Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.065
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(38): 11882-11888, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39284001

RESUMEN

Twisted bilayers host many emergent phenomena in which the electronic excitations (quasiparticles, QPs) are closely intertwined with the local stacking order. By inspecting twisted hexagonal boron nitride (t-hBN), we show that nonlocal long-range interactions in large twisted systems cannot be reliably described by the local (high-symmetry) stacking and that the band gap variation (typically associated with the moiré excitonic potential) shows multiple minima with variable depth depending on the twist angle. We investigate twist angles of 2.45°, 2.88°, 3.48°, and 5.09° using the GW approximation together with stochastic compression to analyze the QP state interactions. We find that band-edge QP hybridization is suppressed for intermediate angles that exhibit two distinct local minima in the moiré potential (at AA region and saddle point (SP)) which become degenerate for the largest system (2.45°).

2.
Nano Lett ; 24(28): 8510-8517, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38856705

RESUMEN

Optical emitters in hexagonal boron nitride (hBN) are promising probes for single-molecule sensing platforms. When engineered in nanoparticle form, they can be integrated as detectors in nanodevices, yet positional control at the nanoscale is lacking. Here we demonstrate the functionalization of DNA origami nanopores with optically active hBN nanoparticles (NPs) with nanometer precision. The NPs are active under three wavelengths of visible illumination and display both stable and blinking emission, enabling their accurate localization by using wide-field optical nanoscopy. Correlative opto-structural characterization reveals deterministic binding of bright, multicolor hBN NPs at the pore rim due to π-π stacking interactions at site-specific locations on the DNA origami. Our work provides a scalable, bottom-up approach toward deterministic assembly of solid-state emitters on arbitrary structural elements based on DNA origami. Such a nanoscale arrangement of optically active components can advance the development of single-molecule platforms, including optical nanopores and nanochannel sensors.


Asunto(s)
Compuestos de Boro , ADN , Nanoporos , Compuestos de Boro/química , ADN/química , Nanotecnología/métodos , Nanopartículas/química
3.
Nano Lett ; 24(34): 10577-10582, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39150721

RESUMEN

Nonlinear chiral photonics explores the nonlinear response of chiral structures, and it offers a pathway to novel optical functionalities not accessible through linear or achiral systems. Here we present the first application of nanostructured van der Waals materials to nonlinear chiral photonics. We demonstrate the 3 orders of magnitude enhancement of the third-harmonic generation from hBN metasurfaces driven by quasi-bound states in the continuum and accompanied by strong nonlinear circular dichroism at the resonances. This novel platform for chiral metaphotonics can be employed for achieving large circular dichroism combined with high-efficiency harmonic generation in a broad frequency range.

4.
Nano Lett ; 24(11): 3395-3403, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38359157

RESUMEN

Bright, scalable, and deterministic single-photon emission (SPE) is essential for quantum optics, nanophotonics, and optical information systems. Recently, SPE from hexagonal boron nitride (h-BN) has attracted intense interest because it is optically active and stable at room temperature. Here, we demonstrate a tunable quantum emitter array in h-BN at room temperature by integrating a wafer-scale plasmonic array. The transient voltage electrophoretic deposition (EPD) reaction is developed to effectively enhance the filling of single-crystal nanometals in the designed patterns without aggregation, which ensures the fabricated array for tunable performances of these single-photon emitters. An enhancement of ∼500% of the SPE intensity of the h-BN emitter array is observed with a radiative quantum efficiency of up to 20% and a saturated count rate of more than 4.5 × 106 counts/s. These results suggest the integrated h-BN-plasmonic array as a promising platform for scalable and controllable SPE photonics at room temperature.

5.
Nano Lett ; 24(1): 43-50, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37930062

RESUMEN

The defect emission from h-BN at 1.55 eV is interesting as it enables optical readout of spins. It is necessary to identify the nature of the relevant point defects for its controlled introduction. However, it is challenging to engineer point defects in h-BN without changing the local atomic structure. Here, we controllably introduce boron vacancies in h-BN using an ultrahigh spatial resolution and low-energy He+ ion beam. By optimizing the He+ ion irradiation conditions, we control the quantity and location of defects spatially and along the depth of h-BN to achieve a robust photoluminescence emission at 1.55 eV from 10 K to room temperature. We show that as-generated defects activate an additional Raman mode at 1295 cm-1. Electron energy loss spectroscopy confirms introduction of boron vacancies without modification of the local h-BN crystal structure. Our results provide a deterministic strategy to create scalable boron vacancy emitters in h-BN for quantum photonics.

6.
Nano Lett ; 24(36): 11295-11301, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39213595

RESUMEN

The integration of intrinsically magnetic and topologically nontrivial two-dimensional materials holds tantalizing prospects for exotic quantum anomalous Hall insulators and magnetic second-order topological insulators (SOTIs). Compared with their well-studied nonmagnetic counterparts, the pursuit of intrinsic magnetic SOTIs remains limited. In this work, we address this gap by focusing on p-d orbitals inversion, a fundamental but often overlooked phenomena in the construction of topological materials. We begin by developing a theoretical framework to elucidate p-d orbital inversion through a combined density-functional theory calculation and Wannier downfolding. Subsequently we showcase the generality of this concept in realizing ferromagnetism SOTIs by identifying two real materials with distinct lattices: 1T-VS2 monolayer in a hexagonal lattice and CrAs monolayer in a square lattice. We further compare it with other mechanisms requiring spin-orbit coupling and explore the similarities to topological Kondo insulators. Our findings establish a generic pathway toward intrinsic magnetic SOTIs.

7.
Nano Lett ; 24(25): 7623-7628, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38860722

RESUMEN

Hexagonal boron nitride (h-BN) hosts pure single-photon emitters that have shown evidence of optically detected electronic spin dynamics. However, the electrical and chemical structures of these optically addressable spins are unknown, and the nature of their spin-optical interactions remains mysterious. Here, we use time-domain optical and microwave experiments to characterize a single emitter in h-BN exhibiting room temperature optically detected magnetic resonance. Using dynamical simulations, we constrain and quantify transition rates in the model, and we design optical control protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.

8.
Nano Lett ; 24(8): 2473-2480, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38252466

RESUMEN

Two-dimensional materials (2DMs) have gained significant interest for resistive-switching memory toward neuromorphic and in-memory computing (IMC). To achieve atomic-level miniaturization, we introduce vertical hexagonal boron nitride (h-BN) memristors with graphene edge contacts. In addition to enabling three-dimensional (3D) integration (i.e., vertical stacking) for ultimate scalability, the proposed structure delivers ultralow power by isolating single conductive nanofilaments (CNFs) in ultrasmall active areas with negligible leakage thanks to atomically thin (∼0.3 nm) graphene edge contacts. Moreover, it facilitates studying fundamental resistive-switching behavior of single CNFs in CVD-grown 2DMs that was previously unattainable with planar devices. This way, we studied their programming characteristics and observed a consistent single quantum step in conductance attributed to unique atomically constrained nanofilament behavior in CVD-grown 2DMs. This resistive-switching property was previously suggested for h-BN memristors and linked to potential improvements in stability (robustness of CNFs), and now we show experimental evidence including superior retention of quantized conductance.

9.
Nano Lett ; 24(4): 1106-1113, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240528

RESUMEN

Most hexagonal boron nitride (hBN) single-photon emitters (SPEs) studied to date suffer from variable emission energy and unpredictable polarization, two crucial obstacles to their application in quantum technologies. Here, we report an SPE in hBN with an energy of 2.2444 ± 0.0013 eV created via carbon implantation that exhibits a small inhomogeneity of the emission energy. Polarization-resolved measurements reveal aligned absorption and emission dipole orientations with a 3-fold distribution, which follows the crystal symmetry. Photoluminescence excitation (PLE) spectroscopy results show the predictability of polarization is associated with a reproducible PLE band, in contrast with the non-reproducible bands found in previous hBN SPE species. Photon correlation measurements are consistent with a three-level model with weak coupling to a shelving state. Our ab initio excited-state calculations shed light on the atomic origin of this SPE defect, which consists of a pair of substitutional carbon atoms located at boron and nitrogen sites separated by a hexagonal unit cell.

10.
Nano Lett ; 24(3): 966-974, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38206580

RESUMEN

Two-dimensional (2D) Fe chalcogenides with their rich structures and properties are highly desirable for revealing the torturous transition mechanism of Fe chalcogenides and exploring their potential applications in spintronics and nanoelectronics. Hydrostatic pressure can effectively stimulate phase transitions between various ordered states, allowing one to successfully plot a phase diagram for a given material. Herein, the structural evolution and transport characteristics of 2D FeTe were systematically investigated under extreme conditions by comparing two distinct symmetries, i.e., tetragonal (t) and hexagonal (h) FeTe. We found that t-FeTe presented a pressure-induced transition from an antiferromagnetic state to a ferromagnetic state at ∼3 GPa, corresponding to the tetragonal collapse of the layered structure. Contrarily, the ferromagnetic order of h-FeTe was retained up to 15 GPa, which was evidently confirmed by electrical transport and Raman measurements. Furthermore, T-P phase diagrams for t-FeTe and h-FeTe were mapped under delicate critical conditions. Our results can provide a unique platform to elaborate the extraordinary properties of Fe chalcogenides and further develop their applications.

11.
Nano Lett ; 24(43): 13733-13740, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39432125

RESUMEN

Defects in hexagonal boron nitride (h-BN) play important roles in tunneling transport through the h-BN barrier. Here, using carbon-doped h-BN (h-BN:C) as a tunnel barrier containing defects in a controlled manner, we investigated tunneling transport through defects in the h-BN:C/graphene heterostructures. Defect-assisted tunneling through a specific kind of carbon-related defect was observed in all measured devices, where the defect level was always located at ∼0.1 eV above the graphene's charge neutrality point. We revealed a phonon-assisted inelastic process in the defect-assisted tunneling, in which carriers tunnel through the defect with phonon emission. Furthermore, when the h-BN:C barrier was thick (12 layers, ∼4 nm), sequential tunneling through two defects became dominant, where the phonon-assisted inelastic process shows substantial effects between the two defects. This study reveals the contribution of phonons to defect-assisted tunneling transport, which is essential for the development of defect-related van der Waals (vdW) electronic techniques.

12.
Small ; 20(9): e2307054, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37867241

RESUMEN

Translation of the unique properties of 2D monolayers from non-scalable micron-sized samples to macroscopic scale is a longstanding challenge obstructed by the substrate-induced strains, interface nonuniformities, and sample-to-sample variations inherent to the scalable fabrication methods. So far, the most successful strategies to reduce strain in graphene are the reduction of the interface roughness and lattice mismatch by using hexagonal boron nitride (h-BN), with the drawback of limited uniformity and applicability to other 2D monolayers, and liquid water, which is not compatible with electronic devices. This work demonstrates a new class of substrates based on hydrogels that overcome these limitations and excel h-BN and water substrates at strain relaxation enabling superiorly uniform and reproducible centimeter-sized sheets of unstrained monolayers. The ultimate strain relaxation and uniformity are rationalized by the extreme structural adaptability of the hydrogel surface owing to its high liquid content and low Young's modulus, and are universal to all 2D materials irrespective of their crystalline structure. Such platforms can be integrated into field effect transistors and demonstrate enhanced charge carrier mobilities in graphene. These results present a universal strategy for attaining uniform and strain-free sheets of 2D materials and underline the opportunities enabled by interfacing them with soft matter.

13.
Small ; 20(7): e2304803, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37821403

RESUMEN

Metallic surfaces with unidirectional anisotropy are often used to guide the self-assembly of organic molecules along a particular direction. Such supports thus offer an avenue for the fabrication of hybrid organic-metal interfaces with tailored morphology and precise elemental composition. Nonetheless, such control often comes at the expense of detrimental interfacial interactions that might quench the pristine properties of molecules. Here, hexagonal boron nitride grown on Ir(100) is introduced as a robust platform with several coexisting 1D stripe-like moiré superstructures that effectively guide unidirectional self-assemblies of pentacene molecules, concomitantly preserving their pristine electronic properties. In particular, highly-aligned longitudinal arrays of equally-oriented molecules are formed along two perpendicular directions, as demonstrated by comprehensive scanning tunneling microscopy and photoemission characterization performed at the local and non-local scale, respectively. The functionality of the template is demonstrated by photoemission tomography, a surface-averaging technique requiring a high degree of orientational order of the probed molecules. The successful identification of pentacene's pristine frontier orbitals underlines that the template induces excellent long-range molecular ordering via weak interactions, preventing charge transfer.

14.
Small ; 20(7): e2306132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37800612

RESUMEN

Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.

15.
Small ; 20(44): e2404274, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38966895

RESUMEN

In this work, a highly accurate neural network potential (NNP) is presented, named PtNNP, and the exploration of the reconstruction of the Pt(001) surface and its vicinal surfaces with it. Contrary to the most accepted understanding of the Pt(001) surface reconstruction, the study reveals that the main driving force behind Pt(001) quasi-hexagonal reconstruction is not the surface stress relaxation but the increased coordination number of the surface atoms resulting in stronger intralayer binding in the reconstructed surface layer. In agreement with experimental observations, the optimized supercell size of the reconstructed Pt(001) surface contains (5 × 20) unit cells. Surprisingly, the reconstruction of the vicinal Pt(001) surfaces leads to a smooth shell-like surface layer covering the whole surface and diminishing sharp step edges.

16.
Small ; : e2400489, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794993

RESUMEN

The exploration of 2D materials has captured significant attention due to their unique performances, notably focusing on graphene and hexagonal boron nitride (h-BN). Characterized by closely resembling atomic structures arranged in a honeycomb lattice, both graphene and h-BN share comparable traits, including exceptional thermal conductivity, impressive carrier mobility, and robust pi-pi interactions with organic molecules. Notably, h-BN has been extensively examined for its exceptional electrical insulating properties, inert passivation capabilities, and provision of an ideal ultraflat surface devoid of dangling bonds. These distinct attributes, contrasting with those of h-BN, such as its conductive versus insulating behavior, active versus inert nature, and absence of dangling surface bonds versus absorbent tendencies, render it a compelling material with broad application potential. Moreover, the unity of such contradictions endows h-BN with intriguing possibilities for unique applications in specific contexts. This review aims to underscore these key attributes and elucidate the intriguing contradictions inherent in current investigations of h-BN, fostering significant insights into the understanding of material properties.

17.
Small ; : e2403737, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949018

RESUMEN

In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses.

18.
Small ; 20(30): e2311161, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456389

RESUMEN

The search for new phases is an important direction in materials science. The phase transition of sulfides results in significant changes in catalytic performance, such as MoS2 and WS2. Cubic pentlandite [cPn, (Fe, Ni)9S8] can be a functional material in batteries, solar cells, and catalytic fields. However, no report about the material properties of other phases of pentlandite exists. In this study, the unit-cell parameters of a new phase of pentlandite, sulfur-vacancy enriched hexagonal pentlandite (hPn), and the phase boundary between cPn and hPn are determined for the first time. Compared to cPn, the hPn shows a high coordination number, more sulfur vacancies, and high conductivity, which result in significantly higher hydrogen evolution performance of hPn than that of cPn and make the non-nano rock catalyst hPn superior to other most known nanosulfide catalysts. The increase of sulfur vacancies during phase transition provides a new approach to designing functional materials.

19.
Small ; : e2400987, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295489

RESUMEN

2D Fe-chalcogenides emerge with rich structures, magnetisms, and superconductivities, which spark the growing research interests in the torturous transition mechanism and tunable properties for their potential applications in nanoelectronics. Uniaxial strain can produce a lattice distortion to study symmetry breaking induced exotic properties in 2D magnets. Herein, the anomalous Raman spectrum of 2D tetragonal (t-) and hexagonal (h-) FeTe is systematically investigated via uniaxial strain engineering strategy. It is found that both t- and h-FeTe keep the structural stability under different uniaxial tensile or compressive strain up to ± 0.4%. Intriguingly, the lattice vibrations along both in-plane and out-of-plane directions exceptionally harden (softened) under tensile (compressive) strain, distinguished from the behaviors of many conventional 2D systems. Further, the difference in thickness-dependent strain effect can be well explained by their structural discrepancy between two polymorphs of FeTe. These results can supply a unique platform to explore the vibrational properties of many novel 2D materials.

20.
Small ; 20(37): e2311836, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38770997

RESUMEN

2D materials exhibit exceptional properties as compared to their macroscopic counterparts, with promising applications in nearly every area of science and technology. To unlock further functionality, the chemical functionalization of 2D structures is a powerful technique that enables tunability and new properties within these materials. Here, the successful effort to chemically functionalize hexagonal boron nitride (hBN), a chemically inert 2D ceramic with weak interlayer forces, using a gas-phase fluorination process is exploited. The fluorine functionalization guides interlayer expansion and increased polar surface charges on the hBN sheets resulting in a number of vastly improved applications. Specifically, the F-hBN exhibits enhanced dispersibility and thermal conductivity at higher temperatures by more than 75% offering exceptional performance as a thermofluid additive. Dispersion of low volumes of F-hBN in lubricating oils also offers marked improvements in lubrication and wear resistance for steel tribological contacts decreasing friction by 31% and wear by 71%. Additionally, incorporating numerous negatively charged fluorine atoms on hBN induces a permanent dipole moment, demonstrating its applicability in microelectronic device applications. The findings suggest that anchoring chemical functionalities to hBN moieties improves a variety of properties for h-BN, making it suitable for numerous other applications such as fillers or reinforcement agents and developing high-performance composite structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA