Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 91: 133-155, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287470

RESUMEN

Our current view of how DNA-based genomes are efficiently and accurately replicated continues to evolve as new details emerge on the presence of ribonucleotides in DNA. Ribonucleotides are incorporated during eukaryotic DNA replication at rates that make them the most common noncanonical nucleotide placed into the nuclear genome, they are efficiently repaired, and their removal impacts genome integrity. This review focuses on three aspects of this subject: the incorporation of ribonucleotides into the eukaryotic nuclear genome during replication by B-family DNA replicases, how these ribonucleotides are removed, and the consequences of their presence or removal for genome stability and disease.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Ribonucleótidos , ADN/genética , ADN/metabolismo , Reparación del ADN , Eucariontes/genética , Eucariontes/metabolismo , Nucleotidiltransferasas/genética , Ribonucleótidos/genética , Ribonucleótidos/metabolismo
2.
Cell ; 184(16): 4251-4267.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34260899

RESUMEN

Genetic recombination generates novel trait combinations, and understanding how recombination is distributed across the genome is key to modern genetics. The PRDM9 protein defines recombination hotspots; however, megabase-scale recombination patterning is independent of PRDM9. The single round of DNA replication, which precedes recombination in meiosis, may establish these patterns; therefore, we devised an approach to study meiotic replication that includes robust and sensitive mapping of replication origins. We find that meiotic DNA replication is distinct; reduced origin firing slows replication in meiosis, and a distinctive replication pattern in human males underlies the subtelomeric increase in recombination. We detected a robust correlation between replication and both contemporary and historical recombination and found that replication origin density coupled with chromosome size determines the recombination potential of individual chromosomes. Our findings and methods have implications for understanding the mechanisms underlying DNA replication, genetic recombination, and the landscape of mammalian germline variation.


Asunto(s)
Células Germinativas/citología , Recombinación Homóloga , Meiosis , Animales , Composición de Base/genética , Cromosomas de los Mamíferos/genética , Roturas del ADN de Doble Cadena , Replicación del ADN , Genoma , Células Germinativas/metabolismo , Humanos , Masculino , Mamíferos/metabolismo , Ratones , Origen de Réplica , Fase S , Telómero/metabolismo , Testículo/citología
3.
Cell ; 182(2): 481-496.e21, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32649862

RESUMEN

The response to DNA damage is critical for cellular homeostasis, tumor suppression, immunity, and gametogenesis. In order to provide an unbiased and global view of the DNA damage response in human cells, we undertook 31 CRISPR-Cas9 screens against 27 genotoxic agents in the retinal pigment epithelium-1 (RPE1) cell line. These screens identified 890 genes whose loss causes either sensitivity or resistance to DNA-damaging agents. Mining this dataset, we discovered that ERCC6L2 (which is mutated in a bone-marrow failure syndrome) codes for a canonical non-homologous end-joining pathway factor, that the RNA polymerase II component ELOF1 modulates the response to transcription-blocking agents, and that the cytotoxicity of the G-quadruplex ligand pyridostatin involves trapping topoisomerase II on DNA. This map of the DNA damage response provides a rich resource to study this fundamental cellular system and has implications for the development and use of genotoxic agents in cancer therapy.


Asunto(s)
Daño del ADN , Redes Reguladoras de Genes/fisiología , Aminoquinolinas/farmacología , Animales , Sistemas CRISPR-Cas/genética , Línea Celular , Citocromo-B(5) Reductasa/genética , Citocromo-B(5) Reductasa/metabolismo , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Ratones , Ácidos Picolínicos/farmacología , ARN Guía de Kinetoplastida/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
4.
Annu Rev Biochem ; 88: 137-162, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220977

RESUMEN

Genomic DNA is susceptible to endogenous and environmental stresses that modify DNA structure and its coding potential. Correspondingly, cells have evolved intricate DNA repair systems to deter changes to their genetic material. Base excision DNA repair involves a number of enzymes and protein cofactors that hasten repair of damaged DNA bases. Recent advances have identified macromolecular complexes that assemble at the DNA lesion and mediate repair. The repair of base lesions generally requires five enzymatic activities: glycosylase, endonuclease, lyase, polymerase, and ligase. The protein cofactors and mechanisms for coordinating the sequential enzymatic steps of repair are being revealed through a range of experimental approaches. We discuss the enzymes and protein cofactors involved in eukaryotic base excision repair, emphasizing the challenge of integrating findings from multiple methodologies. The results provide an opportunity to assimilate biochemical findings with cell-based assays to uncover new insights into this deceptively complex repair pathway.


Asunto(s)
ADN Glicosilasas/química , ADN Polimerasa Dirigida por ADN/química , ADN/química , Endonucleasas/química , Genoma , Ligasas/química , Liasas/química , ADN/metabolismo , ADN/ultraestructura , Daño del ADN , ADN Glicosilasas/metabolismo , ADN Glicosilasas/ultraestructura , Reparación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/ultraestructura , Endonucleasas/metabolismo , Endonucleasas/ultraestructura , Eucariontes/genética , Eucariontes/metabolismo , Células Eucariotas/citología , Células Eucariotas/enzimología , Inestabilidad Genómica , Humanos , Ligasas/metabolismo , Ligasas/ultraestructura , Liasas/metabolismo , Liasas/ultraestructura , Modelos Moleculares , Mutagénesis , Conformación de Ácido Nucleico , Conformación Proteica
5.
Cell ; 172(3): 439-453.e14, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29290468

RESUMEN

Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1-/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres.


Asunto(s)
ADN Helicasas/genética , Replicación del ADN , Homeostasis del Telómero , Animales , Línea Celular , Células Cultivadas , ADN Helicasas/metabolismo , Glicósido Hidrolasas/metabolismo , Ratones , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , RecQ Helicasas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
6.
Annu Rev Cell Dev Biol ; 34: 265-288, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30044650

RESUMEN

Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.


Asunto(s)
Reparación del ADN/genética , Inestabilidad Genómica , Heterocromatina/genética , Mitosis/genética , Centrómero/genética , Segregación Cromosómica/genética , Genoma/genética , Histonas/genética , Humanos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Telómero/genética
7.
Mol Cell ; 84(10): 1826-1841.e5, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38657614

RESUMEN

In meiotic cells, chromosomes are organized as chromatin loop arrays anchored to a protein axis. This organization is essential to regulate meiotic recombination, from DNA double-strand break (DSB) formation to their repair. In mammals, it is unknown how chromatin loops are organized along the genome and how proteins participating in DSB formation are tethered to the chromosome axes. Here, we identify three categories of axis-associated genomic sites: PRDM9 binding sites, where DSBs form; binding sites of the insulator protein CTCF; and H3K4me3-enriched sites. We demonstrate that PRDM9 promotes the recruitment of MEI4 and IHO1, two proteins essential for DSB formation. In turn, IHO1 anchors DSB sites to the axis components HORMAD1 and SYCP3. We discovered that IHO1, HORMAD1, and SYCP3 are associated at the DSB ends during DSB repair. Our results highlight how interactions of proteins with specific genomic elements shape the meiotic chromosome organization for recombination.


Asunto(s)
Roturas del ADN de Doble Cadena , N-Metiltransferasa de Histona-Lisina , Meiosis , Meiosis/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Histonas/metabolismo , Histonas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Sitios de Unión , Cromosomas/genética , Cromosomas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinación Genética , Masculino
8.
Mol Cell ; 84(1): 70-79, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38103560

RESUMEN

Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.


Asunto(s)
Daño del ADN , Replicación del ADN , Humanos , Reparación del ADN , ADN/genética , Genoma , Inestabilidad Genómica , Transcripción Genética
9.
Mol Cell ; 84(7): 1206-1223.e15, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38423014

RESUMEN

Appropriate DNA end synapsis, regulated by core components of the synaptic complex including KU70-KU80, LIG4, XRCC4, and XLF, is central to non-homologous end joining (NHEJ) repair of chromatinized DNA double-strand breaks (DSBs). However, it remains enigmatic whether chromatin modifications can influence the formation of NHEJ synaptic complex at DNA ends, and if so, how this is achieved. Here, we report that the mitotic deacetylase complex (MiDAC) serves as a key regulator of DNA end synapsis during NHEJ repair in mammalian cells. Mechanistically, MiDAC removes combinatorial acetyl marks on histone H2A (H2AK5acK9ac) around DSB-proximal chromatin, suppressing hyperaccumulation of bromodomain-containing protein BRD4 that would otherwise undergo liquid-liquid phase separation with KU80 and prevent the proper installation of LIG4-XRCC4-XLF onto DSB ends. This study provides mechanistic insight into the control of NHEJ synaptic complex assembly by a specific chromatin signature and highlights the critical role of H2A hypoacetylation in restraining unscheduled compartmentalization of DNA repair machinery.


Asunto(s)
Cromatina , Proteínas Nucleares , Animales , Cromatina/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , ADN/genética , Reparación del ADN por Unión de Extremidades , Histonas/genética , Histonas/metabolismo , Emparejamiento Cromosómico , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Mamíferos/metabolismo
10.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569554

RESUMEN

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , ARN Helicasas DEAD-box , Exorribonucleasas , Inestabilidad Genómica , Metiltransferasas , Estructuras R-Loop , ARN Polimerasa II , Terminación de la Transcripción Genética , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Daño del ADN , Células HeLa , ARN/metabolismo , ARN/genética , Transcripción Genética , Metilación de ARN
11.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38458201

RESUMEN

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Asunto(s)
Ciclinas , Reparación de la Incompatibilidad de ADN , Animales , Ciclinas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Interfase , Mamíferos/metabolismo
12.
Genes Dev ; 38(5-6): 233-252, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38503515

RESUMEN

The post-translational modification of proteins by SUMO is crucial for cellular viability and mammalian development in part due to the contribution of SUMOylation to genome duplication and repair. To investigate the mechanisms underpinning the essential function of SUMO, we undertook a genome-scale CRISPR/Cas9 screen probing the response to SUMOylation inhibition. This effort identified 130 genes whose disruption reduces or enhances the toxicity of TAK-981, a clinical-stage inhibitor of the SUMO E1-activating enzyme. Among the strongest hits, we validated and characterized NFATC2IP, an evolutionarily conserved protein related to the fungal Esc2 and Rad60 proteins that harbors tandem SUMO-like domains. Cells lacking NFATC2IP are viable but are hypersensitive to SUMO E1 inhibition, likely due to the accumulation of mitotic chromosome bridges and micronuclei. NFATC2IP primarily acts in interphase and associates with nascent DNA, suggesting a role in the postreplicative resolution of replication or recombination intermediates. Mechanistically, NFATC2IP interacts with the SMC5/6 complex and UBC9, the SUMO E2, via its first and second SUMO-like domains, respectively. AlphaFold-Multimer modeling suggests that NFATC2IP positions and activates the UBC9-NSMCE2 complex, the SUMO E3 ligase associated with SMC5/SMC6. We conclude that NFATC2IP is a key mediator of SUMO-dependent genomic integrity that collaborates with the SMC5/6 complex.


Asunto(s)
Daño del ADN , Inestabilidad Genómica , Proteínas de Ciclo Celular/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Inestabilidad Genómica/genética
13.
Cell ; 167(4): 1001-1013.e7, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27881299

RESUMEN

RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.


Asunto(s)
Inestabilidad Genómica , Reparación del ADN por Recombinación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , ADN/metabolismo , Daño del ADN , Expresión Génica , ARN/metabolismo , ARN Polimerasa II/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Schizosaccharomyces/enzimología
14.
Mol Cell ; 83(15): 2792-2809.e9, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478847

RESUMEN

To maintain genome integrity, cells must accurately duplicate their genome and repair DNA lesions when they occur. To uncover genes that suppress DNA damage in human cells, we undertook flow-cytometry-based CRISPR-Cas9 screens that monitored DNA damage. We identified 160 genes whose mutation caused spontaneous DNA damage, a list enriched in essential genes, highlighting the importance of genomic integrity for cellular fitness. We also identified 227 genes whose mutation caused DNA damage in replication-perturbed cells. Among the genes characterized, we discovered that deoxyribose-phosphate aldolase DERA suppresses DNA damage caused by cytarabine (Ara-C) and that GNB1L, a gene implicated in 22q11.2 syndrome, promotes biogenesis of ATR and related phosphatidylinositol 3-kinase-related kinases (PIKKs). These results implicate defective PIKK biogenesis as a cause of some phenotypes associated with 22q11.2 syndrome. The phenotypic mapping of genes that suppress DNA damage therefore provides a rich resource to probe the cellular pathways that influence genome maintenance.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Humanos , Mutación , Reparación del ADN , Fenotipo
15.
Mol Cell ; 83(1): 12-25.e10, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36543171

RESUMEN

In eukaryotes, cyclin-dependent kinase (CDK) ensures that the genome is duplicated exactly once by inhibiting helicase loading factors before activating origin firing. CDK activates origin firing by phosphorylating two substrates, Sld2 and Sld3, forming a transient and limiting intermediate-the pre-initiation complex (pre-IC). Here, we show in the budding yeast Saccharomyces cerevisiae that the CDK phosphorylations of Sld3 and Sld2 are rapidly turned over during S phase by the PP2A and PP4 phosphatases. PP2ARts1 targets Sld3 specifically through an Rts1-interaction motif, and this targeted dephosphorylation is important for origin firing genome-wide, for formation of the pre-IC at origins and for ensuring that Sld3 is dephosphorylated in G1 phase. PP2ARts1 promotes replication in vitro, and we show that targeted Sld3 dephosphorylation is critical for viability. Together, these studies demonstrate that phosphatases enforce the correct ordering of replication factor phosphorylation and in addition to kinases are also key drivers of replication initiation.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Unión al ADN/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicación del ADN , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Origen de Réplica
16.
Mol Cell ; 83(16): 2911-2924.e16, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37506699

RESUMEN

During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.


Asunto(s)
ADN Primasa , Replicación del ADN , Humanos , ADN Primasa/genética , ADN Primasa/metabolismo , Microscopía por Crioelectrón , ADN Helicasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN de Cadena Simple/metabolismo
17.
Mol Cell ; 83(7): 1061-1074.e6, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36868227

RESUMEN

Nonhomologous end-joining (NHEJ) factors act in replication-fork protection, restart, and repair. Here, we identified a mechanism related to RNA:DNA hybrids to establish the NHEJ factor Ku-mediated barrier to nascent strand degradation in fission yeast. RNase H activities promote nascent strand degradation and replication restart, with a prominent role of RNase H2 in processing RNA:DNA hybrids to overcome the Ku barrier to nascent strand degradation. RNase H2 cooperates with the MRN-Ctp1 axis to sustain cell resistance to replication stress in a Ku-dependent manner. Mechanistically, the need of RNaseH2 in nascent strand degradation requires the primase activity that allows establishing the Ku barrier to Exo1, whereas impairing Okazaki fragment maturation reinforces the Ku barrier. Finally, replication stress induces Ku foci in a primase-dependent manner and favors Ku binding to RNA:DNA hybrids. We propose a function for the RNA:DNA hybrid originating from Okazaki fragments in controlling the Ku barrier specifying nuclease requirement to engage fork resection.


Asunto(s)
ARN , Schizosaccharomyces , ARN/genética , ARN/metabolismo , ADN Primasa/metabolismo , ADN/genética , ADN/metabolismo , Replicación del ADN , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Ribonucleasas/genética
18.
Mol Cell ; 83(13): 2357-2366.e8, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37295432

RESUMEN

DNA replication preferentially initiates close to active transcription start sites (TSSs) in the human genome. Transcription proceeds discontinuously with an accumulation of RNA polymerase II (RNAPII) in a paused state near the TSS. Consequently, replication forks inevitably encounter paused RNAPII soon after replication initiates. Hence, dedicated machinery may be needed to remove RNAPII and facilitate unperturbed fork progression. In this study, we discovered that Integrator, a transcription termination machinery involved in the processing of RNAPII transcripts, interacts with the replicative helicase at active forks and promotes the removal of RNAPII from the path of the replication fork. Integrator-deficient cells have impaired replication fork progression and accumulate hallmarks of genome instability including chromosome breaks and micronuclei. The Integrator complex resolves co-directional transcription-replication conflicts to facilitate faithful DNA replication.


Asunto(s)
Replicación del ADN , ARN Polimerasa II , Humanos , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Inestabilidad Genómica
19.
Mol Cell ; 82(9): 1751-1767.e8, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35320753

RESUMEN

Chromosome inheritance depends on centromeres, epigenetically specified regions of chromosomes. While conventional human centromeres are known to be built of long tandem DNA repeats, much of their architecture remains unknown. Using single-molecule techniques such as AFM, nanopores, and optical tweezers, we find that human centromeric DNA exhibits complex DNA folds such as local hairpins. Upon binding to a specific sequence within centromeric regions, the DNA-binding protein CENP-B compacts centromeres by forming pronounced DNA loops between the repeats, which favor inter-chromosomal centromere compaction and clustering. This DNA-loop-mediated organization of centromeric chromatin participates in maintaining centromere position and integrity upon microtubule pulling during mitosis. Our findings emphasize the importance of DNA topology in centromeric regulation and stability.


Asunto(s)
Centrómero , Proteínas Cromosómicas no Histona , Autoantígenos/genética , Autoantígenos/metabolismo , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN/genética , Humanos
20.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36002001

RESUMEN

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Asunto(s)
Replicación del ADN , Mitosis , Afidicolina/farmacología , Proteína BRCA2/genética , Sitios Frágiles del Cromosoma/genética , ADN/genética , Daño del ADN , Inestabilidad Genómica , Humanos , Mitosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA