Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.928
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39395413

RESUMEN

Hachiman is a broad-spectrum antiphage defense system of unknown function. We show here that Hachiman is a heterodimeric nuclease-helicase complex, HamAB. HamA, previously a protein of unknown function, is the effector nuclease. HamB is the sensor helicase. HamB constrains HamA activity during surveillance of intact double-stranded DNA (dsDNA). When the HamAB complex detects DNA damage, HamB helicase activity activates HamA, unleashing nuclease activity. Hachiman activation degrades all DNA in the cell, creating "phantom" cells devoid of both phage and host DNA. We demonstrate Hachiman activation in the absence of phage by treatment with DNA-damaging agents, suggesting that Hachiman responds to aberrant DNA states. Phylogenetic similarities between the Hachiman helicase and enzymes from eukaryotes and archaea suggest deep functional symmetries with other important helicases across domains of life.

2.
Cell ; 185(12): 2132-2147.e26, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35688134

RESUMEN

RNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core. All three subunits collaborate to bind the RNA, with RBM7 and ZCCHC8 surveying sequences upstream of the 3' end to facilitate RNA capture by MTR4. ZCCHC8 obscures MTR4 surfaces important for RNA binding and extrusion as well as MPP6-dependent recruitment and docking onto the RNA exosome core, interactions that contribute to RNA surveillance by coordinating RNA capture, translocation, and extrusion from the helicase to the exosome for decay.


Asunto(s)
Exosomas , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , ARN/metabolismo , Estabilidad del ARN
3.
Annu Rev Biochem ; 90: 77-106, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33784179

RESUMEN

The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein-nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes.


Asunto(s)
Replicación del ADN , ADN/biosíntesis , Eucariontes/genética , Complejo de Reconocimiento del Origen/metabolismo , Animales , ADN/química , ADN Polimerasa III/química , ADN Polimerasa III/metabolismo , Humanos , Complejo de Reconocimiento del Origen/química , Complejo de Reconocimiento del Origen/genética , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/metabolismo
4.
Cell ; 176(1-2): 167-181.e21, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30595447

RESUMEN

Covalent DNA-protein cross-links (DPCs) impede replication fork progression and threaten genome integrity. Using Xenopus egg extracts, we previously showed that replication fork collision with DPCs causes their proteolysis, followed by translesion DNA synthesis. We show here that when DPC proteolysis is blocked, the replicative DNA helicase CMG (CDC45, MCM2-7, GINS), which travels on the leading strand template, bypasses an intact leading strand DPC. Single-molecule imaging reveals that GINS does not dissociate from CMG during bypass and that CMG slows dramatically after bypass, likely due to uncoupling from the stalled leading strand. The DNA helicase RTEL1 facilitates bypass, apparently by generating single-stranded DNA beyond the DPC. The absence of RTEL1 impairs DPC proteolysis, suggesting that CMG must bypass the DPC to enable proteolysis. Our results suggest a mechanism that prevents inadvertent CMG destruction by DPC proteases, and they reveal CMG's remarkable capacity to overcome obstacles on its translocation strand.


Asunto(s)
ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Reparación del ADN/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple , Proteínas de Unión al ADN/fisiología , Femenino , Masculino , Proteolisis , Imagen Individual de Molécula/métodos , Xenopus laevis/metabolismo
5.
Cell ; 179(7): 1499-1511.e10, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835029

RESUMEN

Natural transformation (NT) is a major mechanism of horizontal gene transfer in microbial species that promotes the spread of antibiotic-resistance determinants and virulence factors. Here, we develop a cell biological approach to characterize the spatiotemporal dynamics of homologous recombination during NT in Vibrio cholerae. Our results directly demonstrate (1) that transforming DNA efficiently integrates into the genome as single-stranded DNA, (2) that the resulting heteroduplexes are resolved by chromosome replication and segregation, and (3) that integrated DNA is rapidly expressed prior to cell division. We show that the combination of these properties results in the nongenetic transfer of gene products within transformed populations, which can support phenotypic inheritance of antibiotic resistance in both V. cholerae and Streptococcus pneumoniae. Thus, beyond the genetic acquisition of novel DNA sequences, NT can also promote the nongenetic inheritance of traits during this conserved mechanism of horizontal gene transfer.


Asunto(s)
Transferencia de Gen Horizontal , Recombinación Homóloga , Streptococcus pneumoniae/genética , Transformación Genética , Vibrio cholerae/genética , Replicación del ADN , Farmacorresistencia Bacteriana/genética
6.
Cell ; 173(7): 1663-1677.e21, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29906447

RESUMEN

The ribonucleolytic RNA exosome interacts with RNA helicases to degrade RNA. To understand how the 3' to 5' Mtr4 helicase engages RNA and the nuclear exosome, we reconstituted 14-subunit Mtr4-containing RNA exosomes from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human and show that they unwind structured substrates to promote degradation. We loaded a human exosome with an optimized DNA-RNA chimera that stalls MTR4 during unwinding and determined its structure to an overall resolution of 3.45 Å by cryoelectron microscopy (cryo-EM). The structure reveals an RNA-engaged helicase atop the non-catalytic core, with RNA captured within the central channel and DIS3 exoribonuclease active site. MPP6 tethers MTR4 to the exosome through contacts to the RecA domains of MTR4. EXOSC10 remains bound to the core, but its catalytic module and cofactor C1D are displaced by RNA-engaged MTR4. Competition for the exosome core may ensure that RNA is committed to degradation by DIS3 when engaged by MTR4.


Asunto(s)
ADN Helicasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Helicasas/metabolismo , ARN/metabolismo , Dominio Catalítico , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Exorribonucleasas/química , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Humanos , Procesamiento de Imagen Asistido por Computador , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , ARN/genética , ARN Helicasas/química , Estabilidad del ARN , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidad por Sustrato
7.
Annu Rev Biochem ; 86: 417-438, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28301743

RESUMEN

This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.


Asunto(s)
ADN Helicasas/genética , ADN Polimerasa II/genética , Replicación del ADN , ADN/genética , Células Eucariotas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , ADN Helicasas/metabolismo , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa II/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/citología , Humanos , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo
8.
Cell ; 170(4): 760-773.e15, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28781165

RESUMEN

Inaccurate repair of broken chromosomes generates structural variants that can fuel evolution and inflict pathology. We describe a novel rearrangement mechanism in which translocation between intact chromosomes is induced by a lesion on a third chromosome. This multi-invasion-induced rearrangement (MIR) stems from a homologous recombination byproduct, where a broken DNA end simultaneously invades two intact donors. No homology is required between the donors, and the intervening sequence from the invading molecule is inserted at the translocation site. MIR is stimulated by increasing homology length and spatial proximity of the donors and depends on the overlapping activities of the structure-selective endonucleases Mus81-Mms4, Slx1-Slx4, and Yen1. Conversely, the 3'-flap nuclease Rad1-Rad10 and enzymes known to disrupt recombination intermediates (Sgs1-Top3-Rmi1, Srs2, and Mph1) inhibit MIR. Resolution of MIR intermediates propagates secondary chromosome breaks that frequently cause additional rearrangements. MIR features have implications for the formation of simple and complex rearrangements underlying human pathologies.


Asunto(s)
Cromosomas/metabolismo , Reparación del ADN , Inestabilidad Genómica , Translocación Genética , Roturas del ADN de Doble Cadena , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Recombinación Homóloga , Humanos , Saccharomyces cerevisiae/genética
9.
Cell ; 170(1): 48-60.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666122

RESUMEN

Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.


Asunto(s)
Actinobacteria/genética , Actinobacteria/ultraestructura , Sistemas CRISPR-Cas , Hibridación de Ácido Nucleico , Actinobacteria/química , Actinobacteria/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
10.
Cell ; 171(1): 120-132.e12, 2017 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-28919079

RESUMEN

The disassembly of the intron lariat spliceosome (ILS) marks the end of a splicing cycle. Here we report a cryoelectron microscopy structure of the ILS complex from Saccharomyces cerevisiae at an average resolution of 3.5 Å. The intron lariat remains bound in the spliceosome whereas the ligated exon is already dissociated. The step II splicing factors Prp17 and Prp18, along with Cwc21 and Cwc22 that stabilize the 5' exon binding to loop I of U5 small nuclear RNA (snRNA), have been released from the active site assembly. The DEAH family ATPase/helicase Prp43 binds Syf1 at the periphery of the spliceosome, with its RNA-binding site close to the 3' end of U6 snRNA. The C-terminal domain of Ntr1/Spp382 associates with the GTPase Snu114, and Ntr2 is anchored to Prp8 while interacting with the superhelical domain of Ntr1. These structural features suggest a plausible mechanism for the disassembly of the ILS complex.


Asunto(s)
Intrones , Empalmosomas/ultraestructura , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , Modelos Moleculares , Precursores del ARN/química , Precursores del ARN/ultraestructura , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/ultraestructura , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/química , Empalmosomas/química
11.
Cell ; 171(7): 1589-1598.e8, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29153833

RESUMEN

Removal of an intron from a pre-mRNA by the spliceosome results in the ligation of two exons in the post-catalytic spliceosome (known as the P complex). Here, we present a cryo-EM structure of the P complex from Saccharomyces cerevisiae at an average resolution of 3.6 Å. The ligated exon is held in the active site through RNA-RNA contacts. Three bases at the 3' end of the 5' exon remain anchored to loop I of U5 small nuclear RNA, and the conserved AG nucleotides of the 3'-splice site (3'SS) are specifically recognized by the invariant adenine of the branch point sequence, the guanine base at the 5' end of the 5'SS, and an adenine base of U6 snRNA. The 3'SS is stabilized through an interaction with the 1585-loop of Prp8. The P complex structure provides a view on splice junction formation critical for understanding the complete splicing cycle.


Asunto(s)
Saccharomyces cerevisiae/química , Empalmosomas/química , Microscopía por Crioelectrón , Humanos , Modelos Moleculares , Empalme del ARN , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
12.
Mol Cell ; 84(9): 1684-1698.e9, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593805

RESUMEN

The Bloom syndrome (BLM) helicase is critical for alternative lengthening of telomeres (ALT), a homology-directed repair (HDR)-mediated telomere maintenance mechanism that is prevalent in cancers of mesenchymal origin. The DNA substrates that BLM engages to direct telomere recombination during ALT remain unknown. Here, we determine that BLM helicase acts on lagging strand telomere intermediates that occur specifically in ALT-positive cells to assemble a replication-associated DNA damage response. Loss of ATRX was permissive for BLM localization to ALT telomeres in S and G2, commensurate with the appearance of telomere C-strand-specific single-stranded DNA (ssDNA). DNA2 nuclease deficiency increased 5'-flap formation in a BLM-dependent manner, while telomere C-strand, but not G-strand, nicks promoted ALT. These findings define the seminal events in the ALT DNA damage response, linking aberrant telomeric lagging strand DNA replication with a BLM-directed HDR mechanism that sustains telomere length in a subset of human cancers.


Asunto(s)
Daño del ADN , Replicación del ADN , RecQ Helicasas , Homeostasis del Telómero , Telómero , RecQ Helicasas/metabolismo , RecQ Helicasas/genética , Humanos , Telómero/metabolismo , Telómero/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/genética , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , Síndrome de Bloom/enzimología , Síndrome de Bloom/patología , Línea Celular Tumoral
13.
Mol Cell ; 84(18): 3482-3496.e7, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39178862

RESUMEN

Binding of the bacterial Rho helicase to nascent transcripts triggers Rho-dependent transcription termination (RDTT) in response to cellular signals that modulate mRNA structure and accessibility of Rho utilization (Rut) sites. Despite the impact of temperature on RNA structure, RDTT was never linked to the bacterial response to temperature shifts. We show that Rho is a central player in the cold-shock response (CSR), challenging the current view that CSR is primarily a posttranscriptional program. We identify Rut sites in 5'-untranslated regions of key CSR genes/operons (cspA, cspB, cspG, and nsrR-rnr-yjfHI) that trigger premature RDTT at 37°C but not at 15°C. High concentrations of RNA chaperone CspA or nucleotide changes in the cspA mRNA leader reduce RDTT efficiency, revealing how RNA restructuring directs Rho to activate CSR genes during the cold shock and to silence them during cold acclimation. These findings establish a paradigm for how RNA thermosensors can modulate gene expression.


Asunto(s)
Regiones no Traducidas 5' , Respuesta al Choque por Frío , Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano , Factor Rho , Factor Rho/metabolismo , Factor Rho/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Respuesta al Choque por Frío/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Terminación de la Transcripción Genética , Frío , Transcripción Genética , Operón , Proteínas y Péptidos de Choque por Frío
14.
Mol Cell ; 84(18): 3469-3481.e7, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39236719

RESUMEN

Topoisomerase 1 cleavage complexes (Top1-ccs) comprise a DNA-protein crosslink and a single-stranded DNA break that can significantly impact the DNA replication machinery (replisome). Consequently, inhibitors that trap Top1-ccs are used extensively in research and clinical settings to generate DNA replication stress, yet how the replisome responds upon collision with a Top1-cc remains obscure. By reconstituting collisions between budding yeast replisomes, assembled from purified proteins, and site-specific Top1-ccs, we have uncovered mechanisms underlying replication fork stalling and collapse. We find that stalled replication forks are surprisingly stable and that their stability is influenced by the template strand that Top1 is crosslinked to, the fork protection complex proteins Tof1-Csm3 (human TIMELESS-TIPIN), and the convergence of replication forks. Moreover, nascent-strand mapping and cryoelectron microscopy (cryo-EM) of stalled forks establishes replisome remodeling as a key factor in the initial response to Top1-ccs. These findings have important implications for the use of Top1 inhibitors in research and in the clinic.


Asunto(s)
Replicación del ADN , ADN-Topoisomerasas de Tipo I , Proteínas de Unión al ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Microscopía por Crioelectrón , ADN de Hongos/metabolismo , ADN de Hongos/genética , Roturas del ADN de Cadena Simple , Humanos
15.
Mol Cell ; 84(8): 1460-1474.e6, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640894

RESUMEN

DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Replicación del ADN , ADN de Cadena Simple/genética , ADN Helicasas/genética , Reparación del ADN por Unión de Extremidades
16.
Annu Rev Biochem ; 85: 193-226, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27088880

RESUMEN

The repair of DNA by homologous recombination is an essential, efficient, and high-fidelity process that mends DNA lesions formed during cellular metabolism; these lesions include double-stranded DNA breaks, daughter-strand gaps, and DNA cross-links. Genetic defects in the homologous recombination pathway undermine genomic integrity and cause the accumulation of gross chromosomal abnormalities-including rearrangements, deletions, and aneuploidy-that contribute to cancer formation. Recombination proceeds through the formation of joint DNA molecules-homologously paired but metastable DNA intermediates that are processed by several alternative subpathways-making recombination a versatile and robust mechanism to repair damaged chromosomes. Modern biophysical methods make it possible to visualize, probe, and manipulate the individual molecules participating in the intermediate steps of recombination, revealing new details about the mechanics of genetic recombination. We review and discuss the individual stages of homologous recombination, focusing on common pathways in bacteria, yeast, and humans, and place particular emphasis on the molecular mechanisms illuminated by single-molecule methods.


Asunto(s)
ADN/genética , Escherichia coli/genética , Recombinación Genética , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Aberraciones Cromosómicas , ADN/metabolismo , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Escherichia coli/metabolismo , Exodesoxirribonucleasa V/genética , Exodesoxirribonucleasa V/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen Individual de Molécula
17.
Mol Cell ; 83(22): 4174-4189.e7, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37949067

RESUMEN

Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Humanos , Virus Chikungunya/genética , Línea Celular , Fiebre Chikungunya/metabolismo , ARN Helicasas/metabolismo , Replicación Viral/genética , ARN Viral/genética , ARN Viral/metabolismo , Antivirales/farmacología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo
18.
Mol Cell ; 83(16): 2911-2924.e16, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37506699

RESUMEN

During eukaryotic DNA replication, Pol α-primase generates primers at replication origins to start leading-strand synthesis and every few hundred nucleotides during discontinuous lagging-strand replication. How Pol α-primase is targeted to replication forks to prime DNA synthesis is not fully understood. Here, by determining cryoelectron microscopy (cryo-EM) structures of budding yeast and human replisomes containing Pol α-primase, we reveal a conserved mechanism for the coordination of priming by the replisome. Pol α-primase binds directly to the leading edge of the CMG (CDC45-MCM-GINS) replicative helicase via a complex interaction network. The non-catalytic PRIM2/Pri2 subunit forms two interfaces with CMG that are critical for in vitro DNA replication and yeast cell growth. These interactions position the primase catalytic subunit PRIM1/Pri1 directly above the exit channel for lagging-strand template single-stranded DNA (ssDNA), revealing why priming occurs efficiently only on the lagging-strand template and elucidating a mechanism for Pol α-primase to overcome competition from RPA to initiate primer synthesis.


Asunto(s)
ADN Primasa , Replicación del ADN , Humanos , ADN Primasa/genética , ADN Primasa/metabolismo , Microscopía por Crioelectrón , ADN Helicasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN de Cadena Simple/metabolismo
19.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37820732

RESUMEN

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Asunto(s)
Proteínas de Ciclo Celular , ADN Helicasas , Proteínas Nucleares , Animales , Humanos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Activación Enzimática
20.
Mol Cell ; 83(1): 26-42.e13, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36608667

RESUMEN

Human cells license tens of thousands of origins of replication in G1 and then must stop all licensing before DNA synthesis in S phase to prevent re-replication and genome instability that ensue when an origin is licensed on replicated DNA. However, the E3 ubiquitin ligase CRL4Cdt2 only starts to degrade the licensing factor CDT1 after origin firing, raising the question of how cells prevent re-replication before CDT1 is fully degraded. Here, using quantitative microscopy and in-vitro-reconstituted human DNA replication, we show that CDT1 inhibits DNA synthesis during an overlap period when CDT1 is still present after origin firing. CDT1 inhibits DNA synthesis by suppressing CMG helicase at replication forks, and DNA synthesis commences once CDT1 is degraded. Thus, in contrast to the prevailing model that human cells prevent re-replication by strictly separating licensing from firing, licensing and firing overlap, and cells instead separate licensing from DNA synthesis.


Asunto(s)
Proteínas de Ciclo Celular , Replicación del ADN , Humanos , Fase S , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , ADN/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA