Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(30): e2221797120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459519

RESUMEN

Human cytomegalovirus (CMV) has infected humans since the origin of our species and currently infects most of the world's population. Variability between CMV genomes is the highest of any human herpesvirus, yet large portions of the genome are conserved. Here, we show that the genome encodes 74 regions of relatively high variability each with 2 to 8 alleles. We then identified two patterns in the CMV genome. Conserved parts of the genome and a minority (32) of variable regions show geographic population structure with evidence for African or European clustering, although hybrid strains are present. We find no evidence that geographic segregation has been driven by host immune pressure affecting known antigenic sites. Forty-two variable regions show no geographical structure, with similar allele distributions across different continental populations. These "nongeographical" regions are significantly enriched for genes encoding immunomodulatory functions suggesting a core functional importance. We hypothesize that at least two CMV founder populations account for the geographical differences that are largely seen in the conserved portions of the genome, although the timing of separation and direction of spread between the two are not clear. In contrast, the similar allele frequencies among 42 variable regions of the genome, irrespective of geographical origin, are indicative of a second evolutionary process, namely balancing selection that may preserve properties critical to CMV biological function. Given that genetic differences between CMVs are postulated to alter immunogenicity and potentially function, understanding these two evolutionary processes could contribute important information for the development of globally effective vaccines and the identification of novel drug targets.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Frecuencia de los Genes , Genómica
2.
Mar Drugs ; 15(8)2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28829401

RESUMEN

The application of high-throughput sequencing technologies to non-model organisms has brought new opportunities for the identification of bioactive peptides from genomes and transcriptomes. From this point of view, marine invertebrates represent a potentially rich, yet largely unexplored resource for de novo discovery due to their adaptation to diverse challenging habitats. Bioinformatics analyses of available genomic and transcriptomic data allowed us to identify myticalins, a novel family of antimicrobial peptides (AMPs) from the mussel Mytilus galloprovincialis, and a similar family of AMPs from Modiolus spp., named modiocalins. Their coding sequence encompasses two conserved N-terminal (signal peptide) and C-terminal (propeptide) regions and a hypervariable central cationic region corresponding to the mature peptide. Myticalins are taxonomically restricted to Mytiloida and they can be classified into four subfamilies. These AMPs are subject to considerable interindividual sequence variability and possibly to presence/absence variation. Functional assays performed on selected members of this family indicate a remarkable tissue-specific expression (in gills) and broad spectrum of activity against both Gram-positive and Gram-negative bacteria. Overall, we present the first linear AMPs ever described in marine mussels and confirm the great potential of bioinformatics tools for the de novo discovery of bioactive peptides in non-model organisms.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bivalvos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Animales , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Organismos Acuáticos , Pruebas de Sensibilidad Microbiana , Fitoterapia
3.
Front Microbiol ; 12: 721392, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489912

RESUMEN

Molecular mechanisms involved in biological conflicts and self vs nonself recognition in archaea remain poorly characterized. We apply phylogenomic analysis to identify a hypervariable gene module that is widespread among Thermococcales. These loci consist of an upstream gene coding for a large protein containing several immunoglobulin (Ig) domains and unique combinations of downstream genes, some of which also contain Ig domains. In the large Ig domain containing protein, the C-terminal Ig domain sequence is hypervariable, apparently, as a result of recombination between genes from different Thermococcales. To reflect the hypervariability, we denote this gene module VARTIG (VARiable Thermococcales IG). The overall organization of the VARTIG modules is similar to the organization of Polymorphic Toxin Systems (PTS). Archaeal genomes outside Thermococcales encode a variety of Ig domain proteins, but no counterparts to VARTIG and no Ig domains with comparable levels of variability. The specific functions of VARTIG remain unknown but the identified features of this system imply three testable hypotheses: (i) involvement in inter-microbial conflicts analogous to PTS, (ii) role in innate immunity analogous to the vertebrate complement system, and (iii) function in self vs nonself discrimination analogous to the vertebrate Major Histocompatibility Complex. The latter two hypotheses seem to be of particular interest given the apparent analogy to the vertebrate immunity.

4.
Genetics ; 209(3): 725-741, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29724862

RESUMEN

In vitro studies suggest that stress may generate random standing variation and that different cellular and ploidy states may evolve more rapidly under stress. Yet this idea has not been tested with pathogenic fungi growing within their host niche in vivo Here, we analyzed the generation of both genotypic and phenotypic diversity during exposure of Candida albicans to the mouse oral cavity. Ploidy, aneuploidy, loss of heterozygosity (LOH), and recombination were determined using flow cytometry and double digest restriction site-associated DNA sequencing. Colony phenotypic changes in size and filamentous growth were evident without selection and were enriched among colonies selected for LOH of the GAL1 marker. Aneuploidy and LOH occurred on all chromosomes (Chrs), with aneuploidy more frequent for smaller Chrs and whole Chr LOH more frequent for larger Chrs. Large genome shifts in ploidy to haploidy often maintained one or more heterozygous disomic Chrs, consistent with random Chr missegregation events. Most isolates displayed several different types of genomic changes, suggesting that the oral environment rapidly generates diversity de novo In sharp contrast, following in vitro propagation, isolates were not enriched for multiple LOH events, except in those that underwent haploidization and/or had high levels of Chr loss. The frequency of events was overall 100 times higher for C. albicans populations following in vivo passage compared with in vitro These hyper-diverse in vivo isolates likely provide C. albicans with the ability to adapt rapidly to the diversity of stress environments it encounters inside the host.


Asunto(s)
Candida albicans/fisiología , Candidiasis/microbiología , ADN de Hongos/genética , Variación Genética , Boca/microbiología , Aneuploidia , Animales , Candida albicans/genética , Candida albicans/aislamiento & purificación , Proteínas Fúngicas/genética , Galactoquinasa/genética , Frecuencia de los Genes , Genotipo , Interacciones Huésped-Patógeno , Pérdida de Heterocigocidad , Masculino , Ratones , Fenotipo , Análisis de Secuencia de ADN
5.
Bio Protoc ; 7(10): e2284, 2017 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34541061

RESUMEN

Analysis of hypervariable regions (HVR) using pyrosequencing techniques is hampered by the ability of error correction algorithms to account for the heterogeneity of the variants present. Analysis of between-sample fluctuations to virome sub-populations, and detection of low frequency variants, are unreliable through the application of arbitrary frequency cut offs. Cumulatively this leads to an underestimation of genetic diversity. In the following technique we describe the analysis of Hepatitis C virus (HCV) HVR1 which includes the E1/E2 glycoprotein gene junction. This procedure describes the evolution of HCV in a treatment naïve environment, from 10 samples collected over 10 years, using ultradeep pyrosequencing (UDPS) performed on the Roche GS FLX titanium platform ( Palmer et al., 2014 ). Initial clonal analysis of serum samples was used to inform downstream error correction algorithms that allowed for a greater sequence depth to be reached. PCR amplification of this region has been tested for HCV genotypes 1, 2, 3 and 4.

6.
Viral Immunol ; 30(10): 708-726, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29064351

RESUMEN

The extensive hypervariability of human immunodeficiency virus type-1 (HIV-1) populations represents a major barrier against the success of currently available antiretroviral therapy. Moreover, it is still the most important obstacle that faces the development of an effective preventive vaccine against this infectious virus. Indeed, several factors can drive such hypervariability within and between HIV-1 patients. These factors include: first, the very low fidelity nature of HIV-1 reverse transcriptase; second, the extremely high HIV-1 replication rate; and third, the high genomic recombination rate that the virus has. All these factors together with the APOBEC3 proteins family and the immune and antiviral drugs pressures drive the extensive hypervariability of HIV-1 populations. Studying these factors and the mechanisms that drive such hypervariability will provide valuable insights that may guide the development of effective therapeutic and preventive strategies against HIV-1 infection in the near future. To this end, in this review, we summarized recent advances in this area of HIV-1 research.


Asunto(s)
Variación Genética , Infecciones por VIH/virología , VIH-1/genética , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Farmacorresistencia Viral/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Transcriptasa Inversa del VIH/genética , Transcriptasa Inversa del VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/enzimología , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune/genética , Recombinación Genética
7.
Mitochondrion ; 14(1): 49-53, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24270090

RESUMEN

It has been suggested that mitochondrial dysfunction plays a role in the pathogenesis of asthma. To test whether mitochondrial variants influence the risk of asthma, we analyzed 16,158 mtSNPs in a sample of 372 asthmatic children and 395 healthy children using the DNA pooling technique and genome wide association analysis. Stratified analysis by sex was performed to explain the differences observed between sexes in the etiology of asthma. Different variants were detected to be significant in the sample of girls and boys with the smallest adjusted p values being 1.4 × 10(-09) (mt5295) and 3.6 × 10(-12) (mt16158), respectively. Most of the significant locations found in boys are within the CYB gene and the non-coding region. For girls, most of the significant mtSNPs lie within NADH-dehydrogenase-subunits. The variants reported here have not previously been described in connection with asthma. Although further studies in other cohorts are needed to confirm these findings our study highlights the importance of the mitochondria among the factors that contribute to the risk of asthma.


Asunto(s)
Asma/genética , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Adolescente , Estudios de Casos y Controles , Niño , Citocromos b/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , NADH Deshidrogenasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA