RESUMEN
Despite significant progress in vaccine development, especially in the fight against viral infections, many unexplored areas remain including innovative adjuvants, diversification of vaccine formulations, and research into the coordination of humoral and cellular immune mechanisms induced by vaccines. Effective coordination of humoral and cellular immunity is crucial in vaccine design. In this study, we used the spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or ovalbumin (OVA) as antigen models and CpG DNA (an activator of toll-like receptor 9, TLR9) as an adjuvant to prepare a multitargeted liposome (LIPO) vaccine. Once equipped with the ability to target lymph nodes (LN) and the endoplasmic reticulum (ER), the LIPO vaccine significantly enhances the cross-presentation ability of antigen-presenting cells (APCs) for exogenous antigens through the ER-associated protein degradation (ERSD) mechanism. Additionally, the vaccine could fine-tune the efficiency of ER-targeted antigen delivery, actively regulating the presentation of exogenous antigen proteins via the major histocompatibility complex (MHC-I) or MHC-II pathways. Immune data from in vivo mouse experiments indicated that the LIPO vaccine effectively stimulated both humoral and cellular immune responses. Furthermore, it triggers immune protection by establishing a robust and persistent germinal center. Moreover, the multifunctionality of this LIPO vaccine extends to the fields of cancer, viruses, and bacteria, providing insights for skilled vaccine design and improvement.
Asunto(s)
Inmunidad Humoral , Vacunas , Animales , Ratones , Liposomas/farmacología , Antígenos , Inmunidad Celular , Adyuvantes InmunológicosRESUMEN
Classical swine fever virus (CSFV) infection leading to CSF outbreaks is among the most devastating swine diseases in the pig industry. Porcine circovirus type 2 (PCV2) infection, resulting in porcine circovirus-associated disease (PCVAD), is also a highly contagious disease affecting pig health worldwide. To prevent and control disease occurrence, multiple-vaccine immunization is necessary in contaminated areas or countries. In this study, a novel CSFV-PCV2 bivalent vaccine was constructed and demonstrated to be capable of eliciting humoral and cellular immune responses against CSFV and PCV2, respectively. Moreover, a CSFV-PCV2 dual-challenge trial was conducted on specific-pathogen-free (SPF) pigs to evaluate vaccine efficacy. All of the vaccinated pigs survived and showed no clinical signs of infection throughout the experimental period. In contrast, placebo-vaccinated pigs exhibited severe clinical signs of infection and steeply increased viremia levels of CSFV and PCV2 after virus challenge. Additionally, neither clinical signs nor viral detections were noted in the sentinel pigs when cohabitated with vaccinated-challenged pigs at three days post-inoculation of CSFV, indicating that the CSFV-PCV2 bivalent vaccine completely prevents horizontal transmission of CSFV. Furthermore, conventional pigs were utilized to evaluate the application of the CSFV-PCV2 bivalent vaccine in field farms. An adequate CSFV antibody response and a significant decrease in PCV2 viral load in the peripheral lymph nodes were observed in immunized conventional pigs, suggesting its potential for clinical application. Overall, this study demonstrated that the CSFV-PCV2 bivalent vaccine effectively elicited protective immune responses and the ability to prevent horizontal transmission, which could be a prospective strategy for controlling both CSF and PCVAD in commercial herds.
Asunto(s)
Circovirus , Virus de la Fiebre Porcina Clásica , Animales , Porcinos , Brotes de Enfermedades , Vacunación/veterinaria , Vacunas CombinadasRESUMEN
BACKGROUND: Immunocompromised people (ICP) and elderly individuals (older than 80 years) are at increased risk for severe coronavirus infections. To protect against serious infection with SARS-CoV-2, ICP are taking precautions that may include a reduction of social contacts and participation in activities which they normally enjoy. Furthermore, for these people, there is an uncertainty regarding the effectiveness of the vaccination. The COVID-19 Contact (CoCo) Immune study strives to characterize the immune response to COVID-19 vaccination in immunocompromised, elderly people, and patients with hematological or oncological diseases. The study uses blood-based screenings to monitor the humoral and cellular immune response in these groups after vaccination. Questionnaires and qualitative interviews are used to describe the level of social participation. METHODS: The CoCo Immune Study is a mixed methods prospective, longitudinal, observational study at two large university hospitals in Northern Germany. Starting in March 2021, it monitors anti-SARS-CoV-2 immune responses and collects information on social participation in more than 600 participants, at least 18 years old. Inclusion criteria and subcohorts: Participants with (1) regularly intake of immunosuppressive medication (ICP-cohort) or (2) age ≥ 80 years (80 + -cohort). Additionally, patients with current or former (3) myeloid, (4) lymphatic disease or (5) solid tumor under checkpoint inhibition (3-5: HO-cohort). EXCLUSION CRITERIA: (1) refusal to give informed consent, (2) contraindication to blood testing, (3) inability to declare consent. Participants complete a questionnaire at four different time points: prior to full vaccination, and 1, 6 and 12 months after completed vaccination. In addition, participants draw blood samples themselves or through a local health care provider and send them with their questionnaires per post at the respective time points after vaccination. Patients of the HO cohort dispense additional blood samples at week 3 to 12 and at month 6 to 9 after 2nd vaccination to gain additional knowledge in B and T cell responses. Selected participants are invited to qualitative interviews about social participation. DISCUSSION: This observational study is designed to gain insight into the immune response of people with weakened immune systems and to find out how social participation is affected after COVID-19 vaccination. TRIAL REGISTRATION: This study was registered with German Clinical Trial Registry (registration number: DRKS00023972) on 30th December 2020.
Asunto(s)
COVID-19 , Enfermedades Hematológicas , Neoplasias , Adolescente , Anciano , Anciano de 80 o más Años , Vacunas contra la COVID-19 , Cocos , Humanos , Inmunidad , Estudios Observacionales como Asunto , Estudios Prospectivos , SARS-CoV-2 , Resultado del TratamientoRESUMEN
BACKGROUND: H5N6 avian influenza virus (AIV) has caused sporadic, recurring outbreaks in China and Southeast Asia since 2013, with 19 human infections and 13 deaths. Seventeen of these infections occurred since December 2015, indicating a recent rise in the frequency of H5N6 cases. METHODS: To assess the relative threat of H5N6 virus to humans, we summarized and compared clinical data from patients infected with H5N6 (n = 19) against data from 2 subtypes of major public health concern, H5N1 (n = 53) and H7N9 (n = 160). To assess immune responses indicative of prognosis, we compared concentrations of serum cytokines/chemokines in patients infected with H5N6, H5N1, H7N9, and 2009 pandemic H1N1 and characterized specific immune responses from 1 surviving and 2 nonsurviving H5N6 patients. RESULTS: H5N6 patients were found to have higher incidences of lymphopenia and elevated alanine aminotransferase and lactate dehydrogenase levels compared with H5N1 and H7N9 patients. Hypercytokinemia was detected at substantially higher frequencies from H5N6 patients compared to those infected with other AIV subtypes. Evaluation of adaptive immunity showed that both humoral and cellular responses could be detected in the H5N6-infected survivor, but cellular responses were absent in the nonsurvivors. In addition, the surviving patient had lower concentrations of both pro- and anti-inflammatory cytokines/chemokines compared to the nonsurvivors. CONCLUSIONS: Our results support that H5N6 virus could potentially be a major public health threat, and suggest it is possible that the earlier acquisition of cellular immunity and lower concentrations of cytokines/chemokines contributed to survival in our patient. Analysis of more patient samples will be needed to draw concrete conclusions.
Asunto(s)
Citocinas/sangre , Inmunidad Celular , Inmunidad Humoral , Virus de la Influenza A/inmunología , Virus de la Influenza A/aislamiento & purificación , Gripe Humana/inmunología , Gripe Humana/patología , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , China , Femenino , Humanos , Lactante , Recién Nacido , Virus de la Influenza A/clasificación , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
OBJECTIVE: To eliminate the side effects of aluminum adjuvant and His-tag, we constructed chimeric VLPs displaying the epitope of EV71 (SP70) without His-tagged. Then evaluating whether the VLPs could efficiently evoke not only humoral but also cellular immune responses against EV71 without adjuvant. METHODS: The fusion protein was constructed by inserting SP70 into the MIR of truncated HBcAg sequence, expressed in E. Coli, and purified through ion exchange chromatography and density gradient centrifugation. Mice were immunized with the VLPs and sera were collected afterwards. The specific antibody titers, IgG subtypes and neutralizing efficacy were detected by ELISA, neutralization assay, and EV71 lethal challenge. IFN-γ and IL-4 secreted by splenocytes were tested by ELISPOT assay. RESULTS: HBc-SP70 proteins can self-assemble into empty VLPs. After immunization with HBc-SP70 VLPs, the detectable anti-EV71 antibodies were effective in neutralizing EV71 and protected newborn mice from EV71 lethal challenge. There was no significant difference for the immune efficacy whether the aluminum adjuvant was added or not. The specific IgG subtypes were mainly IgG1 and IgG2b and splenocytes from the mice immunized produced high levels of IFN-γ and IL-4. CONCLUSION: The fusion proteins without His-tagged was expressed and purified as soluble chimeric HBc-SP70 VLPs without renaturation. In the absence of adjuvant, they were efficient to elicit high levels of Th1/Th2 mixed immune response as well as assisted by aluminum adjuvant. Furthermore, the chimeric VLPs have potential to prevent HBV and EV71 infection simultaneously.
Asunto(s)
Enterovirus Humano A/genética , Infecciones por Enterovirus/inmunología , Epítopos/inmunología , Inmunidad Celular , Inmunidad Humoral , Proteínas Recombinantes de Fusión/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/sangre , Infecciones por Enterovirus/virología , Epítopos/metabolismo , Escherichia coli/metabolismo , Femenino , RatonesRESUMEN
The live attenuated anthrax vaccine and anthrax vaccine adsorbed (AVA) are two main types of anthrax vaccines currently used in human. However, the immunoprotective mechanisms are not fully understood. In this study, we compared humoral and cellular immunity induced by live A16R spore vaccine and A16R strain derived AVA-like vaccine in mice peripheral blood, spleen and bone marrow. Both A16R spores and AVA-like vaccines induced a sustained IgG antibody response with IgG1/IgG2b subtype dominance. However, A16R spores vaccine induced higher titer of IgG2a compared with AVA-like vaccine, indicating a stronger Th1 response to A16R spores. Using antigen-specific ELISpot assay, we observed a significant response of ASCs (antibody secreting cells) and IL4-CSCs (cytokine secreting cells) in mice. Specially, there was a positive correlation between the frequencies of antigen specific ASCs and IL4-CSCs in bone marrow derived cells, either by A16R spore or AVA-like vaccine vaccination. Moreover, we also found A16R spore vaccine, not AVA-like vaccine, could induce sustained frequency of IFN-γ-CSCs in bone marrow derived cells. Collectively, both the vaccines induced a mixed Th1/Th2 response with Th2 dominance in mice and A16R spore vaccine might provide a more comprehensive protection because of humoral and cellular immunity induced in bone marrow.
Asunto(s)
Vacunas contra el Carbunco/inmunología , Carbunco/inmunología , Bacillus anthracis/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Animales , Carbunco/microbiología , Carbunco/prevención & control , Anticuerpos Antibacterianos/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Células Cultivadas , Citocinas/inmunología , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Ensayo de Immunospot Ligado a Enzimas , Femenino , Inmunización , Inmunoglobulina G/inmunología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Ratones Endogámicos BALB C , Bazo/citología , Bazo/inmunología , Bazo/metabolismo , Esporas Bacterianas/inmunología , Células TH1/inmunología , Células Th2/inmunología , Vacunación/métodos , Vacunas Atenuadas/inmunologíaRESUMEN
The article presents the results of rats' immune status evaluation in conditions of different levels of B vitamins (B1, B2, B3, B6) and minerals (Fe3+ and Mg2+) supplying. Male Wistar rats (with initial body weight 90-110 g) within 65 days received model diets with 75, 30 and 19% content of the essential substances, females (with initial body weight 56-76 g) received diets with 75, 28 and 18% content. Some indicators of humoral and cellular immunity, including leukocyte count, lysozyme serum activity, IgG and IgE level, cytokine profile of blood serum and of the masses of the immune system internal organs have been examined. It has been shown that the decrease in the content of B vitamins, iron and magnesium in the diet didn't cause complex changes of the rats' immune status, therefore, the proposed model of adaptive potential change is not optimal for studying of immune system condtion. The extensive research of the immune status of rats (18 studied indicators, a sample of 90 males and 90 females) allows to set the range of physiological fluctuations of these indexes in Wistar rats of the corresponding gender and age.
RESUMEN
Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. FROM THE CLINICAL EDITOR: The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design.
Asunto(s)
Antígenos/genética , Polietileneimina/química , ARN/administración & dosificación , ARN/genética , Replicón , Vacunas/administración & dosificación , Vacunas/genética , Animales , Antígenos/inmunología , Línea Celular , Células Dendríticas/inmunología , Inmunidad Celular , Inmunidad Humoral , Ratones Endogámicos BALB C , Biosíntesis de Proteínas , ARN/inmunología , ARN/farmacocinética , Porcinos , Vacunas/inmunología , Vacunas/farmacocinéticaRESUMEN
Adenoviruses (Ad) are once potential and promising vectors for gene delivery, but the immunogenicity attenuates its transfer efficiency. Cytotoxic T lymphocyte antigen 4 (CTLA-4) can inhibit T cell immunity. Thus, we aimed to study the effect of CTLA-4 in the process of Ad-mediated gene transfer. The C57BL/6 mice were injected by Ad vectors at twice, and CTLA-4 was administrated after the first Ad injection. Then, the CD3(+)CD4(+) T cells and circulating levels of IL-2, IL-4, and anti-Ad IgG were decreased by CTLA-4, while Ad generated immune responses. The green fluorescence protein (GFP) expressions of tissues were enhanced by CTLA-4 till injection of Ad at twice. Our results indicate that CTLA-4 can inhibit humoral and cellular immunity by adenovirus generation to enhance GFP delivery, and provide a potential way to assist in Ad-mediated gene transfer.
Asunto(s)
Adenoviridae/inmunología , Antígeno CTLA-4/administración & dosificación , Vectores Genéticos/administración & dosificación , Proteínas Fluorescentes Verdes/administración & dosificación , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Animales , Femenino , Marcación de Gen/métodos , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/biosíntesis , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Ratones , Ratones Endogámicos C57BLRESUMEN
The article presents results of complex laboratory analyses applied to workers of rubber articles industry using biochemical, hematological, immunological techniques. The study established the most expressed and early alterations of processes of oxidative metabolism (decreasing of catalase activity, increasing of level of malonic dialdehyde and uric acid) and indicators of lipid metabolism of blood serum. The increasing of percentage of persons with metabolic disorders related to length of service in industry is established. In examined workers signs of anemia (erythropenia, decreasing of level of hemoglobin) and leukopenia were detected. The imbalance of T-cell component (CD+ CD4+), accompanied by alteration of phagocyte activity and defect of humoral component with increasing of level of IgM and decreasing of level of IgA. The coefficients of diagnostic sensitivity of analyzed laboratory tests were established. The most significant laboratory markers permit diagnosing early metabolic disorders and degree of their expressiveness in workers of rubber articles industry.
RESUMEN
The objective of this study was to determine the stimulating effect of the Biolex-Beta HP (ß-1,3/1,6-D-glucan) dietary supplement on selected parameters of specific and non-specific humoral and cellular immunity in rats immunosuppressed with cyclophosphamide. The experimental material comprised 40 Wistar rats, divided into two equal groups: control and experimental. In the course of 3 successive days, the rats from the experimental group were administered cyclophosphamide intramuscularly at a rate of 50 mg/kg BW per day. On the 8(th) day of the experiment, 10 control and 10 experimental rats were sacrificed, and total protein and γ-globulin levels, lysozyme and ceruloplasmin activity were determined in the blood serum. The proliferative response of blood lymphocytes after stimulation with lipopolysaccharide or concanavalin A, respiratory burst activity and the potential killing activity of phagocytes were determined in whole heparinised blood. Starting on the 8(th) day of the experiment, the feed of the remaining rats from the experimental and control groups was supplemented for 14 consecutive days with Biolex-Beta HP at a rate of 50 mg/kg BW per day. On day 22, arterial blood samples were collected and immune parameters were determined. The results indicate that ß-1,3/1,6-D-glucan has a positive effect on the analysed parameters of non-specific cellular and humoral immunity after cyclophosphamide-induced suppression. Nevertheless, the observed effect only marked a return to the norm, as most of the analysed parameters were merely restored to their initial levels, with the exception of lysozyme activity, which considerably exceeded the level noted before immunosuppression.
RESUMEN
The highly conserved C129R protein of AFSV was utilized in the development of an ASFV recombinant adenovirus vaccine, demonstrating strong immunogenicity. In this study, we immunized 6-week-old female C57BL/6J mice via subcutaneous injection with 10 µg of purified C129R protein. Humoral and cellular immune effects were assessed using ELISA, flow cytometry, and ELISpot assays. Additionally, 19 peptides of the C129R protein were synthesized and screened for the use of bioinformatics. Positive T-cell epitopes were screened using ELISpot. The results indicated a higher proportion of CD4+ and CD8+ T lymphocytes in immunized mice compared to control mice. ELISA analysis revealed a serum titer of approximately 1:1, 638, 400 in the experimental group of mice. Additionally, peptides C11(53-61aa), C14(81-89aa), C16(97-105aa), and C18(116-124aa) from the C129R protein were able to activate mice spleen lymphocytes to produce IFN-γ. These findings suggest that the C129R protein significantly enhances both humoral and cellular immunity in immunized mice. Moreover, peptides C11, C14, C16, and C18 may serve as potential T-cell epitopes for the C129R protein. These results lay the groundwork for the further exploration of ASFV C129R protein and the identification of novel ASF vaccine antigens.
RESUMEN
African swine fever (ASF) is a highly contagious disease caused by African swine fever virus (ASFV), affecting domestic and wild boars. The polyprotein pp220 of ASFV is responsible for producing the major structural proteins p150, p37, p14, p34, and p5 via proteolytic processing. The p34 protein is the main component of the ASFV core shell. However, the immunologic properties of the p34 protein in vitro and in vivo remain unclear. The results showed that the recombinant p34 protein expressed in prokaryotes and eukaryotes could react with convalescent swine sera to ASFV, suggesting that p34 is an immunogenic protein. Significantly, anti-p34 antibodies were found to inhibit the replication of ASFV in target cells. Furthermore, rabbits immunized with the recombinant C-strain of classical swine fever virus containing p34 produced both anti-p34 humoral and cellular immune responses. In addition, the p34 protein could induce a cell-mediated immune response, and a T-cell epitope on the p34 protein was identified using immunoinformatics and enzyme-linked immunospot (ELIspot) assay. Our study demonstrates that the p34 protein is a novel antigen of ASFV with protective potential.
Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Virus de la Fiebre Porcina Clásica , Animales , Conejos , Porcinos , Antígenos Virales , Fiebre Porcina Africana/prevención & control , PoliproteínasRESUMEN
Exosomes were isolated from T. gondii infected human hepatoblastoma cells using the exosome isolation kit and characterized by electron microscopy and Western blotting. Exosomes adsorbed to alum adjuvant were evaluated as a potential immunizing agent against murine chronic toxoplasmosis compared to excretory secretory antigens (ESA)-alum. Mice were immunized at days 1, 15 and 29. The levels of IgG, IFN-γ, IL-4 and IL-10, CD4+ and CD8+ T cells were determined using sandwich enzyme-linked immunosorbent assay (sandwich ELISA) at days 14, 28 and 56 of the experiment. Then mice were infected orally with 10 cysts of T. gondii. The protective efficacy of the antigens were evaluated by counting the brain cysts and measuring the aforementioned humoral and cellular parameters 60 days post infection. The results showed that alum increased the protective efficacy of the exosomes. Immunization with exosome-alum induced both humoral and mixed Th1/Th2 cellular immune responses. Exosome-alum gave higher levels of the humoral and cellular parameters, compared to ESA-alum. After challenge infection, exosome-alum significantly reduced the brain cyst burden by 75 % while ESA-alum gave 42 % reduction and evoked higher humoral and cellular immune responses. Therefore, the possibility of using T. gondii infected cells-derived exosome-alum as a vaccine is a new perspective in toxoplasmosis.
Asunto(s)
Exosomas , Vacunas Antiprotozoos , Toxoplasma , Toxoplasmosis Animal , Toxoplasmosis , Animales , Ratones , Humanos , Linfocitos T CD8-positivos , Toxoplasmosis/prevención & control , Anticuerpos Antiprotozoarios , Proteínas Protozoarias , Antígenos de ProtozoosRESUMEN
Solid organ transplant (SOT) recipients are at increased risk of COVID-19 infection because of their suppressed immunity. The available data show that COVID-19 vaccines are less effective in SOT recipients. We aimed to assess the cellular and humoral immunogenicity with an increasing the number of doses of COVID-19 vaccines in SOT recipients and to identify factors affecting vaccine response in this population. A systematic review and meta-analysis were conducted to identify ongoing and completed studies of humoral and cellular immunity following COVID-19 vaccines in SOT recipients. The search retrieved 278 results with 45 duplicates, and 43 records did not match the inclusion criteria. After title and abstract screening, we retained 189 records, and 135 records were excluded. The reasons for exclusion involved studies with immunocompromised patients (non-transplant recipients), dialysis patients, and individuals who had already recovered from SARS-CoV-2 infection. After full-text reading, 55 observational studies and randomized clinical trials (RCTs) were included. The proportion of responders appeared higher after the third, fourth, and fifth doses. The risk factors for non-response included older age and the use of mycophenolate mofetil, corticosteroids, and other immunosuppressants. This systematic review and meta-analysis demonstrates the immunogenicity following different doses of COVID-19 vaccines among SOT patients. Due to the low immunogenicity of vaccines, additional strategies to improve vaccine response may be necessary.
RESUMEN
The objective of the present study was to create a highly attenuated, safe Salmonella Gallinarium (SG) vaccine strain for chicken vaccination against fowl typhoid (FT) diseases. The SG vaccine strain (SGVS) consists of three virulence-related gene deletions, namely, lon, cpxR, and rfaL. The parent strain (SGPS) with Δlon ΔcpxR genotype was utilized as the host strain for in-frame rfaL gene deletion by lambda red recombination. The SGVS was highly attenuated with improved environmental safety by zero fecal contamination beyond seven days for both oral and intramuscular immunization routes. Upon inoculation into 1-month-old young chicken, no vaccine-induced adverse behaviors were observed and did not cause a chronic state of infection as the SG wild-type strain did. Immunization of chicken elicited both humoral and cell-mediated immune responses demarcated by, IgY antibody assessment, T-cell responses in peripheral blood mononuclear cells, and the induction of immunomodulatory cytokines, IFN-γ, IL-2, IL-12, and IL-4 to resemble both Th1 and Th2 type of immune responses. The immunological assessment revealed a high level of efficacy of the SGVS when inoculated via the IM route than the oral route. The strain was less cytotoxic with reduced cytotoxicity on chicken macrophages and was DIVA capable with minimum reactivity of immunized serum with purified SG lipopolysaccharides. The challenge study could generate 70% protection in chicken for SGVS, whereas no birds were protected in the PBS challenged group. The protection levels were evident in histopathological assessment of spleen and liver specimens and also the external appearance of the spleen with reduced lesions on immunized groups. Further experiments may be warranted to dose and route optimization for further increase in the protection level derived by present SGVS.
Asunto(s)
Enfermedades de las Aves de Corral , Salmonelosis Animal , Vacunas contra la Salmonella , Fiebre Tifoidea , Animales , Pollos , Leucocitos Mononucleares , Antígenos O/genética , Enfermedades de las Aves de Corral/prevención & control , Salmonella , Salmonelosis Animal/prevención & control , Vacunas contra la Salmonella/genética , Vacunas AtenuadasRESUMEN
In this work, a time-dependent and time-independent study on bleomycin-based high-frequency nsECT (3.5 kV/cm × 200 pulses) for the elimination of LLC1 tumours in C57BL/6J mice is performed. We show the efficiency of nsECT (200 ns and 700 ns delivered at 1 kHz and 1 MHz) for the elimination of tumours in mice and increase of their survival. The dynamics of the immunomodulatory effects were observed after electrochemotherapy by investigating immune cell populations and antitumour antibodies at different timepoints after the treatment. ECT treatment resulted in an increased percentage of CD4+ T, splenic memory B and tumour-associated dendritic cell subsets. Moreover, increased levels of antitumour IgG antibodies after ECT treatment were detected. Based on the time-dependent study results, nsECT treatment upregulated PD 1 expression on splenic CD4+ Tr1 cells, increased the expansion of splenic CD8+ T, CD4+CD8+ T, plasma cells and the proportion of tumour-associated pro inflammatory macrophages. The Lin- population of immune cells that was increased in the spleens and tumour after nsECT was identified. It was shown that nsECT prolonged survival of the treated mice and induced significant changes in the immune system, which shows a promising alliance of nanosecond electrochemotherapy and immunotherapy.
RESUMEN
Background: Since the introduction of various vaccines against SARS-CoV-2 at the end of 2020, infection rates have continued to climb worldwide. This led to the establishment of a third dose vaccination in several countries, known as a booster. To date, there has been little real-world data about the immunological effect of this strategy. Methods: We compared the humoral- and cellular immune response before and after the third dose of BioNTech/Pfizer vaccine BNT162b2, following different prime-boost regimen in a prospective observational study. Humoral immunity was assessed by determining anti-SARS-CoV-2 binding antibodies using a standardized quantitative assay. In addition, neutralizing antibodies were measured using a commercial surrogate ELISA-assay. Interferon-gamma release was measured after stimulating blood-cells with SARS-CoV-2 specific peptides using a commercial assay to evaluate the cellular immune response. Results: We included 243 health-care workers who provided blood samples and questionnaires pre- and post- third vaccination. The median antibody level increased significantly after the third vaccination dose to 2663.1 BAU/ml vs. 101.4 BAU/ml (p < 0.001) before administration of the booster dose. This was also detected for neutralizing antibodies with a binding inhibition of 99.68% ± 0.36% vs. 69.06% ± 19.88% after the second dose (p < 0.001). 96.3% of the participants showed a detectable T-cell-response after the booster dose with a mean interferon-gamma level of 2207.07 mIU/ml ± 1905 mIU/ml. Conclusion: This study detected a BMI-dependent antibody increase after the third dose of BNT162b2 following different vaccination protocols. All participants showed a significant increase in their immune response. This, in combination with the low rate of post-vaccination-symptoms underlines the potential beneficial effect of a BNT162b2-booster dose.
Asunto(s)
COVID-19 , Vacunas Virales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Humoral , Interferón gamma , SARS-CoV-2RESUMEN
Background: The mRNA-based vaccine BNT162b2 of BioNTech/Pfizer has shown high efficacy against SARS-CoV-2 infection and a severe course of the COVID-19 disease. However, little is known about the long-term durability of the induced immune response resulting from the vaccination. Methods: In a longitudinal observational study in employees at a German hospital we compared the humoral and cellular immune response in 184 participants after two doses of the BioNTech/Pfizer vaccine (BNT162b2) with a mid-term follow-up after 9 months. Anti-SARS-CoV-2 binding antibodies were determined using both a quantitative and a semi-quantitative assay. For a qualitative assessment of the humoral immune response, we additionally measured neutralizing antibodies. Cellular immune response was evaluated by measuring Interferon-gamma release after stimulating blood-cells with SARS-CoV-2 specific peptides using a commercial assay. Results: In the first analysis, a 100% humoral response rate was described after two doses of BNT162b2 vaccine with a mean antibody ratio of 8.01 ± 1.00. 9 months after the second dose of BNT162b2, serological testing showed a significant decreased mean antibody ratio of 3.84 ± 1.69 (p < 0.001). Neutralizing antibodies were still detectable in 96% of all participants, showing an average binding inhibition value of 68.20% ± 18.87%. Older age (p < 0.001) and obesity (p = 0.01) had a negative effect on the antibody persistence. SARS-CoV-2 specific cellular immune response was proven in 75% of individuals (mean Interferon-gamma release: 579.68 mlU/ml ± 705.56 mlU/ml). Conclusion: Our data shows a declining immune response 9 months after the second dose of BNT162b2, supporting the potentially beneficial effect of booster vaccinations, the negative effect of obesity and age stresses the need of booster doses especially in these groups.
Asunto(s)
Vacuna BNT162 , COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Personal de Salud , Humanos , Inmunidad Humoral , Interferón gamma , Obesidad , SARS-CoV-2RESUMEN
Transdermal immunization exhibits poor immunogenic responses due to poor permeability of antigens through the skin. Elastic liposomes, the ultradeformable nanoscale lipid vesicles, overcome the permeability issues and prove a versatile nanocarrier for transcutaneous delivery of protein, peptide, and nucleic acid antigens. Elastic liposome-mediated subcutaneous delivery of chimeric fusion protein (PfMSP-Fu24) of Plasmodium falciparum exhibited improved immunogenic responses. Elastic liposomes-mediated immunization of PfMSP-Fu24 conferred immunity to the asexual blood-stage infection. Present study is an attempt to compare the protective immune response mounted by the PfMSP-Fu24 upon administered through transdermal and intramuscular routes. Humoral and cell-mediated immune (CMI) response elicited by topical and intramuscularly administered PfMSP-Fu24-laden elastic liposomes (EL-PfMSP-Fu24) were compared and normalized with the vehicle control. Sizeable immune responses were seen with the transcutaneously immunized EL-PfMSP-Fu24 and compared with those elicited with intramuscularly administered antigen. Our results show significant IgG isotype subclass (IgG1and IgG3) response of specific antibody levels as well as cell-mediated immunity (CMI) activating factor (IFN-γ), a crucial player in conferring resistance to blood-stage malaria in mice receiving EL-PfMSP-Fu24 through transdermal route as compared to the intramuscularly administered formulation. Heightened immune response obtained by the vaccination of EL-PfMSP-Fu24 was complemented by the quantification of the transcript (mRNA) levels cell-mediated (IFN-γ, IL-4), and regulatory immune response (IL-10) in the lymph nodes and spleen. Collectively, elastic liposomes prove their immune-adjuvant property as they evoke sizeable and perdurable immune response against PfMSP-Fu24 and justify its potential for the improved vaccine delivery to inducing both humoral and CM immune response.