RESUMEN
Processing bodies (PBs) and stress granules (SGs) are prominent examples of subcellular, membraneless compartments that are observed under physiological and stress conditions, respectively. We observe that the trimeric PB protein DCP1A rapidly (within â¼10 s) phase-separates in mammalian cells during hyperosmotic stress and dissolves upon isosmotic rescue (over â¼100 s) with minimal effect on cell viability even after multiple cycles of osmotic perturbation. Strikingly, this rapid intracellular hyperosmotic phase separation (HOPS) correlates with the degree of cell volume compression, distinct from SG assembly, and is exhibited broadly by homo-multimeric (valency ≥ 2) proteins across several cell types. Notably, HOPS sequesters pre-mRNA cleavage factor components from actively transcribing genomic loci, providing a mechanism for hyperosmolarity-induced global impairment of transcription termination. Our data suggest that the multimeric proteome rapidly responds to changes in hydration and molecular crowding, revealing an unexpected mode of globally programmed phase separation and sequestration.
Asunto(s)
Endorribonucleasas/genética , Precursores del ARN/genética , Estrés Fisiológico/genética , Transactivadores/genética , Terminación de la Transcripción Genética , Animales , Tamaño de la Célula , Supervivencia Celular/genética , Humanos , Presión Osmótica/fisiología , Proteoma/genéticaRESUMEN
Genetic adaptations of organisms living in extreme environments are fundamental to our understanding of where life can evolve. Water is the single limiting parameter in this regard, yet when released in the oceans, the single-celled eggs of marine bony fishes (teleosts) have no means of acquiring it. They are strongly hyposmotic to seawater and lack osmoregulatory systems. Paradoxically, modern teleosts successfully release vast quantities of eggs in the extreme saline environment and recorded the most explosive radiation in vertebrate history. Here, we highlight key genetic adaptations that evolved to solve this paradox by filling the pre-ovulated eggs with water. The degree of water acquisition is uniquely prevalent to marine teleosts, permitting the survival and oceanic dispersal of their eggs.
Asunto(s)
Adaptación Fisiológica , Peces , Animales , Peces/genética , Adaptación Fisiológica/genética , Óvulo , Océanos y Mares , Agua de Mar , Evolución Biológica , Osmorregulación/genéticaRESUMEN
Water is known to play an important role in collagen self-assembly, but it is still largely unclear how water-collagen interactions influence the assembly process and determine the fibril network properties. Here, we use the H[Formula: see text]O/D[Formula: see text]O isotope effect on the hydrogen-bond strength in water to investigate the role of hydration in collagen self-assembly. We dissolve collagen in H[Formula: see text]O and D[Formula: see text]O and compare the growth kinetics and the structure of the collagen assemblies formed in these water isotopomers. Surprisingly, collagen assembly occurs ten times faster in D[Formula: see text]O than in H[Formula: see text]O, and collagen in D[Formula: see text]O self-assembles into much thinner fibrils, that form a more inhomogeneous and softer network, with a fourfold reduction in elastic modulus when compared to H[Formula: see text]O. Combining spectroscopic measurements with atomistic simulations, we show that collagen in D[Formula: see text]O is less hydrated than in H[Formula: see text]O. This partial dehydration lowers the enthalpic penalty for water removal and reorganization at the collagen-water interface, increasing the self-assembly rate and the number of nucleation centers, leading to thinner fibrils and a softer network. Coarse-grained simulations show that the acceleration in the initial nucleation rate can be reproduced by the enhancement of electrostatic interactions. These results show that water acts as a mediator between collagen monomers, by modulating their interactions so as to optimize the assembly process and, thus, the final network properties. We believe that isotopically modulating the hydration of proteins can be a valuable method to investigate the role of water in protein structural dynamics and protein self-assembly.
Asunto(s)
Colágeno , Agua , Agua/química , Termodinámica , HidrógenoRESUMEN
The aim of this review is to summarize the progress made in the determination of the protonation constants of biologically active ligands: endo- and exogenous L-amino acids and their derivatives in aqueous and mixed solutions using different experimental techniques. The knowledge of the protonation constants of the aforementioned ligands is crucial for the determination of the equilibrium constants of complex formation and thus for the understanding of complex biological reactions such as transamination, racemization, and decarboxylation. Thus, the protonation constants of ligands are a measure of their ability to form complexes with metal ions. This knowledge not only helps to understand fundamental biochemical processes, but also has practical applications in areas such as drug design, where ligands are often targeted for therapeutic purposes. The activity of the ligands tends to increase after complexation and their order is consistent with the values of the stepwise dissociation constants of the complexes formed. Understanding the properties of ligands by determining their protonation constants in different environments and their interactions with surrounding molecules is crucial to unraveling the complexity of biological systems.
Asunto(s)
Aminoácidos , Protones , Agua , Aminoácidos/química , Aminoácidos/metabolismo , Agua/química , Soluciones , LigandosRESUMEN
Water scarcity is a pressing global issue, requiring innovative solutions such as atmospheric water harvesting (AWH), which captures moisture from the air to provide potable water to many water-stressed areas. Thermoresponsive hydrogels, a class of temperature-sensitive polymers, demonstrate potential for AWH as matrices for hygroscopic components like salts predominantly due to their relatively energy-efficient desorption properties compared to other sorbents. However, challenges such as limited swelling capacity due to the salting-out effect and difficulty in more complete water release hinder the effectiveness of conventional hydrogel sorbents. To overcome these limitations, we introduce molecularly confined hydration in thermoresponsive hydrogels by employing a bifunctional polymeric network composed of hygroscopic zwitterionic moieties and thermoresponsive moieties. Here, we show that this approach ensures stable water uptake, enables water release at relatively low temperatures, and exhibits rapid sorption-desorption kinetics. Furthermore, by incorporating photothermal absorbers, the sorbent can achieve solar-driven AWH with comparable water release performance. This work advances the design of AWH sorbents by introducing molecularly confined hydration in thermoresponsive hydrogels, leading to a more efficient and sustainable approach to water harvesting. Our findings offer a potential solution for advanced sorbent design with comprehensive performance to mitigate the freshwater crisis.
RESUMEN
Thermophoresis allows for the manipulation of colloids in systems containing a temperature gradient. A deep understanding of the phenomena at the molecular level allows for increased control and manipulation strategies. We developed a microscopic model revealing different coupling mechanisms for colloid thermophoresis under local thermodynamic equilibrium conditions. The model has been verified through comparison with a variety of previously published experimental data and shows good agreement across significantly different systems. We found five different temperature-dependent contributions to the Soret coefficient, two from bulk properties and three from interfacial interactions between the fluid medium and the colloid. Our analysis shows that the Soret coefficient for nanosized particles is governed by the competition between the electrostatic and hydration interfacial interactions, while bulk contributions become more pronounced for protein systems. This theory can be used as a guide to design thermophoretic transport, which is relevant for sensing, focusing, and separation at the microscale.
RESUMEN
Reducing friction is of great interest, and an external potential applied to the friction pair can regulate lubricity. Electrochemical atomic force microscopy (EC-AFM) is used to study the tribological and adsorption behavior of monovalent and trivalent ionic solutions between charged surfaces. An opposite trend of coefficient of friction (COF) and normal force that varies with the applied electric potential is witnessed. Direct force measurements and theoretical models have disclosed that, for the NaCl solution, the negative electric field reduces the COF by increasing cation adsorption. As for LaCl3 solution, the positive electric field promotes the primary adsorption of anions on HOPG, resulting in the disappearance of the attractive ion-ion correlation between the trivalent ions, thereby reducing the COF. The shear behavior of adsorbed ions in electrolyte solution is sensitive to their valence, because of their different surface force contribution. The study further provides a framework to optimize the design of hydration lubrication.
RESUMEN
In this contribution, we report on the visualization of 12-crown-4 molecular diffusion behavior within a single-crystal particle of covalent organic framework-300 (COF-300) using operando dark-field optical microscopy. The diffusion area and front of 12-crown-4 are directly tracked in real time, offering key information for quantifying the diffusion coefficient (D). The direction of the diffusion and variation of D reveal intraparticle and interparticle heterogeneity. Notably, an unexpected hydration-accelerated diffusion process of 12-crown-4 within the pore channels of COF-300 is captured, in which a relatively low concentration of 12-crown-4 aqueous solution induces a fast diffusion, whereas the pure 12-crown-4 liquid cannot access the framework. The observed acceleration diffusion is demonstrated to arise from the hydrogen-bonding interactions between surface water molecules of hydrated 12-crown-4 and the imine groups of COF-300. These findings expand the mechanistic understanding of the noncovalent interactions between COFs and crown ethers (CEs), which will help to design and prepare CE-based COFs with improved performance.
RESUMEN
Glycan-protein interactions play a crucial role in biology, providing additional functions capable of inducing biochemical and cellular responses. In the extracellular matrix of bone, this type of interactions is ubiquitous. During the synthesis of the collagen molecule, glycans are post-translationally added to specific lysine residues through an enzymatically catalysed hydroxylation and subsequent glycosylation. During and after fibril assembly, proteoglycans are essential for maintaining tissue structure, porosity, and integrity. Glycosaminoglycans (GAGs), the carbohydrate chains attached to interstitial proteoglycans, are known to be involved in mineralization. They can attract and retain water, which is critical for the mechanical properties of bone. In addition, like other long-lived proteins, collagen is susceptible to glycation. Prolonged exposure of the amine group to glucose eventually leads to the formation of advanced glycation end-products (AGEs). Changes in the degree of glycosylation and glycation have been identified in bone pathologies such as osteogenesis imperfecta and diabetes and appear to be associated with a reduction in bone quality. However, how these changes affect mineralisation is not well understood. Based on the literature review, we hypothesize that the covalently attached carbohydrates may have a water-attracting function similar to that of GAGs, but at different lengths and timescales in the bone formation process. Glycosylation potentially increases the hydration around the collagen triple helix, leading to increased mineralization (hypermineralization) after water has been replaced by mineral. Meanwhile, glycation leads to the formation of crosslinking AGEs, which are associated with a decrease in hydration levels, reducing the mechanical properties of bone.
RESUMEN
Plant hormones are small molecules that regulate plant growth, development, and responses to biotic and abiotic stresses. They are specifically recognized by the binding site of their receptors. In this work, we resolved the binding pathways for eight classes of phytohormones (auxin, jasmonate, gibberellin, strigolactone, brassinosteroid, cytokinin, salicylic acid, and abscisic acid) to their canonical receptors using extensive molecular dynamics simulations. Furthermore, we investigated the role of water displacement and reorganization at the binding site of the plant receptors through inhomogeneous solvation theory. Our findings predict that displacement of water molecules by phytohormones contributes to free energy of binding via entropy gain and is associated with significant free energy barriers for most systems analyzed. Also, our results indicate that displacement of unfavorable water molecules in the binding site can be exploited in rational agrochemical design. Overall, this study uncovers the mechanism of ligand binding and the role of water molecules in plant hormone perception, which creates new avenues for agrochemical design to target plant growth and development.
Asunto(s)
Reguladores del Crecimiento de las Plantas , Plantas , Agua , Agroquímicos/química , Agroquímicos/metabolismo , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/clasificación , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Termodinámica , Agua/química , Agua/metabolismo , Solventes/química , Solventes/metabolismo , Sitios de Unión , Ligandos , Diseño de Fármacos , Desarrollo de la Planta , Unión ProteicaRESUMEN
Neurostimulation/neurorecording are tools to study, diagnose, and treat neurological/psychiatric conditions. Both techniques depend on volume conduction between scalp and excitable brain tissue. Here, we examine how neurostimulation with transcranial magnetic stimulation (TMS) is affected by hydration status, a physiological variable that can influence the volume of fluid spaces/cells, excitability, and cellular/global brain functioning. Normal healthy adult participants (32, 9 males) had common motor TMS measures taken in a repeated-measures design from dehydrated (12-h overnight fast/thirst) and rehydrated (identical dehydration protocol followed by rehydration with 1 L water in 1 h) testing days. The target region was left primary motor cortex hand area. Response at the target muscle was recorded with electromyography. Urinalysis confirmed hydration status. Motor hotspot shifted in half of participants. Motor threshold decreased in rehydration, indicating increased excitability. Even after redosing/relocalizing TMS to the new threshold/hotspot, rehydration still showed evidence of increased excitability: recruitment curve measures generally shifted upward and the glutamate-dependent paired-pulse protocol, short intracortical facilitation (SICF), was increased. Short intracortical inhibition (SICI), long intracortical inhibition (LICI), long intracortical facilitation (LICF), and cortical silent period (CSP) were relatively unaffected. The hydration perturbations were mild/subclinical based on the magnitude/speed and urinalysis. Motor TMS measures showed evidence of expected physiological changes of osmotic challenges. Rehydration showed signs of macroscopic and microscopic volume changes including decreased scalp-cortex distance (brain closer to stimulator) and astrocyte swelling-induced glutamate release. Hydration may be a source of variability affecting any techniques dependent on brain volumes/volume conduction. These concepts are important for researchers/clinicians using such techniques or dealing with the wide variety of disease processes involving water balance.NEW & NOTEWORTHY Hydration status can affect brain volumes and excitability, which should affect techniques dependent on electrical volume conduction, including neurostimulation/recording. We test the previously unknown effects of hydration on neurostimulation with TMS and briefly review relevant physiology of hydration. Rehydration showed lower motor threshold, shifted motor hotspot, and generally larger responses even after compensating for threshold/hotspot changes. This is important for clinical and research applications of neurostimulation/neurorecording and the many clinical disorders related to water balance.
Asunto(s)
Deshidratación , Potenciales Evocados Motores , Corteza Motora , Estimulación Magnética Transcraneal , Humanos , Masculino , Adulto , Femenino , Corteza Motora/fisiología , Potenciales Evocados Motores/fisiología , Deshidratación/fisiopatología , Adulto Joven , Estado de Hidratación del Organismo/fisiología , ElectromiografíaRESUMEN
Aquaporin-mediated oocyte hydration is considered important for the evolution of pelagic eggs and the radiative success of marine teleosts. However, the molecular regulatory mechanisms controlling this vital process are not fully understood. Here, we analyzed >400 piscine genomes to uncover a previously unknown teleost-specific aquaporin-1 cluster (TSA1C) comprised of tandemly arranged aqp1aa-aqp1ab2-aqp1ab1 genes. Functional evolutionary analysis of the TSA1C reveals a â¼300-million-year history of downstream aqp1ab-type gene loss, neofunctionalization, and subfunctionalization, but with marine species that spawn highly hydrated pelagic eggs almost exclusively retaining at least one of the downstream paralogs. Unexpectedly, one-third of the modern marine euacanthomorph teleosts selectively retain both aqp1ab-type channels and co-evolved protein kinase-mediated phosphorylation sites in the intracellular subdomains together with teleost-specific Ywhaz-like (14-3-3ζ-like) binding proteins for co-operative membrane trafficking regulation. To understand the selective evolutionary advantages of these mechanisms, we show that a two-step regulated channel shunt avoids competitive occupancy of the same plasma membrane space in the oocyte and accelerates hydration. These data suggest that the evolution of the adaptive molecular regulatory features of the TSA1C facilitated the rise of pelagic eggs and their subsequent geodispersal in the oceanic currents.
Asunto(s)
Proteínas 14-3-3 , Oocitos , Animales , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Oocitos/metabolismo , Evolución Molecular , Peces/genética , FilogeniaRESUMEN
The directional arrangement of H2O molecules can effectively regulate the ordered protons transfer to improve transport efficiency, which can be controlled by the interaction between materials and H2O. Herein, a strategy to build a stable hydration layer in metal-organic framework (MOF) platforms, in which hydrophilic centers that can manipulate H2O molecules are implanted into MOF cavities is presented. The rigid grid-Ni-MOF is selected as the supporting material due to the uniformly distributed cavities and rigid structures. The Ag0 possesses potential combination ability with the hydrophilic substances, so it is introduced into the MOF as hydration layer centers. Relying on the strong interaction between Ag0 and H2O, the H2O molecules can rearrange around Ag0 in the cavity, which is intuitively verified by DFT calculation and molecular dynamics simulation. The establishment of a hydration layer in Ag@Ni-MOF regulates the chemical properties of the material and gives the material excellent proton conduction performance, with a proton conductivity of 4.86 × 10-2 S cm-1.
RESUMEN
Oxygen-excess La2NiO4+ δ (LNO) conducts oxide ions, electron holes, and hydroxide ions simultaneously on exposing to wet oxygen, exhibiting the potential as a cathode material in protonic ceramic fuel cells. Since the incorporation of protons in oxygen-excess LNO is via the hydration reaction assisted by interstitial oxide ions, in this work, the concentration of interstitial oxide ions is reduced and increased by substituting Ni with Cu and Co, respectively. A higher concentration of interstitial oxide ions leads to a high proton concentration, indicating the predominant role of interstitial oxide ions in the hydration reaction, different from that in the oxygen-deficient oxides, where protons are introduced by dissociative absorption of water molecules by oxygen vacancies. The theoretical calculation indicates that protons in Co-doped LNO prefer to locate between the interstitial oxide ions and unshared apical oxide ions. A trapping effect is found between protons and the oxide ions near Cu, leading to decreased proton mobility. Protonic conductivity at 400-575 °C is then directly measured by a Hebb-Wagner direct current polarization method with La0.99Ca0.01NbO4- δ as the blocking electrode, enabling the observation that Co-doped LNO has the highest protonic conductivity among the samples studied in this work.
RESUMEN
The introduction of battery-type cathode has been commonly considered a preferred approach to boost the energy density of aqueous hybrid energy storage devices (AHESDs) in alkalic systems, but AHESDs with both high energy density and power density are rare due to the great challenge in designing battery-type anode materials with high rate and durability comparable to capacitive-type carbon anodes. In this paper, a well-hydrated iron selenate (FeSeO) sheath is constructed around FeOOH nanorods by a facile electrochemical activation, demonstrating the unique multifunction in fasting charge diffusion, promoting the dissociation of H2O, and inhibiting the irreversible phase transition of FeOOH to inert γ-Fe2O3, which endow the hydrated sheath coated Fe-based anodes with an impressive rate capability and superior durability. Thanks to the comprehensive performance of this Fe-based anode, the assembled AHESD delivered a high energy density of 117 Wh kg-1 with the extraordinary durability of almost 100% capacity retention after 40 000 cycles. Even at an ultrahigh power density of 27 000 W kg-1, an impressive energy density of 65 Wh kg-1 can be achieved, which rivals previously reported energy-storage devices.
RESUMEN
The need for hydration monitoring is significant, especially for the very young and elderly populations who are more vulnerable to becoming dehydrated and suffering from the effects that dehydration brings. This need has been among the drivers of considerable effort in the academic and commercial sectors to provide a means for monitoring hydration status, with a special interest in doing so outside the hospital or clinical setting. This review of emerging technologies provides an overview of many technology approaches that, on a theoretical basis, have sensitivity to water and are feasible as a routine measurement. We review the evidence of technical validation and of their use in humans. Finally, we highlight the essential need for these technologies to be rigorously evaluated for their diagnostic potential, as a necessary step to meet the need for hydration monitoring outside of the clinical environment.
Asunto(s)
Deshidratación , Agua , Humanos , Anciano , Deshidratación/diagnósticoRESUMEN
The plant cuticle is located at the interface of the plant with the environment, thus acting as a protective barrier against biotic and abiotic external stress factors, and regulating water loss. Additionally, it modulates mechanical stresses derived from internal tissues and also from the environment. Recent advances in the understanding of the hydric, mechanical, thermal, and, to a lower extent, optical and electric properties of the cuticle, as well as their phenomenological connections and relationships are reviewed. An equilibrium based on the interaction among the different biophysical properties is essential to ensure plant growth and development. The notable variability reported in cuticle geometry, surface topography, and microchemistry affects the analysis of some biophysical properties of the cuticle. This review aimed to provide an updated view of the plant cuticle, understood as a modification of the cell wall, in order to establish the state-of-the-art biophysics of the plant cuticle, and to serve as an inspiration for future research in the field.
Asunto(s)
Fenómenos Biofísicos , Pared Celular/fisiología , Pared Celular/ultraestructura , Biofisica , Epidermis de la Planta/fisiología , Plantas/anatomía & histología , Plantas/metabolismoRESUMEN
Gold(III) complexes containing trifluoromethyl ligands are efficient catalysts in the hydration of alkynes, operating at low catalyst loadings, without additives, using environmentally friendly solvents and at mild conditions (60 °C). Hydration of terminal and internal alkynes provides the corresponding ketones in quantitative yields without special precautions as dry solvents or inert atmospheres. Remarkably, hydration of asymmetric internal alkynes proceeds with moderate to notable regioselectivities, providing mixtures of the two possible isomers with ratios up to 90 : 10.
RESUMEN
Clathrate hydrates are among the most intensively studied H-bond inclusion compounds. Despite the broad definition for this class of compounds, their meaning commonly refers to closed polyhedral nanocages that encapsulate small guest molecules. On the other hand, larger solutes enforce another type of encapsulation because of the solute size effect. Herein, we report a series of structures containing various molecules encapsulated by intercalated water layers constructed of polycyclic moieties of L4(4)8(8) topology. We parametrized the corrugation of individual layers and characterized interactions governing their formation. We suggested that these could be categorized as two-dimensional clathrates based on the character of intra-layer interactions and the effects observed between entrapped molecules and water-based intercalators.
RESUMEN
INTRODUCTION: Atopic dermatitis (AD) is characterized by an impaired epidermal barrier, which could be associated with sensitization to food allergens (FAs) and/or inhaled allergens and contribute to the severity of AD. However, no clinical guidance has been established for evaluations of food sensitization (FS) in AD patients. This study investigated how AD severity and epidermal barrier impairment are associated with FS and factors that can predict FS in children with AD. METHODS: This cross-sectional study included 100 children (12-60 months) diagnosed with AD. AD severity was determined using the Scoring Atopic Dermatitis (SCORAD) index. FS was evaluated by measuring serum-specific IgE antibodies against 31 FAs using an immunoblotting method. Epidermal barrier impairment was assessed by measuring transepidermal water loss (TEWL) and stratum corneum hydration (SCH) levels. RESULTS: 90% of participants were sensitized to at least one tested FA, with cow's milk, egg white, beef, almond, egg yolk, and peanut being the most common. Children with moderate-severe AD had lower SCH levels than those with mild AD. Children with AD who were sensitized to >10 FAs had significantly higher TEWL and lower SCH levels, compared with those sensitized to 1-4 FAs and 5-10 FAs. The SCORAD score and SCH level in lesional skin provided moderately predictive value for sensitization to FAs in children with AD. CONCLUSION: FS is common in children with AD and closely associate with AD severity as well as epidermal barrier impairment. Evaluations of FS should be considered for children with moderate to severe AD and/or low SCH levels.