Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34969860

RESUMEN

Mixed matrix membranes (MMMs) are one of the most promising solutions for energy-efficient gas separation. However, conventional MMM synthesis methods inevitably lead to poor filler-polymer interfacial compatibility, filler agglomeration, and limited loading. Herein, inspired by symbiotic relationships in nature, we designed a universal bottom-up method for in situ nanosized metal organic framework (MOF) assembly within polymer matrices. Consequently, our method eliminating the traditional postsynthetic step significantly enhanced MOF dispersion, interfacial compatibility, and loading to an unprecedented 67.2 wt % in synthesized MMMs. Utilizing experimental techniques and complementary density functional theory (DFT) simulation, we validated that these enhancements synergistically ameliorated CO2 solubility, which was significantly different from other works where MOF typically promoted gas diffusion. Our approach simultaneously improves CO2 permeability and selectivity, and superior carbon capture performance is maintained even during long-term tests; the mechanical strength is retained even with ultrahigh MOF loadings. This symbiosis-inspired de novo strategy can potentially pave the way for next-generation MMMs that can fully exploit the unique characteristics of both MOFs and matrices.

2.
Small ; : e2400746, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678492

RESUMEN

Porous ionic polymers with unique features have exhibited high performance in various applications. However, the fabrication of functional porous ionic polymers with custom functionality and porosity for efficient removal of low-concentration SO2 remains challenging. Herein, a novel nitrogen-enriched porous ionic polymer NH2Py-PIP is prepared featuring high-content nitrogen sites (15.9 wt.%), adequate ionic sites (1.22 mmol g-1), and a hierarchical porous structure. The proposed construction pathway relies on a tailored nitrogen-functionalized cross-linker NH2Py, which effectively introduces abundant functional sites and improves the porosity of porous ionic polymers. NH2Py-PIP with a well-engineered SO2-affinity environment achieves excellent SO2/CO2 selectivity (1165) and high SO2 adsorption capacity (1.13 mmol g-1 at 0.002 bar), as well as enables highly efficient and reversible dynamic separation performance. Modeling studies further elucidate that the nitrogen sites and bromide anions collaboratively promote preferential adsorption of SO2. The unique design in this work provides new insights into constructing functional porous ionic polymers for high-efficiency separations.

3.
Small ; : e2402314, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708815

RESUMEN

Topology serves as a blueprint for the construction of reticular structures such as metal-organic frameworks, especially for those based on building blocks with highly symmetrical shapes. However, it remains a challenge to predict the topology of the frameworks from less symmetrical units, because their corresponding vertex figures are largely deformed from the perfect geometries with no "default" net embedding. Furthermore, vertices involving flexible units may have multiple shape choices, and the competition among their designated topologies makes the structure prediction in large uncertainty. Herein, the deformation index is proposed to characterize the symmetry loss of the vertex figure by comparing it with its ideal geometry. The mathematical index is employed to predict the shapes of two in situ formed Co-based metalloligands (pseudo-tetrahedron and pseudo-square), which further dictate the framework topology (flu and scu) when they are joined with the [Zr6O8]-based cuboid units. The two frameworks with very similar constituents provide an ideal platform to investigate how the pore shapes and interconnectivity influence the gas separation. The net with cylindrical channels outperforms the other with discreate cages in C3H8/C2H6/CH4 separation, benefiting from the facile accessibility of its interaction sites to the guests imposed by the specific framework topology.

4.
Small ; 20(20): e2309409, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368263

RESUMEN

Translating carbon molecular sieve (CMS) membranes into highly scalable hollow fiber geometry with ultra-thin selective layer (<1 µm) for gas separation remains as great challenge. The porous support layer of precursor hollow fiber membranes is prone to collapse during pyrolysis, which induces thick skin layer (15-50 µm) of CMS hollow fiber membranes. Here, a novel strategy is present to obtain an ultra-thin selective skin layer by carbonization of hollow fiber membranes with porous skin. P84-based defect-free CMS hollow fiber membranes with ultra-thin selective skin layer (0.9 µm) for gas separation are prepared without any coating or complex chemical pretreatment. Compared with the carbon membranes derived from defect-free fibers, the H2 permeance (93.9 GPU) of CMS membranes derived from the porous fibers increases ≈1353% with comparable selectivity of H2/CH4 (143) and higher H2/N2 (120). Furthermore, the porous fibers are pre-aged near the Tg in N2 conditions before carbonization, and the H2 permeance of the derived CMS hollow fiber membranes reached 147 GPU (increased 2180%). It is a new facile way to prepare CMS hollow fiber membranes with ultra-thin selective layer by porous fibers, demonstrating its versatile potential in gas separation or organic liquids separation.

5.
Environ Res ; 252(Pt 3): 118953, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636643

RESUMEN

Gas separation membranes are critical in a variety of environmental research and industrial applications. These membranes are designed to selectively allow some gases to flow while blocking others, allowing for the separation and purification of gases for a variety of applications. Therefore, the demand for fast and energy-efficient gas separation techniques is of central interest for many chemical and energy production diligences due to the intensified levels of greenhouse and industrial gases. This encourages the researchers to innovate techniques for capturing and separating these gases, including membrane separation techniques. Polymeric membranes play a significant role in gas separations by capturing gases from the fuel combustion process, purifying chemical raw material used for plastic production, and isolating pure and noncombustible gases. Polyurethane-based membrane technology offers an excellent knack for gas separation applications and has also been considered more energy-efficient than conventional phase change separation methodologies. This review article reveals a thorough delineation of the current developments and efforts made for PU membranes. It further explains its uses for the separation of valuable gases such as carbon dioxide (CO2), hydrogen (H2), nitrogen (N2), methane (CH4), or a mixture of gases from a variety of gas spillages. Polyurethane (PU) is an excellent choice of material and a leading candidate for producing gas-separating membranes because of its outstanding chemical chemistry, good mechanical abilities, higher permeability, and variable microstructure. The presence of PU improves several characteristics of gas-separating membranes. Selectivity and separation efficiency of PU-centered membranes are enhanced through modifications such as blending with other polymers, use of nanoparticles (silica, metal oxides, alumina, zeolite), and interpenetrating polymer networks (IPNs) formation. This manuscript critically analyzes the various gas transport methods and selection criteria for the fabrication of PU membranes. It also covers the challenges facing the development of PU-membrane-based separation procedures.


Asunto(s)
Gases , Membranas Artificiales , Poliuretanos , Poliuretanos/química , Gases/química , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química
6.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493656

RESUMEN

Polymers of intrinsic microporosity (PIMs) have shown promise in pushing the limits of gas separation membranes, recently redefining upper bounds for a variety of gas pair separations. However, many of these membranes still suffer from reductions in permeability over time, removing the primary advantage of this class of polymer. In this work, a series of pentiptycene-based PIMs incorporated into copolymers with PIM-1 are examined to identify fundamental structure-property relationships between the configuration of the pentiptycene backbone and its accompanying linear or branched substituent group. The incorporation of pentiptycene provides a route to instill a more permanent, configuration-based free volume, resistant to physical aging via traditional collapse of conformation-based free volume. PPIM-ip-C and PPIM-np-S, copolymers with C- and S-shape backbones and branched isopropoxy and linear n-propoxy substituent groups, respectively, each exhibited initial separation performance enhancements relative to PIM-1. Additionally, aging-enhanced gas permeabilities were observed, a stark departure from the typical permeability losses pure PIM-1 experiences with aging. Mixed-gas separation data showed enhanced CO2/CH4 selectivity relative to the pure-gas permeation results, with only ∼20% decreases in selectivity when moving from a CO2 partial pressure of ∼2.4 to ∼7.1 atm (atmospheric pressure) when utilizing a mixed-gas CO2/CH4 feed stream. These results highlight the potential of pentiptycene's intrinsic, configurational free volume for simultaneously delivering size-sieving above the 2008 upper bound, along with exceptional resistance to physical aging that often plagues high free volume PIMs.

7.
J Environ Manage ; 356: 120588, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518497

RESUMEN

In the agricultural sector, ruminants are the largest methane (CH4) emission source and many efforts have been undertaken to reduce these greenhouse gas emissions, while compromising animal health and physiology. On the other hand, ruminal CH4, which is biomethane, is in high demand, especially in its liquid form (LBM) that can be used as high energy density fuel. However, CH4 released from a ruminant is immediately mixed with air and highly diluted (<0.1%), challenging CH4 capture technologies. Here we aimed to construct a cryogenic pilot system to capture and liquefy enteric CH4 released from dairy cows kept in respiration chambers. To approach this aim, the outlet air from the chambers was directed through a two-step cooling trap to capture CO2 (-120 to -130 °C) as a solid in the first and CH4 and O2 as liquids in the second cooler (-160 to -180 °C). Warming the second cooler resulted in the evaporation of O2, thereby separating O2 and CH4. LBM purity was in average 90% and was lowest at warming rates higher than 0.88 °C/min. The mean CH4 capture efficiency was 92% and found to be independent of sequestration time and flow rate. However, an increase in CH4 concentration to 0.6%, as it occurs directly at the muzzle of a cow, reduced the sequestration time for CH4. These results show that cryogenic technology can be used to obtain LBM from the air containing ultra-low CH4 concentrations as it is found in cattle barns with high efficiency and purity.


Asunto(s)
Metano , Leche , Femenino , Bovinos , Animales , Leche/química , Proyectos Piloto , Metano/análisis , Rumiantes , Agricultura , Dieta/veterinaria , Lactancia
8.
Angew Chem Int Ed Engl ; 63(5): e202318475, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38078602

RESUMEN

The development of reticular chemistry has enabled the construction of a large array of metal-organic frameworks (MOFs) with diverse net topologies and functions. However, dominating this class of materials are those built from discrete/finite secondary building units (SBUs), yet the designed synthesis of frameworks involving infinite rod-shaped SBUs remain underdeveloped. Here, by virtue of a global linker desymmetrization approach, we successfully targeted a novel Cu-MOF (Cu-ASY) incorporating infinite Cu-carboxylate rod SBUs with its structure determined by micro electron diffraction (MicroED) crystallography. Interestingly, the rod SBU can be simplified as a unique cylindric sphere packing qbe tubule made of [43 .62 ] tiles, which further connect the tritopic linkers to give a newly discovered 3,5-connected gfc net. Cu-ASY is a permanent ultramicroporous material featuring 1D channels with highly inert surfaces and shows a preferential adsorption of propane (C3 H8 ) over propene (C3 H6 ). The efficiency of C3 H8 selective Cu-ASY is validated by multicycle breakthrough experiments, giving C3 H6 productivity of 2.2 L/kg. Density functional theory (DFT) calculations reveal that C3 H8 molecules form multiple C-H⋅⋅⋅π and atypical C-H⋅⋅⋅ H-C van der Waals interactions with the inner nonpolar surfaces. This work therefore highlights the linker desymmetrization as an encouraging and intriguing strategy for achieving unique MOF structures and properties.

9.
Angew Chem Int Ed Engl ; 63(5): e202317294, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38087842

RESUMEN

A series of triarylboron-based graphdiyne analogues (TAB-GDYs) with tunable pore size were prepared through copper mediated coupling reaction. The elemental composition, chemical bond, morphology of TAB-GDYs were well characterized. The crystallinity was confirmed by selected area electron diffraction (SAED) and stacking modes were studied in combination with high resolution transmission electron microscope (HRTEM) and structure simulation. The absorption and desorption isotherm revealed relatively high specific surface area of these TAB-GDYs up to 788 m2 g-1 for TMTAB-GDY, which decreased as pore size enlarged. TAB-GDYs exhibit certain selectivity for CO2 /N2 (21.9), CO2 /CH4 (5.3), CO2 /H2 (41.8) and C2 H2 /CO2 (2.3). This work has developed a series of boron containing two-dimensional frameworks with clear structures and good stability, and their tunable pore sizes have laid the foundation for future applications in the gas separation field.

10.
Angew Chem Int Ed Engl ; : e202400823, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735839

RESUMEN

Separating acetylene from carbon dioxide is important but highly challenging due to their similar molecular shapes and physical properties. Adsorptive separation of carbon dioxide from acetylene can directly produce pure acetylene but is hardly realized because of relatively polarizable acetylene binds more strongly. Here, we reverse the CO2 and C2H2 separation by adjusting the pore structures in two isoreticular ultramicroporous metal-organic frameworks (MOFs). Under ambient conditions, copper isonicotinate (Cu(ina)2), with relatively large pore channels shows C2H2-selective adsorption with a C2H2/CO2 selectivity of 3.4, whereas its smaller-pore analogue, copper quinoline-5-carboxylate (Cu(Qc)2) shows an inverse CO2/C2H2 selectivity of 5.6. Cu(Qc)2 shows compact pore space that well matches the optimal orientation of CO2 but is not compatible for C2H2. Neutron powder diffraction experiments confirmed that CO2 molecules adopt preferential orientation along the pore channels during adsorption binding, whereas C2H2 molecules bind in an opposite fashion with distorted configurations due to their opposite quadrupole moments. Dynamic breakthrough experiments have validated the separation performance of Cu(Qc)2 for CO2/C2H2 separation.

11.
Angew Chem Int Ed Engl ; : e202405969, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760324

RESUMEN

High-silica CHA zeolite membranes are highly desired for natural gas upgrading because of their separation performance in combination with superior mechanical and chemical stability. However, the narrow synthesis condition range significantly constrains scale-up preparation. Herein, we propose a facile interzeolite conversion approach using the FAU zeolite to prepare SSZ-13 zeolite seeds, featuring a shorter induction and a longer crystallization period of the membrane synthesis on hollow fiber substrates. The membrane thickness was constant at ~3 µm over a wide span of synthesis time (24-96 h), while the selectivity (separation efficiency) was easily improved by extending the synthesis time without compromising permeance (throughput). At 0.2 MPa feed pressure and 303 K, the membranes showed an average CO2 permeance of (5.2±0.5)×10-7 mol m-2 s-1 Pa-1 (1530 GPU), with an average CO2/CH4 mixture selectivity of 143±7. Minimal defects ensure a high selectivity of 126 with a CO2 permeation flux of 0.4 mol m-2 s-1 at 6.1 MPa feed pressure, far surpassing requirements for industrial applications. The feasibility for successful scale-up of our approach was further demonstrated by the batch synthesis of 40 cm-long hollow fiber SSZ-13 zeolite membranes exhibiting CO2/CH4 mixture selectivity up to 400 (0.2 MPa feed pressure and 303 K) without using sweep gas.

12.
Angew Chem Int Ed Engl ; 63(24): e202405676, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38606914

RESUMEN

Metal-organic framework (MOF) membranes with rich functionality and tunable pore system are promising for precise molecular separation; however, it remains a challenge to develop defect-free high-connectivity MOF membrane with high water stability owing to uncontrollable nucleation and growth rate during fabrication process. Herein, we report on a confined-coordination induced intergrowth strategy to fabricate lattice-defect-free Zr-MOF membrane towards precise molecular separation. The confined-coordination space properties (size and shape) and environment (water or DMF) were regulated to slow down the coordination reaction rate via controlling the counter-diffusion of MOF precursors (metal cluster and ligand), thereby inter-growing MOF crystals into integrated membrane. The resulting Zr-MOF membrane with angstrom-sized lattice apertures exhibits excellent separation performance both for gas separation and water desalination process. It was achieved H2 permeance of ~1200 GPU and H2/CO2 selectivity of ~67; water permeance of ~8 L ⋅ m-2 ⋅ h-1 ⋅ bar-1 and MgCl2 rejection of ~95 %, which are one to two orders of magnitude higher than those of state-of-the-art membranes. The molecular transport mechanism related to size-sieving effect and transition energy barrier differential of molecules and ions was revealed by density functional theory calculations. Our work provides a facile approach and fundamental insights towards developing precise molecular sieving membranes.

13.
Angew Chem Int Ed Engl ; 63(16): e202401706, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38419479

RESUMEN

Rigid three-dimensional (3D) polycyclic propellanes have garnered interest due to their unique conformational spaces, which display great potential use in selectivity, separation and as models to study through-space electronic interactions. Herein we report the synthesis of a novel rigid propellane, trinaphtho[3.3.3]propellane triimide, which comprises three imide groups embedded on a trinaphtho[3.3.3]propellane. This propellane triimide exhibits large bathochromic shift, amplified molar absorptivity, enhanced fluorescence, and lower reduction potential when compared to the subunits. Computational and experimental studies reveal that the effective through-space π-orbitals interacting (homoconjugation) occurs between the subunits. Single-crystal XRD analysis reveals that the propellane triimide has a highly quasi-D3h symmetric skeleton and readily crystallizes into different superstructures by changing alkyl chains at the imide positions. In particular, the porous 3D superstructure with S-shaped channels is promising for taking up ethane (C2H6) with very good selectivity over ethylene (C2H4), which can purify C2H4 from C2H6/C2H4 in a single separation step. This work showcases a new class of rare 3D polycyclic propellane with intriguing electronic and supramolecular properties.

14.
Angew Chem Int Ed Engl ; : e202403698, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720517

RESUMEN

Trigonal planar M3(O/OH) trimers are among the most important clusters in inorganic chemistry and are the foundational features of multiple high-impact MOF platforms. Here we introduce a concept called isoreticular cluster series and demonstrate that M3(O/OH), as the first member of a supertrimer series, can be combined with a higher hierarchical member (double-deck trimer here) to advance isoreticular chemistry. We report here an isoreticular series of pore-space-partitioned MOFs called M3M6 pacs made from co-assembly between M3 single-deck trimer and M3x2 double-deck trimer. Important factors were identified on this multi-modular MOF platform to guide optimization of each module, which enables the phase selection of M3M6 pacs by overcoming the formation of previously-always-observed same-cluster phases. The new pacs materials exhibit high surface area and high uptake capacity for CO2 and small hydrocarbons, as well as selective adsorption properties relevant to separation of industrially important mixtures such as C2H2/CO2 and C2H2/C2H4. Furthermore, new M3M6 pacs materials show electrocatalytic properties with high activity.

15.
Angew Chem Int Ed Engl ; 63(1): e202316356, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37983661

RESUMEN

Superglassy membranes synthesised by polymers of intrinsic microporosity (PIMs) suffer from physical aging and show poor gas permeance over time, especially thin membranes, due to the fast rearrangement of nonequilibrium polymer chains. Herein, we constructed a novel PIM-1 thin film nanocomposite membrane (TFN) using nanosized UiO-66-NH2 (≈10 nm)/carboxylated PIM-1 (cPIM-1) as the composite filler. Unlike conventional fillers, which interact with the polymer only via the surface, the UiO-66-NH2 /cPIM-1 forms a stable three-dimensional (3D) network intertwining with the polymer chains, being very effective to impede chain relaxation, and thus physical aging. Nanosizing of UiO-66-NH2 was achieved by regulating the nucleation kinetics using carbon quantum dots (CQD) during the synthesis. This led to increased surface area, and hence more functional groups to bond with cPIM-1 (via hydrogen bonding between -NH2 and -COOH groups), which also improved interfacial compatibility between the 3D network and polymer chains avoiding defect formation. As a result, the novel TFN showed significantly improved performance in gas separation along with reduced aging (i.e. ≈6 % loss in CO2 permeability over 63 days); the aged membranes had a CO2 permeance of 2504 GPU and ideal selectivity values of 37.2 and 23.8 for CO2 /N2 and CO2 /CH4 , respectively.

16.
Angew Chem Int Ed Engl ; 63(8): e202315611, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38084884

RESUMEN

Membrane-based gas separations are crucial for an energy-efficient future. However, it is difficult to develop membrane materials that are high-performing, scalable, and processable. Microporous organic polymers (MOPs) combine benefits for gas sieving and solution processability. Herein, we report membrane performance for a new family of microporous poly(arylene ether)s (PAEs) synthesized via Pd-catalyzed C-O coupling reactions. The scaffold of these microporous polymers consists of rigid three-dimensional triptycene and stereocontorted spirobifluorene, endowing these polymers with micropore dimensions attractive for gas separations. This robust PAE synthesis method allows for the facile incorporation of functionalities and branched linkers for control of permeation and mechanical properties. A solution-processable branched polymer was formed into a submicron film and characterized for permeance and selectivity, revealing lab data that rivals property sets of commercially available membranes already optimized for much thinner configurations. Moreover, the branching motif endows these materials with outstanding plasticization resistance, and their microporous structure and stability enables benefits from competitive sorption, increasing CO2 /CH4 and (H2 S+CO2 )/CH4 selectivity in mixture tests as predicted by the dual-mode sorption model. The structural tunability, stability, and ease-of-processing suggest that this new platform of microporous polymers provides generalizable design strategies to form MOPs at scale for demanding gas separations in industry.

17.
Angew Chem Int Ed Engl ; 63(8): e202317864, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38189768

RESUMEN

Nanoparticles can suppress asymmetric precursor support collapse during pyrolysis to create carbon molecular sieve (CMS) membranes. This advance allows elimination of standard sol-gel support stabilization steps. Here we report a simple but surprisingly important thermal soaking step at 400 °C in the pyrolysis process to obtain high performance CMS membranes. The composite CMS membranes show CO2 /CH4 (50 : 50) mixed gas feed with an attractive CO2 /CH4 selectivity of 134.2 and CO2 permeance of 71 GPU at 35 °C. Furthermore, a H2 /CH4 selectivity of 663 with H2 permeance of 240 GPU was achieved for promising green energy resource-H2 separation processes.

18.
Angew Chem Int Ed Engl ; 63(26): e202404734, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38635373

RESUMEN

The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.

19.
Angew Chem Int Ed Engl ; 63(26): e202318844, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38785268

RESUMEN

The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.

20.
Angew Chem Int Ed Engl ; 63(27): e202319674, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634325

RESUMEN

n-C4H10 and iso-C4H10 are both important petrochemical raw materials. Considering the coexistence of the isomers in the production process, it is necessary to achieve their efficient separation through an economical way. However, to obtain high-purity n-C4H10 and iso-C4H10 in one-step separation process, developing iso-C4H10-exclusion adsorbents with high n-C4H10 adsorption capacity is crucial. Herein, we report a cage-like MOF (SIFSIX-Cu-TPA) with small windows and large cavities which can selectively allow smaller n-C4H10 enter the pore and accommodate a large amount of n-C4H10 simultaneously. Adsorption isotherms reveal that SIFSIX-Cu-TPA not only completely excludes iso-C4H10 in a wide temperature range, but also exhibits a very high n-C4H10 adsorption capacity of 94.2 cm3 g-1 at 100 kPa and 298 K, which is the highest value among iso-C4H10-exclusion-type adsorbents. Breakthrough experiments show that SIFSIX-Cu-TPA has excellent n/iso-C4H10 separation performance and can achieve a record-high productivity of iso-C4H10 (3.2 mol kg-1) with high purity (>99.95 %) as well as 3.0 mol kg-1 of n-C4H10 (>99 %) in one separation circle. More importantly, SIFSIX-Cu-TPA can realize the efficient separation of butanes at different flow rates, temperatures, as well as under high humid condition, which indicates that SIFSIX-Cu-TPA can be deemed as an ideal platform for industrial butane isomers separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA