224

RESUMEN

Flavonoids epitomize structural scaffolds in many biologically active synthetic and natural compounds. They showcase a diverse spectrum of biological activities including anticancer, antidiabetic, antituberculosis, antimalarial, and antibiofilm activities. The antibiofilm activity of a series of new chalcones and flavonols against clinically significant Pseudomonas aeruginosa PAO1 strain was studied. Antivirulence activities were screened by analysing the effect of compounds on the production of virulence factors like pyocyanin, LasA protease, cell surface hydrophobicity, and rhamnolipid. The best ligands towards the quorum sensing proteins LasR, RhlR, and PqsR were recognised using a molecular docking study. The gene expression in P. aeruginosa after treatment with test compounds was evaluated on quorum sensing genes including rhlA, lasB, and pqsE. The antibiofilm potential of chalcones and flavonols was confirmed by the efficient reduction in the production of virulence factors and downregulation of gene expression.


Asunto(s)
Antibacterianos , Biopelículas , Chalconas , Flavonoles , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa , Percepción de Quorum , Factores de Virulencia , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/efectos de los fármacos , Biopelículas/efectos de los fármacos , Factores de Virulencia/metabolismo , Factores de Virulencia/antagonistas & inhibidores , Chalconas/farmacología , Chalconas/química , Flavonoles/farmacología , Flavonoles/química , Antibacterianos/farmacología , Antibacterianos/química , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Dosis-Respuesta a Droga
12.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891840

RESUMEN

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Asunto(s)
Aciltransferasas , Liasas Intramoleculares , Liasas Intramoleculares/metabolismo , Liasas Intramoleculares/química , Aciltransferasas/metabolismo , Aciltransferasas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flavonoides/metabolismo , Flavonoides/química , Cinética , Flavanonas/química , Flavanonas/metabolismo , Chalconas/química , Chalconas/metabolismo , Especificidad por Sustrato , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Modelos Moleculares , Unión Proteica , Conformación Proteica
13.
Molecules ; 29(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275092

RESUMEN

Human intestinal bacteria are the primary producers of azo reductase, and the content of azo reductase is closely associated with various intestinal diseases, including ulcerative colitis (UC). The rapid detection of changes in azo reductase levels is crucial for diagnosing and promptly intervening in UC. In this study, a therapeutic agent, FAI, specifically targeting UC, was designed and synthesized. This agent was developed by linking the anti-inflammatory drug indomethacin to flavonols with antioxidant activity via an azo bond (off-on). Breakage of the azo bond breaks results in the release of both fluorophores and drugs, achieving targeted tracing and integrated treatment effects. In vivo and in vitro fluorescence imaging experiments were used to demonstrate the potential of FAI in the diagnosis of UC, together with synergistic therapeutic effects through the release of both fluorophores and anti-inflammatory agents. Therefore, this diagnostic agent shows promise as a potential tool for diagnosing and treating UC.


Asunto(s)
Flavonoles , Indometacina , Indometacina/uso terapéutico , Animales , Flavonoles/farmacología , Flavonoles/química , Humanos , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/diagnóstico , Nitrorreductasas/metabolismo , Diseño de Fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Antiinflamatorios/síntesis química , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Modelos Animales de Enfermedad
14.
Saudi Pharm J ; 32(2): 101940, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38234682

RESUMEN

Stenochlaena palustris (Burm.f.) Bedd., a fern species native to India, Southeast Asia, Polynesia, and Australia, has a long history of medical including as a diabetic therapy. This study aimed to isolate bioactive compounds from S. palustris ethyl acetate extract and assess their in vitro and in silico inhibitory activities against α-glucosidase and α-amylase. The successful separation of five flavonols, namely stenopalustroside A (1), tiliroside (2), kaempferol (3), quercetin (4), and rutin (5), was achieved through phytochemical analysis. The compounds exhibited a range of inhibitory activities against α-glucosidase and α-amylase, with IC50 values ranging from 40 to 250 µg/mL. Notably, the biological activities of compound 1 have been reported for the first time. Compound 4 was the most effective inhibitor of both enzymes among the isolated compounds. Studies performed in silico reveal that the interactions between amino acids in compounds 4 and 5 are remarkably comparable to those observed in the positive control. These compounds share this commonality, and as a result, they both have the potential to be active agents.

15.
Development ; 147(8)2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32179566

RESUMEN

Reactive oxygen species (ROS) are signaling molecules produced by tissue-specific respiratory burst oxidase homolog (RBOH) enzymes to drive development. In Arabidopsis thaliana, ROS produced by RBOHC was previously reported to drive root hair elongation. We identified a specific role for one ROS, H2O2, in driving root hair initiation and demonstrated that localized synthesis of flavonol antioxidants control the level of H2O2 and root hair formation. Root hairs form from trichoblast cells that express RBOHC and have elevated H2O2 compared with adjacent atrichoblast cells that do not form root hairs. The flavonol-deficient tt4 mutant has elevated ROS in trichoblasts and elevated frequency of root hair formation compared with the wild type. The increases in ROS and root hairs in tt4 are reversed by genetic or chemical complementation. Auxin-induced root hair initiation and ROS accumulation were reduced in an rbohc mutant and increased in tt4, consistent with flavonols modulating ROS and auxin transport. These results support a model in which localized synthesis of RBOHC and flavonol antioxidants establish patterns of ROS accumulation that drive root hair formation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Flavonoles/farmacología , Epidermis de la Planta/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo , Aciltransferasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Flavanonas/química , Flavanonas/farmacología , Flavonoles/química , Fluorescencia , Genes de Plantas , Proteínas Fluorescentes Verdes/metabolismo , Peróxido de Hidrógeno/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación/genética , Fenotipo , Epidermis de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Quercetina/química , Quercetina/farmacología
16.
Crit Rev Food Sci Nutr ; 63(28): 9580-9604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35468008

RESUMEN

Kaempferol and its derivatives are naturally occurring phytochemicals with promising bioactivities. This flavonol can reduce the lipid oxidation in the human body, prevent the organs and cell structure from deterioration and protect their functional integrity. This review has extensively highlighted the antioxidant, antimicrobial, anticancer, neuroprotective, and hepatoprotective activity of kaempferol. However, poor water solubility and low bioavailability of kaempferol greatly limit its applications. The utilization of advanced delivery systems can improve its stability, efficacy, and bioavailability. This is the first review that aimed to comprehensively collate some of the vital information published on biosynthesis, mechanism of action, bioactivities, bioavailability, and toxicological potential of kaempferol. Besides, it provides insights into the future direction on the improvement of bioavailability of kaempferol for wide applications.


Asunto(s)
Flavonoides , Quempferoles , Humanos , Flavonoides/farmacología , Flavonoides/química , Quempferoles/farmacología , Flavonoles , Antioxidantes/farmacología , Antioxidantes/metabolismo , Disponibilidad Biológica
17.
Photochem Photobiol Sci ; 22(9): 2219-2230, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37310640

RESUMEN

UV-A- or UV-B-enriched growth light was given to basil plants at non-stress-inducing intensities. UV-A-enriched growth light gave rise to a sharp rise in the expression of PAL and CHS genes in leaves, an effect that rapidly declined after 1-2 days of exposure. On the other hand, leaves of plants grown in UV-B-enriched light had a more stable and long-lasting increase in the expression of these genes and also showed a stronger increase in leaf epidermal flavonol content. UV supplementation of growth light also led to shorter more compact plants with a stronger UV effect the younger the tissue. The effect was more prominent in plants grown under UV-B-enriched light than in those grown under UV-A. Parameters particularly affected were internode lengths, petiole lengths and stem stiffness. In fact, the bending angle of the 2nd internode was found to increase as much as 67% and 162% for plants grown in the UV-A- and UV-B-enriched treatments, respectively. The decreased stem stiffness was probably caused by both an observed smaller internode diameter and a lower specific stem weight, as well as a possible decline in lignin biosynthesis due to competition for precursors by the increased flavonoid biosynthesis. Overall, at the intensities used, UV-B wavelengths are stronger regulators of morphology, gene expression and flavonoid biosynthesis than UV-A wavelengths.


Asunto(s)
Ocimum basilicum , Ocimum basilicum/genética , Ocimum basilicum/química , Rayos Ultravioleta , Hojas de la Planta/metabolismo , Flavonoides/metabolismo
18.
Phytochem Anal ; 34(6): 621-631, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37309090

RESUMEN

INTRODUCTION: Phytochemical analysis of phenolic acids and flavonols poses a challenge, necessitating the development of an efficient separation method. This facilitates the quantification of these compounds, yielding valuable insights into their benefits. OBJECTIVE: To develop a highly effective separation of phenolic acids and flavonols by capillary electrophoresis and ultraviolet (UV) detection through the modification of the capillary surface using 3-aminopropyltriethoxysilane (APTES) at millimolar concentrations. METHODS: The capillary surface is modified with 0.36 mM-APTES solution. The electrolyte is 20.0 mM borate buffer (pH 9.0). Separation performance (plate number N, resolution Rs ), stability, and reproducibility of the coating procedure are evaluated using the analysis of phenolic acids, rutin and quercetin. RESULTS: The modified capillary provided efficient separation with plate numbers N ≥ 1.0 × 104 m-1 and resolution Rs ≥ 0.8 for all pairs of adjacent peaks of the separation of five selected phenolic acids, rutin, quercetin, caffeine and methylparaben (as internal standard). The precisions of the relative migration times for 17 consecutive analyses of samples over 3 h were 1% relative standard deviation (RSD) for rutin and 7% RSD for quercetin. The analysis of rutin and quercetin in 12 dietary supplement product samples only required a simple dilution step for sample preparation. CONCLUSION: A straightforward modification technique utilising millimolar concentrations of APTES resulted in highly efficient separation of phenolic acids, rutin and quercetin, accompanied by high precision and surface stability. The modified capillary proved successful in analysing rutin and quercetin content in dietary supplements.


Asunto(s)
Flavonoles , Quercetina , Quercetina/análisis , Indicadores y Reactivos , Reproducibilidad de los Resultados , Electroforesis Capilar/métodos , Rutina/análisis
19.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37108052

RESUMEN

Major depressive disorder is one of the most common mental illnesses that highly impairs quality of life. Pharmacological interventions are mainly focused on altered monoamine neurotransmission, which is considered the primary event underlying the disease's etiology. However, many other neuropathological mechanisms that contribute to the disease's progression and clinical symptoms have been identified. These include oxidative stress, neuroinflammation, hippocampal atrophy, reduced synaptic plasticity and neurogenesis, the depletion of neurotrophic factors, and the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. Current therapeutic options are often unsatisfactory and associated with adverse effects. This review highlights the most relevant findings concerning the role of flavonols, a ubiquitous class of flavonoids in the human diet, as potential antidepressant agents. In general, flavonols are considered to be both an effective and safe therapeutic option in the management of depression, which is largely based on their prominent antioxidative and anti-inflammatory effects. Moreover, preclinical studies have provided evidence that they are capable of restoring the neuroendocrine control of the HPA axis, promoting neurogenesis, and alleviating depressive-like behavior. Although these findings are promising, they are still far from being implemented in clinical practice. Hence, further studies are needed to more comprehensively evaluate the potential of flavonols with respect to the improvement of clinical signs of depression.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/tratamiento farmacológico , Depresión/tratamiento farmacológico , Sistema Hipotálamo-Hipofisario , Enfermedades Neuroinflamatorias , Flavonoles/uso terapéutico , Flavonoles/farmacología , Calidad de Vida , Sistema Hipófiso-Suprarrenal , Estrés Oxidativo , Estrés Psicológico
20.
Int J Mol Sci ; 24(20)2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37894889

RESUMEN

Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Quercetina/farmacología , Quercetina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Nicotina/farmacología , Nicotina/uso terapéutico , Antocianinas/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Flavonoides/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA