Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.427
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(20): 5572-5586.e15, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39197451

RESUMEN

DNA polymerases are important drug targets, and many structural studies have captured them in distinct conformations. However, a detailed understanding of the impact of polymerase conformational dynamics on drug resistance is lacking. We determined cryoelectron microscopy (cryo-EM) structures of DNA-bound herpes simplex virus polymerase holoenzyme in multiple conformations and interacting with antivirals in clinical use. These structures reveal how the catalytic subunit Pol and the processivity factor UL42 bind DNA to promote processive DNA synthesis. Unexpectedly, in the absence of an incoming nucleotide, we observed Pol in multiple conformations with the closed state sampled by the fingers domain. Drug-bound structures reveal how antivirals may selectively bind enzymes that more readily adopt the closed conformation. Molecular dynamics simulations and the cryo-EM structure of a drug-resistant mutant indicate that some resistance mutations modulate conformational dynamics rather than directly impacting drug binding, thus clarifying mechanisms that drive drug selectivity.


Asunto(s)
Antivirales , Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Farmacorresistencia Viral , Simulación de Dinámica Molecular , Proteínas Virales , Antivirales/farmacología , Antivirales/química , Antivirales/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Proteínas Virales/metabolismo , Proteínas Virales/química , Humanos , ADN Viral/metabolismo , Exodesoxirribonucleasas
2.
Cell ; 184(3): 643-654.e13, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482082

RESUMEN

Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persists as a multicopy episome in proliferating host cells. Episome maintenance is strictly dependent on EBNA1, a sequence-specific DNA-binding protein with no known enzymatic activities. Here, we show that EBNA1 forms a cell cycle-dependent DNA crosslink with the EBV origin of plasmid replication oriP. EBNA1 tyrosine 518 (Y518) is essential for crosslinking to oriP and functionally required for episome maintenance and generation of EBV-transformed lymphoblastoid cell lines (LCLs). Mechanistically, Y518 is required for replication fork termination at oriP in vivo and for formation of SDS-resistant complexes in vitro. EBNA1-DNA crosslinking corresponds to single-strand endonuclease activity specific to DNA structures enriched at replication-termination sites, such as 4-way junctions. These findings reveal that EBNA1 forms tyrosine-dependent DNA-protein crosslinks and single-strand cleavage at oriP required for replication termination and viral episome maintenance.


Asunto(s)
Ciclo Celular , Reactivos de Enlaces Cruzados/química , ADN Viral/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Plásmidos/metabolismo , Origen de Réplica , Replicación Viral/fisiología , Secuencia de Aminoácidos , Linfocitos B/metabolismo , Línea Celular , Aductos de ADN/metabolismo , Replicación del ADN , Endonucleasas/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/química , Antígenos Nucleares del Virus de Epstein-Barr/genética , Humanos , Mutación/genética , Unión Proteica , Recombinación Genética/genética , Tirosina/metabolismo
3.
Cell ; 178(6): 1329-1343.e12, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447177

RESUMEN

Assembly of Kaposi's sarcoma-associated herpesvirus (KSHV) begins at a bacteriophage-like portal complex that nucleates formation of an icosahedral capsid with capsid-associated tegument complexes (CATCs) and facilitates translocation of an ∼150-kb dsDNA genome, followed by acquisition of a pleomorphic tegument and envelope. Because of deviation from icosahedral symmetry, KSHV portal and tegument structures have largely been obscured in previous studies. Using symmetry-relaxed cryo-EM, we determined the in situ structure of the KSHV portal and its interactions with surrounding capsid proteins, CATCs, and the terminal end of KSHV's dsDNA genome. Our atomic models of the portal and capsid/CATC, together with visualization of CATCs' variable occupancy and alternate orientation of CATC-interacting vertex triplexes, suggest a mechanism whereby the portal orchestrates procapsid formation and asymmetric long-range determination of CATC attachment during DNA packaging prior to pleomorphic tegumentation/envelopment. Structure-based mutageneses confirm that a triplex deep binding groove for CATCs is a hotspot that holds promise for antiviral development.


Asunto(s)
Proteínas de la Cápside/química , Cápside/metabolismo , Empaquetamiento del ADN , Herpesvirus Humano 8/química , Herpesvirus Humano 8/fisiología , Sarcoma de Kaposi/virología , Ensamble de Virus , Microscopía por Crioelectrón/métodos , ADN Viral/metabolismo , Genoma Viral , Humanos , Modelos Moleculares
4.
Immunity ; 57(3): 559-573.e6, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38479361

RESUMEN

Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with B cell lymphomas. EBV glycoprotein 42 (gp42) binds HLA class II and activates membrane fusion with B cells. We isolated gp42-specific monoclonal antibodies (mAbs), A10 and 4C12, which use distinct mechanisms to neutralize virus infection. mAb A10 was more potent than the only known neutralizing gp42 mAb, F-2-1, in neutralizing EBV infection and blocking binding to HLA class II. mAb 4C12 was similar to mAb A10 in inhibiting glycoprotein-mediated B cell fusion but did not block receptor binding, and it was less effective in neutralizing infection. Crystallographic structures of gH/gL/gp42/A10 and gp42/4C12 complexes revealed two distinct sites of vulnerability on gp42 for receptor binding and B cell fusion. Passive transfer of mAb A10 into humanized mice conferred nearly 100% protection from viremia and EBV lymphomas after EBV challenge. These findings identify vulnerable sites on EBV that may facilitate therapeutics and vaccines.


Asunto(s)
Bencenoacetamidas , Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Piperidonas , Animales , Ratones , Proteínas Virales/metabolismo , Glicoproteínas/metabolismo , Anticuerpos Antivirales
5.
Immunity ; 55(11): 2135-2148.e6, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36306784

RESUMEN

Epstein-Barr virus (EBV) is nearly ubiquitous in adults. EBV causes infectious mononucleosis and is associated with B cell lymphomas, epithelial cell malignancies, and multiple sclerosis. The EBV gH/gL glycoprotein complex facilitates fusion of virus membrane with host cells and is a target of neutralizing antibodies. Here, we examined the sites of vulnerability for virus neutralization and fusion inhibition within EBV gH/gL. We developed a panel of human monoclonal antibodies (mAbs) that targeted five distinct antigenic sites on EBV gH/gL and prevented infection of epithelial and B cells. Structural analyses using X-ray crystallography and electron microscopy revealed multiple sites of vulnerability and defined the antigenic landscape of EBV gH/gL. One mAb provided near-complete protection against viremia and lymphoma in a humanized mouse EBV challenge model. Our findings provide structural and antigenic knowledge of the viral fusion machinery, yield a potential therapeutic antibody to prevent EBV disease, and emphasize gH/gL as a target for herpesvirus vaccines and therapeutics.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Cricetinae , Ratones , Animales , Humanos , Proteínas del Envoltorio Viral , Cricetulus , Glicoproteínas de Membrana , Células CHO
6.
Mol Cell ; 83(13): 2367-2386.e15, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37311461

RESUMEN

Epstein-Barr virus (EBV) causes infectious mononucleosis, triggers multiple sclerosis, and is associated with 200,000 cancers/year. EBV colonizes the human B cell compartment and periodically reactivates, inducing expression of 80 viral proteins. However, much remains unknown about how EBV remodels host cells and dismantles key antiviral responses. We therefore created a map of EBV-host and EBV-EBV interactions in B cells undergoing EBV replication, uncovering conserved herpesvirus versus EBV-specific host cell targets. The EBV-encoded G-protein-coupled receptor BILF1 associated with MAVS and the UFM1 E3 ligase UFL1. Although UFMylation of 14-3-3 proteins drives RIG-I/MAVS signaling, BILF1-directed MAVS UFMylation instead triggered MAVS packaging into mitochondrial-derived vesicles and lysosomal proteolysis. In the absence of BILF1, EBV replication activated the NLRP3 inflammasome, which impaired viral replication and triggered pyroptosis. Our results provide a viral protein interaction network resource, reveal a UFM1-dependent pathway for selective degradation of mitochondrial cargo, and highlight BILF1 as a novel therapeutic target.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mapas de Interacción de Proteínas
7.
Immunity ; 52(5): 767-781.e6, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32277911

RESUMEN

The enzyme cyclic GMP-AMP synthase (cGAS) senses cytosolic DNA in infected and malignant cells and catalyzes the formation of 2'3'cGMP-AMP (cGAMP), which in turn triggers interferon (IFN) production via the STING pathway. Here, we examined the contribution of anion channels to cGAMP transfer and anti-viral defense. A candidate screen revealed that inhibition of volume-regulated anion channels (VRACs) increased propagation of the DNA virus HSV-1 but not the RNA virus VSV. Chemical blockade or genetic ablation of LRRC8A/SWELL1, a VRAC subunit, resulted in defective IFN responses to HSV-1. Biochemical and electrophysiological analyses revealed that LRRC8A/LRRC8E-containing VRACs transport cGAMP and cyclic dinucleotides across the plasma membrane. Enhancing VRAC activity by hypotonic cell swelling, cisplatin, GTPγS, or the cytokines TNF or interleukin-1 increased STING-dependent IFN response to extracellular but not intracellular cGAMP. Lrrc8e-/- mice exhibited impaired IFN responses and compromised immunity to HSV-1. Our findings suggest that cell-to-cell transmission of cGAMP via LRRC8/VRAC channels is central to effective anti-viral immunity.


Asunto(s)
Fibroblastos/inmunología , Interferones/inmunología , Proteínas de la Membrana/inmunología , Nucleótidos Cíclicos/inmunología , Canales Aniónicos Dependientes del Voltaje/inmunología , Animales , Antivirales/inmunología , Antivirales/metabolismo , Efecto Espectador , Línea Celular , Células Cultivadas , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/fisiología , Humanos , Interferones/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
8.
Mol Cell ; 81(13): 2823-2837.e9, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34015248

RESUMEN

DNA-induced liquid-liquid phase separation of cyclic GMP-AMP synthase (cGAS) triggers a potent response to detect pathogen infection and promote innate immune signaling. Whether and how pathogens manipulate cGAS-DNA condensation to mediate immune evasion is unknown. We report the identification of a structurally related viral tegument protein family, represented by ORF52 and VP22 from gamma- and alpha-herpesvirinae, respectively, that employs a conserved mechanism to restrict cGAS-DNA phase separation. ORF52/VP22 proteins accumulate into, and effectively disrupt, the pre-formed cGAS-DNA condensation both in vitro and in cells. The inhibition process is dependent on DNA-induced liquid-liquid phase separation of the viral protein rather than a direct interaction with cGAS. Moreover, highly abundant ORF52 proteins carried within viral particles are able to target cGAS-DNA phase separation in early infection stage. Our results define ORF52/VP22-type tegument proteins as a family of inhibitors targeting cGAS-DNA phase separation and demonstrate a mechanism for how viruses overcome innate immunity.


Asunto(s)
Alphaherpesvirinae , Betaherpesvirinae , ADN , Infecciones por Herpesviridae , Evasión Inmune , Nucleotidiltransferasas , Proteínas Estructurales Virales , Alphaherpesvirinae/química , Alphaherpesvirinae/genética , Alphaherpesvirinae/inmunología , Betaherpesvirinae/química , Betaherpesvirinae/genética , Betaherpesvirinae/inmunología , ADN/química , ADN/genética , ADN/inmunología , Células HEK293 , Células HeLa , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/inmunología , Humanos , Inmunidad Innata , Nucleotidiltransferasas/química , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/inmunología
9.
Mol Cell ; 78(4): 653-669.e8, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32315601

RESUMEN

Epstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood. To gain insights, we performed a human genome-wide CRISPR/Cas9 screen in Burkitt lymphoma B cells. Our analyses identified a network of host factors that repress lytic reactivation, centered on the transcription factor MYC, including cohesins, FACT, STAGA, and Mediator. Depletion of MYC or factors important for MYC expression reactivated the lytic cycle, including in Burkitt xenografts. MYC bound the EBV genome origin of lytic replication and suppressed its looping to the lytic cycle initiator BZLF1 promoter. Notably, MYC abundance decreases with plasma cell differentiation, a key lytic reactivation trigger. Our results suggest that EBV senses MYC abundance as a readout of B cell state and highlights Burkitt latency reversal therapeutic targets.


Asunto(s)
Linfoma de Burkitt/patología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Viral , Latencia del Virus , Animales , Linfocitos B/metabolismo , Linfocitos B/patología , Linfocitos B/virología , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/virología , Proliferación Celular , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Femenino , Regulación Viral de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Trends Immunol ; 45(9): 662-677, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39198098

RESUMEN

Herpesviruses are DNA viruses and the cause of diseases ranging from mild skin conditions to severe brain diseases. Mammalian antiviral host defense comprises an array of mechanisms, including restriction factors (RFs), which block specific steps in viral replication cycles. In recent years, knowledge of RFs that contribute to controlling herpesvirus infections has expanded significantly, along with a new understanding of viral evasion mechanisms and disease pathogenesis. By integrating findings from human genetics, murine models, and cellular studies, this review provides a current view of RF control of herpesvirus infections. We also explore the regulation of RF expression, discuss the roles of RFs in diseases, and point towards their growing potential as candidate therapeutic targets.


Asunto(s)
Infecciones por Herpesviridae , Humanos , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Animales , Herpesviridae/inmunología , Herpesviridae/fisiología , Replicación Viral , Interacciones Huésped-Patógeno/inmunología , Evasión Inmune
11.
Proc Natl Acad Sci U S A ; 121(37): e2404250121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39231203

RESUMEN

Human cytomegalovirus (HCMV) glycoprotein B (gB) is a class III membrane fusion protein required for viral entry. HCMV vaccine candidates containing gB have demonstrated moderate clinical efficacy, but no HCMV vaccine has been approved. Here, we used structure-based design to identify and characterize amino acid substitutions that stabilize gB in its metastable prefusion conformation. One variant containing two engineered interprotomer disulfide bonds and two cavity-filling substitutions (gB-C7), displayed increased expression and thermostability. A 2.8 Å resolution cryoelectron microscopy structure shows that gB-C7 adopts a prefusion-like conformation, revealing additional structural elements at the membrane-distal apex. Unlike previous observations for several class I viral fusion proteins, mice immunized with postfusion or prefusion-stabilized forms of soluble gB protein displayed similar neutralizing antibody titers, here specifically against an HCMV laboratory strain on fibroblasts. Collectively, these results identify initial strategies to stabilize class III viral fusion proteins and provide tools to probe gB-directed antibody responses.


Asunto(s)
Citomegalovirus , Proteínas del Envoltorio Viral , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Citomegalovirus/inmunología , Humanos , Animales , Ratones , Microscopía por Crioelectrón , Conformación Proteica , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Internalización del Virus , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/virología , Estabilidad Proteica , Vacunas contra Citomegalovirus/inmunología , Sustitución de Aminoácidos , Modelos Moleculares
12.
Proc Natl Acad Sci U S A ; 121(43): e2409132121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39413129

RESUMEN

RNA N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5) plays a crucial role in regulating innate immunity. Lysine acylation, a widespread protein modification, influences protein function, but its impact on ALKBH5 during viral infections has not been well characterized. This study investigates the presence and regulatory mechanisms of a previously unidentified lysine acylation in ALKBH5 and its role in mediating m6A modifications to activate antiviral innate immune responses. We demonstrate that ALKBH5 undergoes lactylation, which is essential for an effective innate immune response against DNA herpesviruses, including herpes simplex virus type 1 (HSV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), and mpox virus (MPXV). This lactylation attenuates viral replication. Mechanistically, viral infections enhance ALKBH5 lactylation by increasing its interaction with acetyltransferase ESCO2 and decreasing its interaction with deacetyltransferase SIRT6. Lactylated ALKBH5 binds interferon-beta (IFN-ß) messenger RNA (mRNA), leading to demethylation of its m6A modifications and promoting IFN-ß mRNA biogenesis. Overexpression of ESCO2 or depletion of SIRT6 further enhances ALKBH5 lactylation to strengthen IFN-ß mRNA biogenesis. Our results identify a posttranslational modification of ALKBH5 and its role in regulating antiviral innate immune responses through m6A modification. The finding provides an understanding of innate immunity and offers a potential therapeutic target for HSV-1, KSHV, and MPXV infections.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Herpesvirus Humano 8 , Inmunidad Innata , Replicación Viral , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Humanos , Replicación Viral/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/inmunología , Interferón beta/metabolismo , Interferón beta/genética , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/genética , Células HEK293 , Herpesviridae/inmunología , Lipoilación
13.
Proc Natl Acad Sci U S A ; 121(11): e2309841121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442151

RESUMEN

The transporter associated with antigen processing (TAP) is a key player in the major histocompatibility class I-restricted antigen presentation and an attractive target for immune evasion by viruses. Bovine herpesvirus 1 impairs TAP-dependent antigenic peptide transport through a two-pronged mechanism in which binding of the UL49.5 gene product to TAP both inhibits peptide transport and triggers its proteasomal degradation. How UL49.5 promotes TAP degradation has, so far, remained unknown. Here, we use high-content siRNA and genome-wide CRISPR-Cas9 screening to identify CLR2KLHDC3 as the E3 ligase responsible for UL49.5-triggered TAP disposal. We propose that the C terminus of UL49.5 mimics a C-end rule degron that recruits the E3 to TAP and engages the cullin-RING E3 ligase in endoplasmic reticulum-associated degradation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Degrones , Herpesviridae , Presentación de Antígeno , Citomegalovirus , Degradación Asociada con el Retículo Endoplásmico , Proteínas de Transporte de Membrana , Péptidos , Ubiquitina-Proteína Ligasas/genética , Herpesviridae/fisiología
14.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279649

RESUMEN

The identification of human-herpesvirus protein-protein interactions (PPIs) is an essential and important entry point to understand the mechanisms of viral infection, especially in malignant tumor patients with common herpesvirus infection. While natural language processing (NLP)-based embedding techniques have emerged as powerful approaches, the application of multi-modal embedding feature fusion to predict human-herpesvirus PPIs is still limited. Here, we established a multi-modal embedding feature fusion-based LightGBM method to predict human-herpesvirus PPIs. In particular, we applied document and graph embedding approaches to represent sequence, network and function modal features of human and herpesviral proteins. Training our LightGBM models through our compiled non-rigorous and rigorous benchmarking datasets, we obtained significantly better performance compared to individual-modal features. Furthermore, our model outperformed traditional feature encodings-based machine learning methods and state-of-the-art deep learning-based methods using various benchmarking datasets. In a transfer learning step, we show that our model that was trained on human-herpesvirus PPI dataset without cytomegalovirus data can reliably predict human-cytomegalovirus PPIs, indicating that our method can comprehensively capture multi-modal fusion features of protein interactions across various herpesvirus subtypes. The implementation of our method is available at https://github.com/XiaodiYangpku/MultimodalPPI/.


Asunto(s)
Benchmarking , Citomegalovirus , Humanos , Aprendizaje Automático , Procesamiento de Lenguaje Natural
15.
EMBO Rep ; 25(2): 725-744, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38177923

RESUMEN

Viral infection often trigger an ATM serine/threonine kinase (ATM)-dependent DNA damage response in host cells that suppresses viral replication. Viruses evolved different strategies to counteract this antiviral surveillance system. Here, we report that human herpesvirus 6B (HHV-6B) infection causes genomic instability by suppressing ATM signaling in host cells. Expression of immediate-early protein 1 (IE1) phenocopies this phenotype and blocks homology-directed double-strand break repair. Mechanistically, IE1 interacts with NBS1, and inhibits ATM signaling through two distinct domains. HHV-6B seems to efficiently inhibit ATM signaling as further depletion of either NBS1 or ATM do not significantly boost viral replication in infected cells. Interestingly, viral integration of HHV-6B into the host's telomeres is not strictly dependent on NBS1, challenging current models where integration occurs through homology-directed repair. Given that spontaneous IE1 expression has been detected in cells of subjects with inherited chromosomally-integrated form of HHV-6B (iciHHV-6B), a condition associated with several health conditions, our results raise the possibility of a link between genomic instability and the development of iciHHV-6-associated diseases.


Asunto(s)
Herpesvirus Humano 6 , Proteínas Inmediatas-Precoces , Infecciones por Roseolovirus , Humanos , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/metabolismo , Infecciones por Roseolovirus/genética , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Integración Viral , Inestabilidad Genómica , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
16.
Semin Immunol ; 60: 101652, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-36162228

RESUMEN

The two γ-herpesviruses Epstein Barr virus (EBV) and Kaposi sarcoma associated herpesvirus (KSHV) are each associated with more than 1% of all tumors in humans. While EBV establishes persistent infection in nearly all adult individuals, KSHV benefits from this widespread EBV prevalence for its own persistence. Interestingly, EBV infection expands early differentiated NKG2A+KIR- NK cells that protect against lytic EBV infection, while KSHV co-infection drives accumulation of poorly functional CD56-CD16+ NK cells. Thus persistent γ-herpesvirus infections are sculptors of human NK cell repertoires and the respectively stimulated NK cell subsets should be considered for immunotherapies of EBV and KSHV associated malignancies.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Neoplasias , Adulto , Humanos , Herpesvirus Humano 4/fisiología , Herpesvirus Humano 8/fisiología , Células Asesinas Naturales
17.
Proc Natl Acad Sci U S A ; 120(6): e2212864120, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36724259

RESUMEN

Non-coding RNAs (ncRNAs) play important roles in host-pathogen interactions; oncogenic viruses like Kaposi's sarcoma herpesvirus (KSHV) employ ncRNAs to establish a latent reservoir and persist for the life of the host. We previously reported that KSHV infection alters a novel class of RNA, circular RNAs (circRNAs). CircRNAs are alternative splicing isoforms and regulate gene expression, but their importance in infection is largely unknown. Here, we showed that a human circRNA, hsa_circ_0001400, is induced by various pathogenic viruses, namely KSHV, Epstein-Barr virus, and human cytomegalovirus. The induction of circRNAs including circ_0001400 by KSHV is co-transcriptionally regulated, likely at splicing. Consistently, screening for circ_0001400-interacting proteins identified a splicing factor, PNISR. Functional studies using infected primary endothelial cells revealed that circ_0001400 inhibits KSHV lytic transcription and virus production. Simultaneously, the circRNA promoted cell cycle, inhibited apoptosis, and induced immune genes. RNA-pull down assays identified transcripts interacting with circ_0001400, including TTI1, which is a component of the pro-growth mTOR complexes. We thus identified a circRNA that is pro-growth and anti-lytic replication. These results support a model in which KSHV induces circ_0001400 expression to maintain latency. Since circ_0001400 is induced by multiple viruses, this novel viral strategy may be widely employed by other viruses.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Infección Latente , Virus ARN , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , ARN Circular/genética , Sarcoma de Kaposi/genética , Células Endoteliales , Latencia del Virus/genética , Herpesvirus Humano 4/genética , ARN Viral/genética , ARN no Traducido , Virus ARN/genética , Replicación Viral/genética , Regulación Viral de la Expresión Génica
18.
Proc Natl Acad Sci U S A ; 120(12): e2218825120, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917666

RESUMEN

Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.


Asunto(s)
Gammaherpesvirinae , Infecciones por Herpesviridae , Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Humanos , Adenosina Trifosfatasas/metabolismo , Gammaherpesvirinae/genética , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/genética , Herpesvirus Humano 8/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Latencia del Virus/genética , Replicación Viral
19.
J Biol Chem ; 300(10): 107748, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260697

RESUMEN

Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.

20.
J Biol Chem ; 300(9): 107645, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39127175

RESUMEN

Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis, persistently infects over 90% of the human adult population and is associated with several human cancers. To establish life-long infection, EBV tampers with the induction of type I interferon (IFN I)-dependent antiviral immunity in the host. How various EBV genes help orchestrate this crucial strategy is incompletely defined. Here, we reveal a mechanism by which the EBV nuclear antigen 3A (EBNA3A) may inhibit IFNß induction. Using proximity biotinylation we identify the histone acetyltransferase P300, a member of the IFNß transcriptional complex, as a binding partner of EBNA3A. We further show that EBNA3A also interacts with the activated IFN-inducing transcription factor interferon regulatory factor 3 that collaborates with P300 in the nucleus. Both events are mediated by the N-terminal domain of EBNA3A. We propose that EBNA3A limits the binding of interferon regulatory factor 3 to the IFNß promoter, thereby hampering downstream IFN I signaling. Collectively, our findings suggest a new mechanism of immune evasion by EBV, affected by its latency gene EBNA3A.


Asunto(s)
Proteína p300 Asociada a E1A , Antígenos Nucleares del Virus de Epstein-Barr , Herpesvirus Humano 4 , Factor 3 Regulador del Interferón , Interferón beta , Humanos , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/genética , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Interferón beta/metabolismo , Interferón beta/genética , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 4/genética , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Células HEK293 , Regiones Promotoras Genéticas , Regulación de la Expresión Génica , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/inmunología , Infecciones por Virus de Epstein-Barr/genética , Unión Proteica , Transducción de Señal , Núcleo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA