Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Infect Immun ; 92(6): e0010324, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38722168

RESUMEN

Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased ß-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.


Asunto(s)
Antifúngicos , Candida auris , Virulencia/genética , Candida auris/genética , Candida auris/efectos de los fármacos , Antifúngicos/farmacología , Candidiasis/microbiología , Candidiasis/inmunología , Farmacorresistencia Fúngica/genética , Genoma Fúngico , Humanos , Macrófagos/microbiología , Macrófagos/inmunología , Regulación Fúngica de la Expresión Génica , Perfilación de la Expresión Génica , Animales
2.
Vet Res ; 55(1): 73, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849962

RESUMEN

African swine fever virus (ASFV) causes a devastating disease affecting domestic and wild pigs. ASF was first introduced in Sardinia in 1978 and until 2019 only genotype I isolates were identified. A remarkable genetic stability of Sardinian ASFV isolates was described, nevertheless in 2019 two wild boar isolates with a sustained genomic deletion (4342 base pairs) were identified (7303WB/19, 7212WB/19). In this study, we therefore performed in vitro experiments with monocyte-derived macrophages (moMФ) to unravel the phenotypic characteristics of these deleted viruses. Both 7303WB/19 and 7212WB/19 presented a lower growth kinetic in moMФ compared to virulent Sardinian 26544/OG10, using either a high (1) or a low (0.01) multiplicity of infection (MOI). In addition, flow cytometric analysis showed that both 7303WB/19 and 7212WB/19 presented lower intracellular levels of both early and late ASFV proteins. We subsequently investigated whether deleted virus variants were previously circulating in wild boars in Sardinia. In the four years preceding the last genotype I isolation (February 2015-January 2019), other eight wild boar isolates were collected, all belonging to p72 genotype I, B602L subgroup X, but none of them presented a sustained genomic deletion. Overall, we observed the deleted virus isolates in Sardinia only in 2019, at the end of a strong eradication campaign, and our data suggest that it might possess an attenuated phenotype in vivo. A better understanding of ASFV evolution in endemic territories might contribute to development of effective control measures against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Genotipo , Sus scrofa , Animales , Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/fisiología , Porcinos , Italia , Fiebre Porcina Africana/virología , Genoma Viral , Fenotipo , Eliminación de Secuencia , Macrófagos/virología
3.
Clin Genet ; 103(1): 109-113, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36075864

RESUMEN

Prior studies have demonstrated that patients with chromosome 22q11.2 deletion syndrome (22q11.2DS) have lower platelet counts (PC) compared to non-deleted populations. They also have an increased mean platelet volume. The mechanism for this has been postulated to be haploinsufficiency of the GPIBB gene. We examined platelet parameters, deletion size and factors known to influence counts, including status of thyroid hormone and congenital heart disease (CHD), in a population of 825 patients with 22q11.2DS. We also measured surface expression of GPIB-IX complex by flow cytometry. The major determinant of PC was deletion status of GP1BB, regardless of surface expression or other factors. Patients with nested distal chromosome 22q11.2 deletions (those with GP1BB present) had higher PCs than those with proximal deletions where GP1BB is deleted. Patients with 22q11.2DS also demonstrated an accelerated PC decrease with age, occurring in childhood. These data demonstrate that genes within the proximal deletion segment drive PC differences in 22q11.2DS and suggest that PC reference ranges may need to be adjusted for age and deletion size in 22q11.2DS populations. Bleeding did not correlate with either platelet count or GPIb expression. Further studies into drivers of expression of GPIb and associations with severe thrombocytopenia and immune thrombocytopenia are needed to inform clinical care.


Asunto(s)
Síndrome de DiGeorge , Humanos , Síndrome de DiGeorge/genética
4.
J Basic Microbiol ; 62(8): 948-962, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35739617

RESUMEN

Escherichia coli K-12, being one of the best understood and thoroughly analyzed organisms, is the preferred platform for genetic and biochemical research. Among all genetic engineering approaches applied on E. coli, the homologous recombination approach is versatile and precise, which allows engineering genes or large segments of the chromosome directly by using polymerase chain reaction (PCR) products or synthetic oligonucleotides. The previously explained approaches for random insertion and deletions were reported as technically not easy and laborious. This study, first, finds the minimum length of homology extension that is efficient and accurate for homologous recombination, as 30 nt. Second, proposes an approach utilizing PCR products flanking ambiguous NNN-sequence (30-nt) extensions, which facilitate the homologous recombination to recombine them at multiple regions on the genome and generate insertion-deletion mutations. Further analysis found that these mutations were varying in number, that is, multiple genomic regions were deleted. Moreover, evaluation of the phenotype of all the multiple random insertion-deletion mutants demonstrated no significant changes in the normal metabolism of bacteria. This study not only presents the efficiency of ambiguous sequences in making random deletion mutations, but also demonstrates their further applicability in genomics.


Asunto(s)
Escherichia coli K12 , Escherichia coli , Escherichia coli/genética , Escherichia coli K12/genética , Ingeniería Genética , Genómica , Mutación INDEL
5.
Int J Mol Sci ; 23(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35328728

RESUMEN

The nonspecific enrichment of target-unrelated peptides during biopanning remains a major drawback for phage display technology. The commercial Ph.D.TM-7 phage display library is used extensively for peptide discovery. This library is based on the M13KE vector, which carries the lacZα sequence, leading to the formation of blue plaques on IPTG-X-gal agar plates. In the current study, we report the isolation of a fast-propagating white clone (displaying WSLGYTG peptide) identified through screening against a recombinant protein. Sanger sequencing demonstrated that white plaques are not contamination from environmental M13-like phages, but derive from the library itself. Whole genome sequencing revealed that the white color of the plaques results from a large 827-nucleotide genomic deletion. The phenotypic characterization of propagation capacity through plaque count- and NGS-based competitive propagation assay supported the higher propagation rate of Ph-WSLGYTG clone compared with the library. According to our data, white plaques are likely to arise endogenously in Ph.D. libraries due to mutations in the M13KE genome and should not always be viewed as exogenous contamination. Our findings also led to the conclusion that the deletion observed here might be an ancestral mutation already present in the naïve library, which causes target-unrelated nonspecific enrichment of white clone during biopanning due to propagation advantage.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Bioprospección , Mutación , Péptidos/química
6.
Microb Cell Fact ; 19(1): 63, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156270

RESUMEN

BACKGROUND: Co-expression of two distinct guide RNAs (gRNAs) has been used to facilitate the application of CRISPR/Cas9 system in fields such as large genomic deletion. The paired gRNAs are often placed adjacently in the same direction and expressed individually by two identical promoters, constituting direct repeats (DRs) which are susceptible to self-homologous recombination. As a result, the paired-gRNA plasmids cannot remain stable, which greatly prevents extensible applications of CRISPR/Cas9 system. RESULTS: To address this limitation, different DRs-involved paired-gRNA plasmids were designed and the events of recombination were characterized. Deletion between DRs occurred with high frequencies during plasmid construction and subsequent plasmid propagation. This recombination event was RecA-independent, which agreed with the replication slippage model. To increase plasmid stability, a reversed paired-gRNA plasmids (RPGPs) cloning strategy was developed by converting DRs to the more stable invert repeats (IRs), which completely eliminated DRs-induced recombination. Using RPGPs, rapid deletion of chromosome fragments up to 100 kb with an efficiency of 83.33% was achieved in Escherichia coli. CONCLUSIONS: The RPGPs cloning strategy serves as a general solution to avoid plasmid RecA-independent recombination. It can be adapted to applications that rely on paired gRNAs or repeated genetic parts.


Asunto(s)
Clonación Molecular/métodos , Escherichia coli/genética , Edición Génica/métodos , Plásmidos/genética , ARN Guía de Kinetoplastida/genética , Recombinación Genética , Eliminación de Secuencia
7.
Cancer Sci ; 110(3): 926-938, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30588718

RESUMEN

The emergence of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technology has dramatically advanced how we manipulate the genome. Regarding in vivo experiments, Cas9-transgenic animals could provide efficient and complex genome editing. However, this potential has not been fully realized partly due to a lack of convenient platforms and limited examples of successful disease modeling. Here, we devised two doxycycline (Dox)-inducible Cas9 platforms that efficiently enable conditional genome editing at multiple loci in vitro and in vivo. In these platforms, we took advantage of a site-specific multi-segment cloning strategy for rapid and easy integration of multiple single guide (sg)RNAs. We found that a platform containing rtTA at the Rosa26 locus and TRE-Cas9 together with multiple sgRNAs at the Col1a1 locus showed higher efficiency of inducible insertions and deletions (indels) with minimal leaky editing. Using this platform, we succeeded to model Wilms' tumor and the progression of intestinal adenomas with multiple mutations including an activating mutation with a large genomic deletion. Collectively, the established platform should make complicated disease modeling in the mouse easily attainable, extending the range of in vivo experiments in various biological fields including cancer research.


Asunto(s)
Adenoma/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Neoplasias Intestinales/genética , Neoplasias Renales/genética , ARN Guía de Kinetoplastida/genética , Tumor de Wilms/genética , Adenoma/patología , Animales , Femenino , Edición Génica/métodos , Neoplasias Intestinales/patología , Neoplasias Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Mutación/genética , Tumor de Wilms/patología
8.
Int J Mol Sci ; 19(10)2018 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-30301262

RESUMEN

Malignant pleural mesothelioma (MPM) is a deadly cancer that is caused by asbestos exposure and that has limited treatment options. The current standard of MPM diagnosis requires the testing of multiple immunohistochemical (IHC) markers on formalin-fixed paraffin-embedded tissue to differentiate MPM from other lung malignancies. To date, no single biomarker exists for definitive diagnosis of MPM due to the lack of specificity and sensitivity; therefore, there is ongoing research and development in order to identify alternative biomarkers for this purpose. In this study, we utilized primary MPM cell lines and tested the expression of clinically used biomarker panels, including CK8/18, Calretinin, CK 5/6, CD141, HBME-1, WT-1, D2-40, EMA, CEA, TAG72, BG8, CD15, TTF-1, BAP1, and Ber-Ep4. The genomic alteration of CDNK2A and BAP1 is common in MPM and has potential diagnostic value. Changes in CDKN2A and BAP1 genomic expression were confirmed in MPM samples in the current study using Fluorescence In situ Hybridization (FISH) analysis or copy number variation (CNV) analysis with digital droplet PCR (ddPCR). To determine whether MPM tissue and cell lines were comparable in terms of molecular alterations, IHC marker expression was analyzed in both sample types. The percentage of MPM biomarker levels showed variation between original tissue and matched cells established in culture. Genomic deletions of BAP1 and CDKN2A, however, showed consistent levels between the two. The data from this study suggest that genomic deletion analysis may provide more accurate biomarker options for MPM diagnosis.


Asunto(s)
Biomarcadores de Tumor/normas , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Neoplasias Pulmonares/genética , Mesotelioma/genética , Cultivo Primario de Células/normas , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Eliminación de Gen , Humanos , Neoplasias Pulmonares/patología , Masculino , Mesotelioma/patología , Mesotelioma Maligno , Persona de Mediana Edad , Cultivo Primario de Células/métodos
9.
J Biol Chem ; 289(31): 21312-24, 2014 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-24907273

RESUMEN

The clustered regularly interspaced short [corrected] palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 nuclease system has provided a powerful tool for genome engineering. Double strand breaks may trigger nonhomologous end joining repair, leading to frameshift mutations, or homology-directed repair using an extrachromosomal template. Alternatively, genomic deletions may be produced by a pair of double strand breaks. The efficiency of CRISPR/Cas9-mediated genomic deletions has not been systematically explored. Here, we present a methodology for the production of deletions in mammalian cells, ranging from 1.3 kb to greater than 1 Mb. We observed a high frequency of intended genomic deletions. Nondeleted alleles are nonetheless often edited with inversions or small insertion/deletions produced at CRISPR recognition sites. Deleted alleles also typically include small insertion/deletions at predicted deletion junctions. We retrieved cells with biallelic deletion at a frequency exceeding that of probabilistic expectation. We demonstrate an inverse relationship between deletion frequency and deletion size. This work suggests that CRISPR/Cas9 is a robust system to produce a spectrum of genomic deletions to allow investigation of genes and genetic elements.


Asunto(s)
Sistemas CRISPR-Cas/fisiología , Eliminación de Gen , Secuencias Repetitivas Esparcidas , Animales , Secuencia de Bases , Línea Celular Tumoral , Genómica , Ratones , Datos de Secuencia Molecular
10.
Biotechnol Bioeng ; 112(5): 1060-4, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25362885

RESUMEN

The CRISPR/Cas9 system has emerged as an intriguing new technology for genome engineering. It utilizes the bacterial endonuclease Cas9 which, when delivered to eukaryotic cells in conjunction with a user-specified small guide RNA (gRNA), cleaves the chromosomal DNA at the target site. Here we show that concurrent delivery of gRNAs designed to target two different sites in a human chromosome introduce DNA double-strand breaks in the chromosome and give rise to targeted deletions of the intervening genomic segment. Predetermined genomic DNA segments ranging from several-hundred base pairs to 1 Mbp can be precisely deleted at frequencies of 1-10%, with no apparent correlation between the size of the deleted fragment and the deletion frequency. The high efficiency of this technique holds promise for large genomic deletions that could be useful in generation of cell and animal models with engineered chromosomes.


Asunto(s)
Deleción Cromosómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Roturas del ADN de Doble Cadena , ADN/genética , Marcación de Gen/métodos , ARN Guía de Kinetoplastida/genética , Secuencia de Bases , Línea Celular , Endonucleasas/genética , Ingeniería Genética/métodos , Humanos , Datos de Secuencia Molecular
11.
Hered Cancer Clin Pract ; 13(1): 2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25632310

RESUMEN

BACKGROUND: Male breast cancer (MBC) is an uncommon disease that has been the focus of limited research. It is estimated that approximately 10% of men with breast cancer have a genetic predisposition, with BRCA2 being the most prevalent genetic mutation. Here we describe the case of MBC in a 64-year-old man who presented on physical examination a nodule in his left breast and declared to have an extensive family history of cancer. METHODS AND RESULTS: The patient was firstly diagnosed with an invasive ductal carcinoma (IDC) with histological grade III, nuclear grade 3, pT4N2Mx and positive for hormonal receptors and HER2. Exome sequencing was performed by massive parallel sequencing which had detected a novel BRCA2 germline mutation that is a large genomic deletion of 3,492 nucleotides including BRCA2 exon 14, and this deletion is out of frame and is predicted to lead to a stop codon in exon 15 at codon 2,496. CONCLUSION: Large rearrangements in BRCA1 and BRCA2 occur in a small percentage (<1%) of patients tested for hereditary breast and ovarian cancer. This is the first report of the mutation del3492 in BRCA2 exon 14, which leads to a truncated protein and therefore is clinically relevant. Mutation segregation analysis should be further done in the Brazilian population. Herein we highlight the importance of next-generation sequencing in the detection of large genomic deletions.

12.
Jpn J Clin Oncol ; 44(12): 1243-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25324480

RESUMEN

The proband was a 32-year-old man with sparse type of familial adenomatous polyposis with fundic gland and duodenal polyps and congenital hypertrophy of the retinal pigment epithelium without osteoma, dental abnormalities and desmoid tumors. Direct DNA sequencing did not detect germline mutations in any APC exon. However, using the multiplex ligation-dependent probe amplification method, we detected germline deletions of all APC exons. Using dual-color fluorescence in situ hybridization, we identified germline deletion of locus 5q22.1-22.2 that includes APC. Analysis of colorectal tumors identified somatic APC mutations in the cluster region in all polyps, but no loss of heterozygosity was detected in any polyp.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Deleción Cromosómica , Cromosomas Humanos Par 5 , Adulto , Humanos , Hibridación Fluorescente in Situ , Masculino , Linaje
13.
aBIOTECH ; 5(2): 214-218, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974869

RESUMEN

Efficient and precise genomic deletion shows promise for investigating the function of proteins in plant research and enhancing agricultural traits. In this study, we tested the PRIME-Del (PDel) strategy using a pair of prime editing guide RNAs (pegRNAs) that targeted opposite DNA strands and achieved an average deletion efficiency of 55.8% for 60 bp fragment deletions at six endogenous targets. Moreover, as high as 84.2% precise deletion efficiency was obtained for a 2000 bp deletion at the OsGS1 site in transgenic rice plants. To add the bases that were unintentionally deleted between the two nicking sequences, we used the PDel/Syn strategy, which introduced multiple synonymous base mutations in the region that had to be patched in the RT template. The PDel/Syn strategy achieved an average of 58.1% deletion efficiency at six endogenous targets, which was higher than the PDel strategy. The strategies presented in this study contribute to achieving more accurate and flexible deletions in transgenic rice plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00153-9.

14.
Genes (Basel) ; 15(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39336783

RESUMEN

Purpose: To delineate the genotype and phenotype of RH in a Chinese cohort. Methods: A group of 51 Chinese probands with RH across 76 eyes was assembled and underwent complete retinal imaging examinations. Sanger sequencing and universal primer quantitative fluorescent multiplex-polymerase chain reaction (UPQFM-PCR) were employed for mutation detection in the coding region of the Von Hippel-Lindal (VHL) gene. For frequency calculation, our series was combined with three large cohorts of East Asian descent through a literature review. Results: The Von Hippel-Lindal (VHL) syndrome was excluded in fifteen patients (median age: 32.00 years) with unilateral solitary RH. Thirty-six patients of younger ages (median: 22.00 years, p = 0.008, Mann-Whitney test) conformed to the diagnostic criteria of the VHL syndrome, and thirty-four patients were genetically confirmed. There were four novel variants identified in the VHL gene. Codons 167, 161 and 86 exhibited a mutation occurrence of more than 5% after pooling with literature data, and the large genomic deletion demonstrated a frequency of 17.65%. The RHs were classified as "extrapapillary", "juxtapapillary" and "mixed" types in 53, 7 and 5 eyes, respectively. Almost all extrapapillary RH lesions were found in the peripheral retina. Hemangioblastomas in the central nervous system (CNS) were observed in 25 out of 31 kindreds (80.65%) with full systemic evaluation data. Conclusions: VHL-associated RH might exhibit earlier onset than non-VHL RH. Large genomic deletions were observed at a notably high frequency in the Chinese series with VHL-associated RH, which might be associated with East Asian ethnicity background. RH could potentially serve as an early indicator of CNS hemangioblastoma.


Asunto(s)
Hemangioblastoma , Neoplasias de la Retina , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Humanos , Hemangioblastoma/genética , Hemangioblastoma/patología , Femenino , Masculino , Adulto , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Persona de Mediana Edad , Adolescente , Niño , Neoplasias de la Retina/genética , Neoplasias de la Retina/patología , Mutación , Fenotipo , Adulto Joven , Genotipo , Enfermedad de von Hippel-Lindau/genética , Enfermedad de von Hippel-Lindau/patología , Preescolar , Pueblo Asiatico/genética , China , Anciano , Estudios de Cohortes , Pueblos del Este de Asia
15.
Diagnostics (Basel) ; 14(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39202220

RESUMEN

When an increased nuchal translucency (>3.00 mm) is observed during the echographic examination of a foetus in the first trimester of pregnancy, an increased risk of chromosomopathy is considered, and the pregnant woman is offered the possibility of an invasive investigation. Here, we focused our attention on prenatal diagnosis issues in cases of foetuses with cytogenetically balanced reciprocal translocations. We report the finding of a cytogenetically balanced, de facto genomically unbalanced translocation that poses a challenge in a case of prenatal diagnosis, changing the risk of Down syndrome in a Zellweger syndromic spectrum risk (PEX3 deletion). At term, a healthy baby was born. This case teaches that prenatal diagnosis in cases of foetuses at increased risk of chromosomal abnormality imperatively requires molecular investigation in addition to a morphological karyotype.

17.
BMC Med Genomics ; 16(1): 4, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635699

RESUMEN

BACKGROUND: KIAA0586, also known as Talpid3, plays critical roles in primary cilia formation and hedgehog signaling in humans. Variants in KIAA0586 could cause some different ciliopathies, including Joubert syndrome (JBTS), which is a clinically and genetically heterogeneous group of autosomal recessive neurological disorders. METHODS AND RESULTS: A 9-month-old girl was diagnosed as JBTS by the "molar tooth sign" of the mid-brain and global developmental delay. By whole-exome sequencing, we identified a single nucleotide variant c.3303G > A and a 1.38-kb deletion in KIAA0586 in the proband. These two variants of KIAA0586 were consistent with the mode of autosomal recessive inheritance in the family, which was verified using Sanger sequencing. CONCLUSIONS: This finding of a compound heterozygote with a 1.38-kb deletion and c.3303G > A gave a precise genetic diagnosis for the patient, and the novel 1.38-kb deletion also expanded the pathogenic variation spectrum of JBTS caused by KIAA0586.


Asunto(s)
Anomalías Múltiples , Anomalías del Ojo , Enfermedades Renales Quísticas , Femenino , Humanos , Lactante , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cerebelo , Anomalías del Ojo/genética , Anomalías del Ojo/diagnóstico , Proteínas Hedgehog/genética , Enfermedades Renales Quísticas/genética , Mutación , Nucleótidos , Linaje , Retina/patología
18.
Microorganisms ; 11(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374972

RESUMEN

Streptomyces coelicolor M145 is a model strain extensively studied to elucidate the regulation of antibiotic biosynthesis in Streptomyces species. This strain abundantly produces the blue polyketide antibiotic, actinorhodin (ACT), and has a low lipid content. In a process designed to delete the gene encoding the isocitrate lyase (sco0982) of the glyoxylate cycle, an unexpected variant of S. coelicolor was obtained besides bona fide sco0982 deletion mutants. This variant produces 7- to 15-fold less ACT and has a 3-fold higher triacylglycerol and phosphatidylethanolamine content than the original strain. The genome of this variant was sequenced and revealed that 704 genes were deleted (9% of total number of genes) through deletions of various sizes accompanied by the massive loss of mobile genetic elements. Some deletions include genes whose absence could be related to the high total lipid content of this variant such as those encoding enzymes of the TCA and glyoxylate cycles, enzymes involved in nitrogen assimilation as well as enzymes belonging to some polyketide and possibly trehalose biosynthetic pathways. The characteristics of this deleted variant of S. coelicolor are consistent with the existence of the previously reported negative correlation existing between lipid content and antibiotic production in Streptomyces species.

19.
Viruses ; 14(11)2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36366490

RESUMEN

Monkeypox virus, the causative agent of the 2022 monkeypox outbreak, is a double-stranded DNA virus in the Orthopoxvirus genus of the Poxviridae family. Genes in terminal regions of Orthopoxvirus genomes mostly code for host-pathogen interaction proteins and are prone to selective pressure and modification events. Using viral whole genome sequencing, we identified twenty-five total clinical samples with ORF-disrupting mutations, including twenty samples encoding nonsense mutations in MPXVgp001/191 (OPG001), MPXVgp004/188 (OPG015), MPXVgp010 (OPG023), MPXVgp030 (OPG042), MPXVgp159 (OPG0178), or MPXVgp161 (OPG181). Additional mutations include a frameshift leading to an alternative C-terminus in MPXVgp010 (OPG023) and an insertion in an adenine homopolymer at the beginning of the annotated ORF for MPXVgp153 (OPG151), encoding a subunit of the RNA polymerase, suggesting the virus may instead use the start codon that encodes Met9 as annotated. Finally, we detected three samples with large (>900 bp) deletions. These included a 913 bp deletion that truncates the C-terminus of MPXVgp010 (OPG023); a 4205 bp deletion that eliminates MPXVgp012 (OPG025), MPXVgp013 (OPG027), and MPXVgp014 (OPG029) and truncates MPXVgp011 (OPG024; D8L) and MPXVgp015 (OPG030); and a 6881 bp deletion that truncates MPXVgp182 (OPG210) and eliminates putative ORFs MPXVgp184, MPXVgp185 (OPG005), and MPXVgp186, as well as MPXVgp187 (OPG016), and MPXVgp188 (OPG015) from the 3' ITR only. MPXVgp182 encodes the monkeypox-specific, highly immunogenic surface glycoprotein B21R which has been proposed as a serological target. Overall, we find greater than one-tenth of our sequenced MPXV isolates have at least one gene inactivating mutation and these genes together comprised greater than one-tenth of annotated MPXV genes. Our findings highlight non-essential genes in monkeypox virus that may be evolving as a result of selective pressure in humans, as well as the limitations of targeting them for therapeutics and diagnostic testing.


Asunto(s)
Monkeypox virus , Mpox , Humanos , Mpox/diagnóstico , Monkeypox virus/genética , Mutación , Ohio , Washingtón , Sistemas de Lectura Abierta
20.
Vaccines (Basel) ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36016091

RESUMEN

Major EV-B populations characterized by 5' terminal deletions (5'TD) have been shown to be associated with the development of myocarditis and type 1 diabetes in mice or humans. To date, the dynamics of EV-B 5'TD-RNA forms' emergence during the course of infection and their impact on cellular functions remain unclear. Using a RACE-PCR approach in CVB3/28-infected mouse organs, we showed an early (3 days post infection, DPI) emergence of major 5'TD populations associated with minor full-length RNA forms. Viral replication activities with infectious particle production were associated with heart, liver, and pancreas acute inflammatory lesions, whereas clearance of viral RNA without organ lesions was observed in the brain, lung, intestines, and muscles from 3 to 7 DPI. At 28 DPI, low viral RNA levels, +/-RNA ratios < 5 associated with viral protein 1 expression revealed a persistent infection in the heart and pancreas. This persistent infection was characterized by molecular detection of only 5'TD RNA forms that were associated with dystrophin cleavage in the heart and insulin production impairment in beta-pancreatic cells. These results demonstrated that major EV-B 5'TD RNA forms can be early selected during systemic infection and that their maintenance may drive EV-induced acute and persistent infections with target cell dysfunctions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA