Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 371
Filtrar
Más filtros

Intervalo de año de publicación
1.
Semin Immunol ; 67: 101757, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003056

RESUMEN

The dynamic and complex community of microbes that colonizes the intestines is composed of bacteria, fungi, and viruses. At the mucosal surfaces, immunoglobulins play a key role in protection against bacterial and fungal pathogens, and their toxins. Secretory immunoglobulin A (sIgA) is the most abundantly produced antibody at the mucosal surfaces, while Immunoglobulin G (IgG) isotypes play a critical role in systemic protection. IgA and IgG antibodies with reactivity to commensal fungi play an important role in shaping the mycobiota and host antifungal immunity. In this article, we review the latest evidence that establishes a connection between commensal fungi and B cell-mediated antifungal immunity as an additional layer of protection against fungal infections and inflammation.


Asunto(s)
Antifúngicos , Inmunoglobulina A Secretora , Humanos , Inmunoglobulina G , Bacterias , Inmunidad Mucosa , Inmunoglobulinas
2.
J Biol Chem ; 300(7): 107444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38838772

RESUMEN

Candida albicans is an opportunistic fungal pathogen that can switch between yeast and hyphal morphologies depending on the environmental cues it receives. The switch to hyphal form is crucial for the establishment of invasive infections. The hyphal form is also characterized by the cell surface expression of hyphae-specific proteins, many of which are GPI-anchored and important determinants of its virulence. The coordination between hyphal morphogenesis and the expression of GPI-anchored proteins is made possible by an interesting cross-talk between GPI biosynthesis and the cAMP-PKA signaling cascade in the fungus; a parallel interaction is not found in its human host. On the other hand, in the nonpathogenic yeast, Saccharomyces cerevisiae, GPI biosynthesis is shut down when filamentation is activated and vice versa. This too is achieved by a cross-talk between GPI biosynthesis and cAMP-PKA signaling. How are diametrically opposite effects obtained from the cross-talk between two reasonably well-conserved pathways present ubiquitously across eukarya? This Review attempts to provide a model to explain these differences. In order to do so, it first provides an overview of the two pathways for the interested reader, highlighting the similarities and differences that are observed in C. albicans versus the well-studied S. cerevisiae model, before going on to explain how the different mechanisms of regulation are effected. While commonalities enable the development of generalized theories, it is hoped that a more nuanced approach, that takes into consideration species-specific differences, will enable organism-specific understanding of these processes and contribute to the development of targeted therapies.


Asunto(s)
Candida albicans , Proteínas Quinasas Dependientes de AMP Cíclico , AMP Cíclico , Hifa , Saccharomyces cerevisiae , Transducción de Señal , Candida albicans/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Hifa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/biosíntesis , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Mol Microbiol ; 119(5): 574-585, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36855815

RESUMEN

The CUG-Ser1 clade-specific histone H3 variant (H3VCTG ) has been reported to be a negative regulator of planktonic to biofilm growth transition in Candida albicans. The preferential binding of H3VCTG at the biofilm gene promoters makes chromatin repressive for the biofilm mode of growth. The two evolutionarily conserved chaperone complexes involved in incorporating histone H3 are CAF-1 and HIRA. In this study, we sought to identify the chaperone complex(es) involved in loading H3VCTG . We demonstrate that C. albicans cells lacking either Cac1 or Cac2 subunit of the CAF-1 chaperone complex, exhibit a hyper-filamentation phenotype on solid surfaces and form more robust biofilms than wild-type cells, thereby mimicking the phenotype of the H3VCTG null mutant. None of the subunits of the HIRA chaperone complex shows any significant difference in biofilm growth as compared to the wild type. The occupancy of H3VCTG is found to be significantly reduced at the promoters of biofilm genes in the absence of CAF-1 subunits. Hence, we provide evidence that CAF-1, a chaperone known to load canonical histone H3 in mammalian cells, is involved in chaperoning of variant histone H3VCTG at the biofilm gene promoters in C. albicans. Our findings also illustrate the acquisition of an unconventional role of the CAF-1 chaperone complex in morphogenesis in C. albicans.


Asunto(s)
Candida albicans , Histonas , Animales , Histonas/genética , Histonas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Cromatina , Factor 1 de Ensamblaje de la Cromatina/química , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Biopelículas , Mamíferos/genética , Mamíferos/metabolismo
4.
Small ; 20(16): e2307579, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38044290

RESUMEN

The design and fabrication of novel carbon hosts with high conductivity, accelerated electrochemical catalytic activities, and superior physical/chemical confinement on sulfur and its reaction intermediates polysulfides are essential for the construction of high-performance C/S cathodes for lithium-sulfur batteries (LSBs). In this work, a novel biofermentation coupled gel composite assembly technology is developed to prepare cross-linked carbon composite hosts consisting of conductive Rhizopus hyphae carbon fiber (RHCF) skeleton and lamellar sodium alginate carbon (SAC) uniformly implanted with polarized nanoparticles (V2O3, Ag, Co, etc.) with diameters of several nanometers. Impressively, the RHCF/SAC/V2O3 composites exhibit enhanced physical/chemical adsorption of polysulfides due to the synergistic effect between hierarchical pore structures, heteroatoms (N, P) doping, and polar V2O3 generation. Additionally, the catalytic conversion kinetics of cathodes are effectively improved by regulating the 3D carbon structure and optimizing the V2O3 catalyst. Consequently, the LSBs assembled with RHCF/SAC/V2O3-S cathode show exceptional cycle stability (capacity retention rate of 94.0% after 200 cycles at 0.1 C) and excellent rate performance (specific capacity of 578 mA h g-1 at 5 C). This work opens a new door for the fabrication of hyphae carbon composites via fermentation for electrochemical energy storage.

5.
New Phytol ; 243(5): 1936-1950, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38973063

RESUMEN

The antagonistic interplay between phosphorus (P) and zinc (Zn) in plants is well established. However, the molecular mechanisms mediating those interactions as influenced by arbuscular mycorrhizal (AM) symbiosis remain unclear. We investigated Zn concentrations, root AM symbiosis, and transcriptome profiles of maize roots grown under field conditions upon different P levels. We also validated genotype-dependent P-Zn uptake in selected genotypes from a MAGIC population and conducted mycorrhizal inoculation experiments using mycorrhizal-defective mutant pht1;6 to elucidate the significance of AM symbiosis in P-Zn antagonism. Finally, we assessed how P supply affects Zn transporters and Zn uptake in extraradical hyphae within a three-compartment system. Elevated P levels led to a significant reduction in maize Zn concentration across the population, correlating with a marked decline in AM symbiosis, thus elucidating the P-Zn antagonism. We also identified ZmPht1;6 is crucial for AM symbiosis and confirmed that P-Zn antagonistic uptake is dependent on AM symbiosis. Moreover, we found that high P suppressed the expression of the fungal RiZRT1 and RiZnT1 genes, potentially impacting hyphal Zn uptake. We conclude that high P exerts systemic regulation over root and AM hyphae-mediated Zn uptake in maize. These findings hold implications for breeding Zn deficiency-tolerant maize varieties.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Micorrizas , Fósforo , Suelo , Simbiosis , Zea mays , Zinc , Zea mays/microbiología , Zea mays/metabolismo , Zea mays/genética , Micorrizas/fisiología , Zinc/metabolismo , Fósforo/metabolismo , Suelo/química , Transporte Biológico , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hifa , Genotipo , Mutación/genética
6.
Microb Pathog ; 197: 107089, 2024 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-39477034

RESUMEN

Candida albicans infection poses a significant global health threat. It is imperative to exploit new antifungal agents against C. albicans infections without leading to drug resistance, so that these potential agents can complement or combine with current medications to effectively treat diseases caused by C. albicans. We screened moscatin, and assessed the inhibitory effectiveness against C. albicans SC5314 on hyphae production and biofilm formation. It was revealed that moscatin exhibited significant effects on morphological transition and biofilm formation in C. albicans SC5314. It also lowered the pathogenicity of C. albicans SC5314 in a concentration-dependent way in both A549 cells and mice fungal infection models, but had no cytotoxicity to A549 cells. In addition, moscatin attenuated the virulence of clinical fluconazole-resistant C. albicans and exhibited synergistic activity with fluconazole. It could also restore the composition and richness of the intestinal microbiota in mice infected by C. albicans. These findings indicate that these moscatin has great potential to be developed as a new therapeutic drug against C. albicans infection.

7.
Microb Pathog ; 189: 106573, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354989

RESUMEN

The substantial increase of infections, caused by novel, sudden, and drug-resistant pathogens, poses a significant threat to human health. While numerous studies have demonstrated the antibacterial and antiviral effects of Traditional Chinese Medicine, the potential of a complex mixture of traditional Chinese Medicine with a broad-spectrum antimicrobial property remains underexplored. This study aimed to develop a complex mixture of Traditional Chinese Medicine (TCM), JY-1, and investigate its antimicrobial properties, along with its potential mechanism of action against pathogenic microorganisms. Antimicrobial activity was assessed using a zone of inhibition assay and the drop plate method. Hyphal induction of Candida albicans was conducted using RPMI1640 medium containing 10% FBS, followed by microscopic visualization. Quantitative real-time PCR (RT-qPCR) was employed to quantify the transcript levels of hyphal-specific genes such as HWP1 and ALS3. The impact of JY-1 on biofilm formation was evaluated using both the XTT reduction assay and scanning electron microscopy (SEM). Furthermore, the cell membrane integrity was assessed by protein and nucleic acid leakage assays. Our results clearly showed that JY-1 significantly inhibits the vegetative growth of Candida spp. and Cryptococcus spp. In addition, this complex mixture is effectively against a wide range of pathogenic bacteria, including Staphylococcus aureus, Vancomycin-resistant enterococci, Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae. More interestingly, JY-1 plays a direct anti-viral role against the mammalian viral pathogen vesicular stomatitis virus (VSV). Further mechanistic studies indicate that JY-1 acts to reduce the expression of hyphal specific genes HWP1 and ALS3, resulting in the suppression of the hyphal formation of C. albicans. The antimicrobial property of JY-1 could be attributed to its ability to reduce biofilm formation and disrupt the cell membrane permeability, a process resulting in microbial cell death and the release of cellular contents. Taken together, our work identified a potent broad-spectrum antimicrobial agent, a complex mixture of TCM which might be developed as a potential antimicrobial drug.


Asunto(s)
Antiinfecciosos , Medicina Tradicional China , Animales , Humanos , Permeabilidad de la Membrana Celular , Biopelículas , Candida albicans , Antiinfecciosos/farmacología , Mezclas Complejas/farmacología , Permeabilidad , Pruebas de Sensibilidad Microbiana , Mamíferos
8.
FEMS Yeast Res ; 242024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38142225

RESUMEN

The ∼1 200 known species in subphylum Saccharomycotina are a highly diverse clade of unicellular fungi. During its lifecycle, a typical yeast exhibits multiple cell types with various morphologies; these morphologies vary across Saccharomycotina species. Here, we synthesize the evolutionary dimensions of variation in cellular morphology of yeasts across the subphylum, focusing on variation in cell shape, cell size, type of budding, and filament production. Examination of 332 representative species across the subphylum revealed that the most common budding cell shapes are ovoid, spherical, and ellipsoidal, and that their average length and width is 5.6 µm and 3.6 µm, respectively. 58.4% of yeast species examined can produce filamentous cells, and 87.3% of species reproduce asexually by multilateral budding, which does not require utilization of cell polarity for mitosis. Interestingly, ∼1.8% of species examined have not been observed to produce budding cells, but rather only produce filaments of septate hyphae and/or pseudohyphae. 76.9% of yeast species examined have sexual cycle descriptions, with most producing one to four ascospores that are most commonly hat-shaped (37.4%). Systematic description of yeast cellular morphological diversity and reconstruction of its evolution promises to enrich our understanding of the evolutionary cell biology of this major fungal lineage.


Asunto(s)
Ascomicetos , Filogenia , Levaduras
9.
Med Mycol ; 62(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38692846

RESUMEN

Candida albicans is a pathogenic fungus that undergoes morphological transitions between hyphal and yeast forms, adapting to diverse environmental stimuli and exhibiting distinct virulence. Existing research works on antifungal blue light (ABL) therapy have either focused solely on hyphae or neglected to differentiate between morphologies, obscuring potential differential effects. To address this gap, we established a novel dataset of 150 C. albicans-infected mouse skin tissue slice images with meticulously annotated hyphae and yeast. Eleven representative convolutional neural networks were trained and evaluated on this dataset using seven metrics to identify the optimal model for segmenting hyphae and yeast in original high pixel size images. Leveraging the segmentation results, we analyzed the differential impact of blue light on the invasion depth and density of both morphologies within the skin tissue. U-Net-BN outperformed other models in segmentation accuracy, achieving the best overall performance. While both hyphae and yeast exhibited significant reductions in invasion depth and density at the highest ABL dose (180 J/cm2), only yeast was significantly inhibited at the lower dose (135 J/cm2). This novel finding emphasizes the importance of developing more effective treatment strategies for both morphologies.


We studied the effects of blue light therapy on hyphal and yeast forms of Candida albicans. Through image segmentation techniques, we discovered that the changes in invasion depth and density differed between these two forms after exposure to blue light.


Asunto(s)
Candida albicans , Hifa , Animales , Ratones , Candida albicans/efectos de la radiación , Piel/microbiología , Fototerapia/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Luz , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Redes Neurales de la Computación , Modelos Animales de Enfermedad , Candidiasis/microbiología
10.
Environ Sci Technol ; 58(14): 6258-6273, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38450439

RESUMEN

Contamination of small-sized plastics is recognized as a factor of global change. Nanoplastics (NPs) can readily enter organisms and pose significant ecological risks. Arbuscular mycorrhizal (AM) fungi are the most ubiquitous and impactful plant symbiotic fungi, regulating essential ecological functions. Here, we first found that an AM fungus, Rhizophagus irregularis, increased lettuce shoot biomass by 25-100% when exposed to positively and negatively charged NPs vs control, although it did not increase that grown without NPs. The stress alleviation was attributed to the upregulation of gene expressions involving phytohormone signaling, cell wall metabolism, and oxidant scavenging. Using a root organ-fungus axenic growth system treated with fluorescence-labeled NPs, we subsequently revealed that the hyphae captured NPs and further delivered them to roots. NPs were observed at the hyphal cell walls, membranes, and spore walls. NPs mediated by the hyphae were localized at the root epidermis, cortex, and stele. Hyphal exudates aggregated positively charged NPs, thereby reducing their uptake due to NP aggregate formation (up to 5000 nm). This work demonstrates the critical roles of AM fungus in regulating NP behaviors and provides a potential strategy for NP risk mitigation in terrestrial ecosystems. Consequent NP-induced ecological impacts due to the affected AM fungi require further attention.


Asunto(s)
Micorrizas , Micorrizas/metabolismo , Microplásticos , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Hifa , Ecosistema , Expresión Génica
11.
J Appl Microbiol ; 135(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38866718

RESUMEN

AIM: Isolation, identification, structural and functional characterization of potent anti-Candida compound with specific antagonistic activities against significant human pathogens, Candida albicans and C. auris. METHODS AND RESULTS: The compound (55B3) was purified from the metabolites produced by Streptomyces chrestomyceticus ADP4 by employing column chromatography. The structure of 55B3 was determined from the analyses of spectral data that included LCMS, nuclear magnetic resonance, FTIR, and UV spectroscopies. It was identified as a novel derivative of diterpenic aromatic acid, 3-(dictyotin-11'-oate-15'α, 19'ß-olide)-4-(dictyotin-11'-oate-15″α, 19″ß-olide)-protocatechoic acid. The compound displayed potent antifungal and anti-biofilm activities against C. albicans ATCC 10231 (Minimum Inhibitory Concentration, MIC90:14.94 ± 0.17 µgmL-1 and MBIC90: 16.03 ± 1.1 µgmL-1) and against C. auris CBS 12372 (MIC90: 21.75 ± 1.5 µgmL-1 and Minimum Biofilm Inhibitory Concentration, MBIC90: 18.38 ± 1.78 µgmL-1). Further, pronounced inhibition of important virulence attributes of Candida spp., e.g. yeast-to-hyphae transition, secretory aspartyl proteinase and phospholipase B by 55B3 was noted at subinhibitory concentrations. A plausible mechanism of anti-Candida action of the compound appeared to be the inhibition of ergosterol biosynthesis, which was inhibited by 64 ± 3% at the MIC90 value. The non-cytotoxic attribute of the compound was noted in the liver cell line (HepG2 cells). CONCLUSION: The present work led to the discovery of a novel diterpenic derivative produced by S. chrestomyceticus ADP4. The compound displayed potent anti-Candida activity, particularly against the two most significant human pathogens, C. albicans and C. auris, which underlined its significance as a potential drug candidate for infections involving these pathogens.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Pruebas de Sensibilidad Microbiana , Streptomyces , Factores de Virulencia , Biopelículas/efectos de los fármacos , Streptomyces/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Humanos , Candida/efectos de los fármacos
12.
J Nanobiotechnology ; 22(1): 568, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285480

RESUMEN

Systemic infection with Candida albicans poses a significant risk for people with weakened immune systems and carries a mortality rate of up to 60%. However, current therapeutic options have several limitations, including increasing drug tolerance, notable off-target effects, and severe adverse reactions. Over the past four decades, the progress in developing drugs to treat Candida albicans infections has been sluggish. This comprehensive review addresses the limitations of existing drugs and summarizes the efforts made toward redesigning and innovating existing or novel drugs through nanotechnology. The discussion explores the potential applications of nanomedicine in Candida albicans infections from four perspectives: nano-preparations for anti-biofilm therapy, innovative formulations of "old drugs" targeting the cell membrane and cell wall, reverse drug resistance therapy targeting subcellular organelles, and virulence deprivation therapy leveraging the unique polymorphism of Candida albicans. These therapeutic approaches are promising to address the above challenges and enhance the efficiency of drug development for Candida albicans infections. By harnessing nano-preparation technology to transform existing and preclinical drugs, novel therapeutic targets will be uncovered, providing effective solutions and broader horizons to improve patient survival rates.


Asunto(s)
Antifúngicos , Candida albicans , Candidiasis , Nanotecnología , Humanos , Candida albicans/efectos de los fármacos , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Nanotecnología/métodos , Animales , Farmacorresistencia Fúngica/efectos de los fármacos , Biopelículas/efectos de los fármacos , Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapéutico , Sistemas de Liberación de Medicamentos/métodos
13.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33876755

RESUMEN

Innate immunity provides essential protection against life-threatening fungal infections. However, the outcomes of individual skirmishes between immune cells and fungal pathogens are not a foregone conclusion because some pathogens have evolved mechanisms to evade phagocytic recognition, engulfment, and killing. For example, Candida albicans can escape phagocytosis by activating cellular morphogenesis to form lengthy hyphae that are challenging to engulf. Through live imaging of C. albicans-macrophage interactions, we discovered that macrophages can counteract this by folding fungal hyphae. The folding of fungal hyphae is promoted by Dectin-1, ß2-integrin, VASP, actin-myosin polymerization, and cell motility. Folding facilitates the complete engulfment of long hyphae in some cases and it inhibits hyphal growth, presumably tipping the balance toward successful fungal clearance.


Asunto(s)
Candida albicans/patogenicidad , Hifa/citología , Macrófagos/metabolismo , Fagocitosis , Quinasas de la Proteína-Quinasa Activada por el AMP , Actomiosina/metabolismo , Animales , Antígenos CD18/metabolismo , Moléculas de Adhesión Celular/metabolismo , Células Cultivadas , Humanos , Hifa/patogenicidad , Lectinas Tipo C/metabolismo , Macrófagos/microbiología , Ratones , Proteínas Quinasas/metabolismo , Células RAW 264.7
14.
Rev Argent Microbiol ; 56(2): 175-186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38336597

RESUMEN

Peanuts (Arachis hypogaea L.) are among the most important leguminous crops in Argentina. During the growing season, they are frequently attacked by fungal diseases, including Thecaphora frezii. The spores of T. frezii are structures that confer resistance to this phytopathogen. The transition from teliospore to hypha is a characteristic process of some fungi, which is essential for completing their life cycle. Using the transcriptomes of teliospores and hyphae of T. frezii, we aimed to identify genes that were differentially expressed during this transition, and we found 134 up-regulated and 66 down-regulated genes, which would participate in different cellular processes such as: (a) cell cycle and DNA processing; (b) cell fate; (c) rescue, defense and cellular virulence; (d) detoxification by CYP450; (e) energy; (f) nutrient interaction and nutritional adaptation; (g) metabolism; (g) proteins with binding functions or cofactor requirements; (h) stress, cell differentiation and biogenesis of cell components; and (i) transport, cell communication and transcription. The identification of genes in T. frezii and their expression levels during different stages of differentiation could contribute to our understanding of the biological mechanisms in this fungus.


Asunto(s)
Arachis , Hifa , Esporas Fúngicas , Arachis/microbiología , Hifa/genética , Hifa/crecimiento & desarrollo , Esporas Fúngicas/genética , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Proteínas Fúngicas/genética , Transcriptoma , Perfilación de la Expresión Génica
15.
Infect Immun ; 91(5): e0010423, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37129514

RESUMEN

C. albicans transitions between budding yeast and filamentous hyphal forms in a process that is tightly associated with its virulence. This transition also occurs after the fungus has been phagocytosed by macrophages. A number of somewhat discordant models have been proposed for the environmental characteristics of the phagolysosome that induce this transition. H. B. Wilson and M. C. Lorenz (Infect Immun 91:e00087-23, 2023, https://doi.org/10.1128/iai.00087-23) revisited these models and found that none of them explained morphogenesis in the macrophage.


Asunto(s)
Candida albicans , Hifa , Virulencia , Macrófagos/microbiología , Fagosomas , Morfogénesis , Proteínas Fúngicas
16.
Curr Genet ; 69(2-3): 77-89, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36947241

RESUMEN

Candida albicans is a commensal organism of the human gastrointestinal tract and a prevalent opportunistic pathogen. It exhibits different morphogenic forms to survive in different host niches with distinct environmental conditions (pH, temperature, oxidative stress, nutrients, serum, chemicals, radiation, etc.) and genetic factors (transcription factors and genes). The different morphogenic forms of C. albicans are yeast, hyphal, pseudohyphal, white, opaque, and transient gray cells, planktonic and biofilm forms of cells. These forms differ in the parameters like cellular phenotype, colony morphology, adhesion to solid surfaces, gene expression profile, and the virulent traits. Each form is functionally distinct and responds discretely to the host immune system and antifungal drugs. Hence, morphogenic plasticity is the key to virulence. In this review, we address the characteristics, the pathogenic potential of the different morphogenic forms and the conditions required for morphogenic transitions.


Asunto(s)
Candida albicans , Factores de Transcripción , Humanos , Candida albicans/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras/metabolismo , Virulencia/genética , Biopelículas , Hifa/genética , Hifa/metabolismo , Regulación Fúngica de la Expresión Génica
17.
New Phytol ; 239(5): 1651-1664, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37322611

RESUMEN

The continuous imbalance between nitrogen (N) and phosphorus (P) deposition is expected to shift many ecosystems from N- to P limitation. Extraradical hyphae of ectomycorrhizal (ECM) fungi play important roles in plant nutrient acquisition under nutrient deficiency. However, whether and how ECM hyphae enhance soil P availability to alleviate N-induced P deficiency remains unclear. We investigated the impacts of ECM hyphae on transformations among different soil P fractions and underlying mechanisms under N deposition in two ECM-dominated forests. Ectomycorrhizal hyphae enhanced soil P availability under N addition by stimulating mineralization of organic P (Po) and desorption and solubilization of secondary mineral P, as indicated by N-induced increase in positive hyphal effect on plant-available P pool and negative hyphal effects on Po and secondary mineral P pools. Moreover, ECM hyphae increased soil phosphatase activity and abundance of microbial genes associated with Po mineralization and inorganic P solubilization, while decreasing concentrations of Fe/Al oxides. Our results suggest that ECM hyphae can alleviate N-induced P deficiency in ECM-dominated forests by regulating interactions between microbial and abiotic factors involved in soil P transformations. This advances our understanding of plant acclimation strategies via mediating plant-mycorrhiza interactions to sustain forest production and functional stability under changing environments.


Asunto(s)
Micorrizas , Fósforo , Ecosistema , Hifa , Nitrógeno , Bosques , Micorrizas/fisiología , Minerales , Plantas , Suelo , Microbiología del Suelo
18.
Glob Chang Biol ; 29(16): 4605-4619, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37293800

RESUMEN

Ectomycorrhizal (ECM) functional traits related to nutrient acquisition are impacted by nitrogen (N) deposition. However, less is known about whether these nutrient-acquisition traits associated with roots and hyphae differentially respond to increased N deposition in ECM-dominated forests with different initial N status. We conducted a chronic N addition experiment (25 kg N ha-1 year-1 ) in two ECM-dominated forests with contrasting initial N status, that is, a Pinus armandii forest (with relatively low N availability) and a Picea asperata forest (with relatively high N availability), to assess nutrient-mining and nutrient-foraging strategies associated with roots and hyphae under N addition. We show that nutrient-acquisition strategies of roots and hyphae differently respond to increased N addition. Root nutrient-acquisition strategies showed a consistent response to N addition, regardless of initial forest nutrient status, shifting from organic N mining toward inorganic N foraging. In contrast, the hyphal nutrient-acquisition strategy showed diverse responses to N addition depending on initial forest N status. In the Pinus armandii forest, trees increased belowground carbon (C) allocation to ECM fungi thus enhancing hyphal N-mining capacity under increased N availability. By comparison, in the Picea asperata forest, ECM fungi enhanced both capacities of P foraging and P mining in response to N-induced P limitation. In conclusion, our results demonstrate that ECM fungal hyphae exhibit greater plasticity in nutrient-mining and nutrient-foraging strategies than roots do in response to changes of nutrient status induced by N deposition. This study highlights the importance of ECM associations in tree acclimation and forest function stability under changing environments.


Asunto(s)
Micorrizas , Picea , Pinus , Raíces de Plantas/microbiología , Hifa , Nitrógeno , Plásticos , Suelo , Bosques , Micorrizas/fisiología , Árboles/fisiología , Microbiología del Suelo
19.
Microb Cell Fact ; 22(1): 156, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37592265

RESUMEN

Sm1 and Chit42 of Trichoderma have been universally confirmed as crucial biocontrol factors against pathogen infection through induced resistance and mycoparasitism, respectively. However, not enough work has been conducted to understand the novel function of fused expression of these two proteins in Trichoderma. The results of this study demonstrated that Sm1-Chit42 protein (SCf) engineered T. afroharzianum strain OE:SCf exerted synergistic inhibition to Botrytis cinerea growth at multiple stages of mycoparasitic interaction of T. afroharzianum and B. cinerea including chemotropism sensing, hyphal coiling, hydrophobicity modulation, cell wall adhesion, virulence reduction and pathogen killing by ROS. These results highlight a novel mycoparasitic system in Trichoderma strains engineered with Sm1-Chit42 chimeric protein to combat B. cinerea growth and reproduction, which would lay a strong foundation for exploring a new engineered Trichoderma biofungicide created with chimeric proteins in the future.


Asunto(s)
Hypocreales , Trichoderma , Botrytis , Pared Celular , Trichoderma/genética
20.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994672

RESUMEN

AIMS: This study aimed to investigate whether berberine (BBR) can inhibit the iron reduction mechanism of Candida albicans, lowering the iron uptake of the yeast and perhaps having antimicrobial effects. METHODS AND RESULTS: We determined that BBR may cause extensive transcriptional remodeling in C. albicans and that iron permease Ftr1 played a crucial role in this process through eukaryotic transcriptome sequencing. Mechanistic research showed that BBR might selectively inhibit the iron reduction pathway to lower the uptake of exogenous iron ions, inhibiting C. albicans from growing and metabolizing. Subsequent research revealed that BBR caused significant mitochondrial dysfunction, which triggered the process of mitochondrial autophagy. Moreover, we discovered that C. albicans redox homeostasis, susceptibility to antifungal drugs, and hyphal growth are all impacted by the suppression of this mechanism by BBR. CONCLUSIONS: The iron reduction mechanism in C. albicans is disrupted by BBR, which disrupts mitochondrial function and inhibits fungal growth. These findings highlight the potential promise of BBR in antifungal applications.


Asunto(s)
Berberina , Candida albicans , Antifúngicos/farmacología , Antifúngicos/metabolismo , Berberina/farmacología , Sinergismo Farmacológico , Mitocondrias/metabolismo , Hierro/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA