Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.591
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 175(1): 43-56.e21, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241615

RESUMEN

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.


Asunto(s)
Desarrollo Óseo/fisiología , Huesos/citología , Células Madre Hematopoyéticas/citología , Animales , Huesos/metabolismo , Cartílago/citología , Diferenciación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Análisis de la Célula Individual/métodos , Células Madre/citología , Células del Estroma/citología , Transcriptoma/genética
2.
Proc Natl Acad Sci U S A ; 121(16): e2322684121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588426

RESUMEN

Many composites consist of matrices of elastomers and nanoparticles of stiff materials. Such composites often have superior properties and are widely used. Embedding elastomers with nanoparticles commonly necessitates intense shear, using machines like extruders and roll millers, which cut polymer chains and degrade properties. Here, we prepare a rubber-glass nanocomposite by using two aqueous emulsions. Each emulsion is separately prepared with a single species of polymer chains. Each polymer chain is copolymerized with a small amount of silane coupling agent. Upon mixing the two emulsions, as water evaporates, the glassy particles retain the shape, and the rubbery particles change shape to form a continuous matrix. Subsequently, the silane coupling agent condensates, which cross-links the rubbery chains and interlinks the rubbery chains to the glassy particles. The cross-links and interlinks stabilize the nanostructure and lead to superior properties. The nanocomposite simultaneously achieves high modulus (~30 MPa), high toughness (~100 kJ m-2), and high fatigue threshold (~1,000 J m-2). The method of mixed emulsion is environmentally friendly and compatible with various open-air manufacturing processes, such as coat, cast, spray, print, and brush. Additionally, the silane coupling agent can interlink the nanocomposite to other materials. The method of mixed emulsion can be used to fabricate objects of complex shapes, fine features, and prescribed spatial variations of compositions.

3.
Proc Natl Acad Sci U S A ; 121(8): e2301449121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38346189

RESUMEN

GABAB receptor (GBR) activation inhibits neurotransmitter release in axon terminals in the brain, except in medial habenula (MHb) terminals, which show robust potentiation. However, mechanisms underlying this enigmatic potentiation remain elusive. Here, we report that GBR activation on MHb terminals induces an activity-dependent transition from a facilitating, tonic to a depressing, phasic neurotransmitter release mode. This transition is accompanied by a 4.1-fold increase in readily releasable vesicle pool (RRP) size and a 3.5-fold increase of docked synaptic vesicles (SVs) at the presynaptic active zone (AZ). Strikingly, the depressing phasic release exhibits looser coupling distance than the tonic release. Furthermore, the tonic and phasic release are selectively affected by deletion of synaptoporin (SPO) and Ca2+-dependent activator protein for secretion 2 (CAPS2), respectively. SPO modulates augmentation, the short-term plasticity associated with tonic release, and CAPS2 retains the increased RRP for initial responses in phasic response trains. The cytosolic protein CAPS2 showed a SV-associated distribution similar to the vesicular transmembrane protein SPO, and they were colocalized in the same terminals. We developed the "Flash and Freeze-fracture" method, and revealed the release of SPO-associated vesicles in both tonic and phasic modes and activity-dependent recruitment of CAPS2 to the AZ during phasic release, which lasted several minutes. Overall, these results indicate that GBR activation translocates CAPS2 to the AZ along with the fusion of CAPS2-associated SVs, contributing to persistency of the RRP increase. Thus, we identified structural and molecular mechanisms underlying tonic and phasic neurotransmitter release and their transition by GBR activation in MHb terminals.


Asunto(s)
Habénula , Receptores de GABA-B , Animales , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Habénula/metabolismo , Astacoidea/metabolismo , Terminales Presinápticos/metabolismo , Cafeína , Neurotransmisores/metabolismo , Ácido gamma-Aminobutírico/metabolismo
4.
Semin Cell Dev Biol ; 155(Pt B): 58-65, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423854

RESUMEN

Thrombospondins (TSPs) belong to a functional class of ECM proteins called matricellular proteins that are not primarily structural, but instead influence cellular interactions within the local extracellular environment. The 3D arrangement of TSPs allow interactions with other ECM proteins, sequestered growth factors, and cell surface receptors. They are expressed in mesenchymal condensations and limb buds during skeletal development, but they are not required for patterning. Instead, when absent, there are alterations in musculoskeletal connective tissue ECM structure, organization, and function, as well as altered skeletal cell phenotypes. Both functional redundancies and unique contributions to musculoskeletal tissue structure and physiology are revealed in mouse models with compound TSP deletions. Crucial roles of individual TSPs are revealed during musculoskeletal injury and regeneration. The interaction of TSPs with mesenchymal stem cells (MSC), and their influence on cell fate, function, and ultimately, musculoskeletal phenotype, suggest that TSPs play integral, but as yet poorly understood roles in musculoskeletal health. Here, unique and overlapping contributions of trimeric TSP1/2 and pentameric TSP3/4/5 to musculoskeletal cell and matrix physiology are reviewed. Opportunities for new research are also noted.


Asunto(s)
Proteínas de la Matriz Extracelular , Trombospondinas , Ratones , Animales , Trombospondinas/genética , Trombospondinas/metabolismo , Esqueleto/metabolismo , Fenómenos Fisiológicos Celulares
5.
Proc Natl Acad Sci U S A ; 120(22): e2303515120, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37216501

RESUMEN

Immiscible fluid-fluid displacement in confined geometries is a fundamental process occurring in many natural phenomena and technological applications, from geological CO2 sequestration to microfluidics. Due to the interactions between the fluids and the solid walls, fluid invasion undergoes a wetting transition from complete displacement at low displacement rates to leaving a film of the defending fluid on the confining surfaces at high displacement rates. While most real surfaces are rough, fundamental questions remain about the type of fluid-fluid displacement that can emerge in a confined, rough geometry. Here, we study immiscible displacement in a microfluidic device with a precisely controlled structured surface as an analogue for a rough fracture. We analyze the influence of the degree of surface roughness on the wetting transition and the formation of thin films of the defending liquid. We show experimentally, and rationalize theoretically, that roughness affects both the stability and dewetting dynamics of thin films, leading to distinct late-time morphologies of the undisplaced (trapped) fluid. Finally, we discuss the implications of our observations for geologic and technological applications.

6.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351433

RESUMEN

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Asunto(s)
Enfermedades Óseas Metabólicas , Cutis Laxo , Animales , Humanos , Ratones , Colágeno/genética , Cutis Laxo/genética , Elastina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
7.
Development ; 149(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35178545

RESUMEN

Loss or damage to the mandible caused by trauma, treatment of oral malignancies, and other diseases is treated using bone-grafting techniques that suffer from numerous shortcomings and contraindications. Zebrafish naturally heal large injuries to mandibular bone, offering an opportunity to understand how to boost intrinsic healing potential. Using a novel her6:mCherry Notch reporter, we show that canonical Notch signaling is induced during the initial stages of cartilage callus formation in both mesenchymal cells and chondrocytes following surgical mandibulectomy. We also show that modulation of Notch signaling during the initial post-operative period results in lasting changes to regenerate bone quantity one month later. Pharmacological inhibition of Notch signaling reduces the size of the cartilage callus and delays its conversion into bone, resulting in non-union. Conversely, conditional transgenic activation of Notch signaling accelerates conversion of the cartilage callus into bone, improving bone healing. Given the conserved functions of this pathway in bone repair across vertebrates, we propose that targeted activation of Notch signaling during the early phases of bone healing in mammals may both augment the size of the initial callus and boost its ossification into reparative bone.


Asunto(s)
Curación de Fractura , Pez Cebra , Animales , Regeneración Ósea , Callo Óseo/metabolismo , Curación de Fractura/fisiología , Mamíferos , Mandíbula
8.
FASEB J ; 38(14): e23810, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39042586

RESUMEN

Osteofibrous dysplasia (OFD) is a rare, benign, fibro-osseous lesion that occurs most commonly in the tibia of children. Tibial involvement leads to bowing and predisposes to the development of a fracture which exhibit significantly delayed healing processes, leading to prolonged morbidity. We previously identified gain-of-function mutations in the MET gene as a cause for OFD. In our present study, we test the hypothesis that gain-of-function MET mutations impair bone repair due to reduced osteoblast differentiation. A heterozygous Met exon 15 skipping (MetΔ15-HET) mouse was created to imitate the human OFD mutation. The mutation results in aberrant and dysregulation of MET-related signaling determined by RNA-seq in the murine osteoblasts extracted from the wide-type and genetic mice. Although no gross skeletal defects were identified in the mice, fracture repair was delayed in MetΔ15-HET mice, with decreased bone formation observed 2-week postfracture. Our data are consistent with a novel role for MET-mediated signaling regulating osteogenesis.


Asunto(s)
Enfermedades del Desarrollo Óseo , Modelos Animales de Enfermedad , Displasia Fibrosa Ósea , Curación de Fractura , Osteogénesis , Proteínas Proto-Oncogénicas c-met , Animales , Ratones , Osteogénesis/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Curación de Fractura/genética , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Humanos , Displasia Fibrosa Ósea/genética , Displasia Fibrosa Ósea/patología , Displasia Fibrosa Ósea/metabolismo , Osteoblastos/metabolismo , Osteoblastos/patología , Mutación , Diferenciación Celular , Ratones Endogámicos C57BL , Masculino
9.
Proc Natl Acad Sci U S A ; 119(13): e2116127119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35324328

RESUMEN

SignificanceSoft materials can be toughened by creating dissipative mechanisms in stretchy matrixes. Yet using them over a wide range of temperatures requires dissipative mechanisms independent of stretch rate or temperature. We show that sacrificial covalent bonds in multiple network elastomers are most useful in toughening elastomers at high temperature and act synergistically with viscoelasticity at lower temperature. We do not attribute this toughening mechanism only to the scission of bonds during crack propagation but propose that the highly stretched network diluted in a stretchy matrix acts by simultaneously stiffening the elastomer and delaying the localization of bond scission and the propagation of a crack. Such a toughening mechanism has never been proposed for elastomers and should guide network design.


Asunto(s)
Elastómeros , Elastómeros/química , Temperatura
10.
Proc Natl Acad Sci U S A ; 119(28): e2123497119, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787051

RESUMEN

Spatial variations in fiber alignment (and, therefore, in mechanical anisotropy) play a central role in the excellent toughness and fatigue characteristics of many biological materials. In this work, we examine the effect of fiber alignment in soft composites, including both "in-plane" and "out-of-plane" fiber arrangements. We take inspiration from the spatial variations of fiber alignment found in the aorta to three-dimensionally (3D) print soft, tough silicone composites with an excellent combination of stiffness, toughness, and fatigue threshold, regardless of the direction of loading. These aorta-inspired composites exhibit mechanical properties comparable to skin, with excellent combinations of stiffness and toughness not previously observed in synthetic soft materials.

11.
Proc Natl Acad Sci U S A ; 119(49): e2211458119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442101

RESUMEN

Natural structural materials typically feature complex hierarchical anisotropic architectures, resulting in excellent damage tolerance. Such highly anisotropic structures, however, also provide an easy path for crack propagation, often leading to catastrophic fracture as evidenced, for example, by wood splitting. Here, we describe the weakly anisotropic structure of Ginkgo biloba (ginkgo) seed shell, which has excellent crack resistance in different directions. Ginkgo seed shell is composed of tightly packed polygonal sclereids with cell walls in which the cellulose microfibrils are oriented in a helicoidal pattern. We found that the sclereids contain distinct pits, special fine tubes like a "screw fastener," that interlock the helicoidal cell walls together. As a result, ginkgo seed shell demonstrates crack resistance in all directions, exhibiting specific fracture toughness that can rival other highly anisotropic natural materials, such as wood, bone, insect cuticle, and nacre. In situ characterization reveals ginkgo's unique toughening mechanism: pit-guided crack propagation. This mechanism forces the crack to depart from the weak compound middle lamella and enter into the sclereid, where the helicoidal cell wall significantly inhibits crack growth by the cleavage and breakage of the fibril-based cell walls. Ginkgo's toughening mechanism could provide guidelines for a new bioinspired strategy for the design of high-performance bulk materials.


Asunto(s)
Fracturas Óseas , Ginkgo biloba , Semillas , Pared Celular , Madera
12.
Proc Natl Acad Sci U S A ; 119(45): e2206756119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36331995

RESUMEN

Quantifying the intrinsic mechanical properties of two-dimensional (2D) materials is essential to predict the long-term reliability of materials and systems in emerging applications ranging from energy to health to next-generation sensors and electronics. Currently, measurements of fracture toughness and identification of associated atomistic mechanisms remain challenging. Herein, we report an integrated experimental-computational framework in which in-situ high-resolution transmission electron microscopy (HRTEM) measurements of the intrinsic fracture energy of monolayer MoS2 and MoSe2 are in good agreement with atomistic model predictions based on an accurately parameterized interatomic potential. Changes in crystalline structures at the crack tip and crack edges, as observed in in-situ HRTEM crack extension tests, are properly predicted. Such a good agreement is the result of including large deformation pathways and phase transitions in the parameterization of the inter-atomic potential. The established framework emerges as a robust approach to determine the predictive capabilities of molecular dynamics models employed in the screening of 2D materials, in the spirit of the materials genome initiative. Moreover, it enables device-level predictions with superior accuracy (e.g., fatigue lifetime predictions of electro- and opto-electronic nanodevices).


Asunto(s)
Fracturas Óseas , Humanos , Reproducibilidad de los Resultados
13.
Nano Lett ; 24(14): 4217-4223, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38551179

RESUMEN

Under shock loading, the spall strength of nanocrystals exhibits intricate grain-size effects due to the presence of abundant grain boundary and dislocation activities. However, the influence of size on spall toughness and void evolution has been largely overlooked. This study employs molecular dynamics simulations to investigate the damage accumulation characteristics of nanocrystalline aluminum across various grain sizes. Unlike the trade-off observed in quasi-static loading conditions, our study reveals a consistency in which grain size governs both nanovoid nucleation and coalescence, yielding a novel spall strength-toughness synergy. These insights highlight grain sizes that are particularly susceptible to spall fracture, offering a crucial understanding of nanocrystal failure mechanisms in extreme environments.

14.
Nano Lett ; 24(14): 4248-4255, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38557042

RESUMEN

Grain boundaries (GBs) in two-dimensional (2D) covalent organic frameworks (COFs) unavoidably form during the fabrication process, playing pivotal roles in the physical characteristics of COFs. Herein, molecular dynamics simulations were employed to elucidate the fracture failure and thermal transport mechanisms of polycrystalline COFs (p-COFs). The results revealed that the tilt angle of GBs significantly influences out-of-plane wrinkles and residual stress in monolayer p-COFs. The tensile strength of p-COFs can be enhanced and weakened with the tilt angle, which exhibits an inverse relationship with the defect density. The crack always originates from weaker heptagon rings during uniaxial tension. Notably, the thermal transport in p-COFs is insensitive to the GBs due to the variation of minor polymer chain length at defects, which is abnormal for other 2D crystalline materials. This study contributes insights into the impact of GBs in p-COFs and offers theoretical guidance for structural design and practical applications of advanced COFs.

15.
Nano Lett ; 24(10): 3112-3117, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38416575

RESUMEN

Grain boundary (GB) fracture is a major mechanism of material failure in polycrystalline ceramics. However, the intricate atomic arrangements of GBs have impeded our understanding of the atomistic mechanisms of these processes. In this study, we investigated the atomic-scale crack propagation behavior of an α-Al2O3 ∑13 grain boundary, using a combination of in situ transmission electron microscopy (TEM) and scanning TEM. The atomic-scale fracture path along the GB core was directly determined by the observation of the atomic structures of the fractured surfaces, which is consistent with density functional theory calculations. We found that the GB fracture can be attributed to the weaker local bonds and a smaller number of bonds along the fracture path. Our findings provide atomistic insights into the mechanisms of crack propagation along GBs, offering significant implications for GB engineering and the toughening of ceramics.

16.
Nano Lett ; 24(21): 6344-6352, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38687224

RESUMEN

Anisotropic two-dimensional materials present a diverse range of physical characteristics, making them well-suited for applications in photonics and optoelectronics. While mechanical properties play a crucial role in determining the reliability and efficacy of 2D material-based devices, the fracture behavior of anisotropic 2D crystals remains relatively unexplored. Toward this end, we herein present the first measurement of the anisotropic fracture toughness of 2D Ta2NiSe5 by microelectromechanical system-based tensile tests. Our findings reveal a significant in-plane anisotropic ratio (∼3.0), accounting for crystal orientation-dependent crack paths. As the thickness increases, we observe an intriguing intraplanar-to-interplanar transition of fracture along the a-axis, manifesting as stepwise crack features attributed to interlayer slippage. In contrast, ruptures along the c-axis surprisingly exhibit persistent straightness and smoothness regardless of thickness, owing to the robust interlayer shear resistance. Our work affords a promising avenue for the construction of future electronics based on nanoribbons with atomically sharp edges.

17.
Nano Lett ; 24(1): 441-449, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38109494

RESUMEN

Conjugated polymer films are promising in wearable X-ray detection. However, achieving optimal film microstructure possessing good electrical and detection performance under large deformation via scalable printing remains challenging. Herein, we report bar-coated high-performance stretchable films based on a conjugated polymer P(TDPP-Se) and elastomer SEBS blend by optimizing the solution-processing conditions. The moderate preaggregation in solution and prolonged growth dynamics from a solvent mixture with limited dissolving capacity is critical to forming aligned P(TDPP-Se) chains/crystalline nanofibers in the SEBS phase with enhanced π-π stacking for charge transport and stress dissipation. The film shows a large elongation at break of >400% and high mobilities of 5.29 cm2 V-1 s-1 at 0% strain and 1.66 cm2 V-1 s-1 over 500 stretch-release cycles at 50% strain, enabling good X-ray imaging with a high sensitivity of 1501.52 µC Gyair-1 cm-2. Our work provides a morphology control strategy toward high-performance conjugated polymer film-based stretchable electronics.

18.
Semin Cell Dev Biol ; 123: 14-21, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34024716

RESUMEN

Postmenopausal osteoporosis is a systemic disease characterized by the loss of bone mass and increased bone fracture risk largely resulting from significantly reduced levels of the hormone estrogen after menopause. Besides the direct negative effects of estrogen-deficiency on bone, indirect effects of altered immune status in postmenopausal women might contribute to ongoing bone destruction, as postmenopausal women often display a chronic low-grade inflammatory phenotype with altered cytokine expression and immune cell profile. In this context, it was previously shown that various immune cells interact with osteoblasts and osteoclasts either via direct cell-cell contact, or more likely via paracrine mechanisms. For example, specific subtypes of T lymphocytes express TNFα, which was shown to increase osteoblast apoptosis and to indirectly stimulate osteoclastogenesis via B cell-produced receptor-activator of NF-κB ligand (RANKL), thereby triggering bone loss during postmenopausal osteoporosis. Th17 cells release interleukin-17 (IL-17), which directs mesenchymal stem cell differentiation towards the osteogenic lineage, but also indirectly increases osteoclast differentiation. B lymphocytes are a major regulator of osteoclast formation via granulocyte colony-stimulating factor secretion and the RANKL/osteoprotegerin system under estrogen-deficient conditions. Macrophages might act differently on bone cells dependent on their polarization profile and their secreted paracrine factors, which might have implications for the development of postmenopausal osteoporosis, because macrophage polarization is altered during disease progression. Likewise, neutrophils play an important role during bone homeostasis, but their over-activation under estrogen-deficient conditions contributes to osteoblast apoptosis via the release of reactive oxygen species and increased osteoclastogenesis via RANKL signaling. Furthermore, mast cells might be involved in the development of postmenopausal osteoporosis, because they store high levels of osteoclastic mediators, including IL-6 and RANKL, in their granules and their numbers are greatly increased in osteoporotic bone. Additionally, bone fracture healing is altered under estrogen-deficient conditions with the increased presence of pro-inflammatory cytokines, including IL-6 and Midkine, which might contribute to healing disturbances. Consequently, in addition to the direct negative influence of estrogen-deficiency on bone, immune cell alterations contribute to the pathogenesis of postmenopausal osteoporosis.


Asunto(s)
Resorción Ósea , Osteoporosis Posmenopáusica , Resorción Ósea/metabolismo , Resorción Ósea/patología , Huesos/patología , Diferenciación Celular , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Humanos , Osteoblastos/patología , Osteoclastos/metabolismo , Osteoporosis Posmenopáusica/metabolismo , Osteoporosis Posmenopáusica/patología
19.
Diabetologia ; 67(2): 301-311, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38095658

RESUMEN

AIMS/HYPOTHESIS: Fragility fractures may be a complication of diabetes, partly caused by chronic hyperglycaemia. We hypothesised that: (1) individuals with hyperglycaemia and diabetes have increased risk of fragility fracture; (2) hyperglycaemia is causally associated with increased risk of fragility fracture; and (3) diabetes and fragility fracture jointly associate with the highest risk of all-cause mortality. METHODS: In total, 117,054 individuals from the Copenhagen City Heart Study and the Copenhagen General Population Study (the Copenhagen studies) and 390,374 individuals from UK Biobank were included for observational and one-sample Mendelian randomisation (MR) analyses. Fragility fractures were defined as fractures at the hip, spine and arm (humerus/wrist), collected from national health registries. Summary data for fasting glucose and HbA1c concentrations from 196,743 individuals in the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) were combined with data on fragility fractures from the Copenhagen studies in two-sample MR analyses. RESULTS: Higher fasting and non-fasting glucose and HbA1c concentrations were associated with higher risk of any fragility fracture (p<0.001). Individuals with vs without diabetes had HRs for fragility fracture of 1.50 (95% CI 1.19, 1.88) in type 1 diabetes and 1.22 (1.13, 1.32) in type 2 diabetes. One-sample MR supported a causal association between high non-fasting glucose concentrations and increased risk of arm fracture in the Copenhagen studies and UK Biobank combined (RR 1.41 [1.11, 1.79], p=0.004), with similar results for fasting glucose and HbA1c in two-sample MR analyses (ORs 1.50 [1.03, 2.18], p=0.03; and 2.79 [1.12, 6.93], p=0.03, respectively). The corresponding MR estimates for any fragility fracture were 1.18 (1.00, 1.41), p=0.06; 1.36 (0.89, 2.09), p=0.15; and 2.47 (0.95, 6.43), p=0.06, respectively. At age 80 years, cumulative death was 27% in individuals with fragility fracture only, 54% in those with diabetes only, 67% in individuals with both conditions and 17% in those with neither. CONCLUSIONS/INTERPRETATION: Hyperglycaemia and diabetes are risk factors for fragility fracture and one- and two-sample MR analyses supported a causal effect of hyperglycaemia on arm fractures. Diabetes and previous fragility fracture jointly conferred the highest risk of death in the general population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Hiperglucemia , Humanos , Anciano de 80 o más Años , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Hiperglucemia/complicaciones , Glucemia/análisis , Factores de Riesgo , Fracturas Óseas/epidemiología , Fracturas Óseas/complicaciones , Glucosa , Análisis de la Aleatorización Mendeliana
20.
J Cell Physiol ; 239(4): e31183, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38348695

RESUMEN

Osteogenic differentiation is important for fracture healing. Microfibrial-associated glycoprotein 2 (MAGP2) is found to function as a proangiogenic regulator in bone formation; however, its role in osteogenic differentiation during bone repair is not clear. Here, a mouse model of critical-sized femur fracture was constructed, and the adenovirus expressing MAGP2 was delivered into the fracture site. Mice with MAGP2 overexpression exhibited increased bone mineral density and bone volume fraction (BV/TV) at Day 14 postfracture. Within 7 days postfracture, overexpression of MAGP2 increased collagen I and II expression at the fracture callus, with increasing chondrogenesis. MAGP2 inhibited collagen II level but elevated collagen I by 14 days following fracture, accompanied by increased endochondral bone formation. In mouse osteoblast precursor MC3T3-E1 cells, MAGP2 treatment elevated the expression of osteoblastic factors (osterix, BGLAP and collagen I) and enhanced ALP activity and mineralization through activating ß-catenin signaling after osteogenic induction. Besides, MAGP2 could interact with lipoprotein receptor-related protein 5 (LRP5) and upregulated its expression. Promotion of osteogenic differentiation and ß-catenin activation mediated by MAGP2 was partially reversed by LRP5 knockdown. Interestingly, ß-catenin/transcription factor 4 (TCF4) increased MAGP2 expression probably by binding to MAGP2 promoter. These findings suggest that MAGP2 may interact with ß-catenin/TCF4 to enhance ß-catenin/TCF4's function and activate LRP5-activated ß-catenin signaling pathway, thus promoting osteogenic differentiation for fracture repair. mRNA sequencing identified the potential targets of MAGP2, providing novel insights into MAGP2 function and the directions for future research.


Asunto(s)
Fracturas Óseas , Osteogénesis , Animales , Ratones , beta Catenina/genética , beta Catenina/metabolismo , Diferenciación Celular/genética , Colágeno/metabolismo , Curación de Fractura , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Osteoblastos/metabolismo , Vía de Señalización Wnt , Masculino , Ratones Endogámicos C57BL , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA