Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Obstet Gynecol Scand ; 103(10): 1910-1918, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39107951

RESUMEN

Relative uteroplacental insufficiency of labor (RUPI-L) is a clinical condition that refers to alterations in the fetal oxygen "demand-supply" equation caused by the onset of regular uterine activity. The term RUPI-L indicates a condition of "relative" uteroplacental insufficiency which is relative to a specific stressful circumstance, such as the onset of regular uterine activity. RUPI-L may be more prevalent in fetuses in which the ratio between the fetal oxygen supply and demand is already slightly reduced, such as in cases of subclinical placental insufficiency, post-term pregnancies, gestational diabetes, and other similar conditions. Prior to the onset of regular uterine activity, fetuses with a RUPI-L may present with normal features on the cardiotocography. However, with the onset of uterine contractions, these fetuses start to manifest abnormal fetal heart rate patterns which reflect the attempt to maintain adequate perfusion to essential central organs during episodes of transient reduction in oxygenation. If labor is allowed to continue without an appropriate intervention, progressively more frequent, and stronger uterine contractions may result in a rapid deterioration of the fetal oxygenation leading to hypoxia and acidosis. In this Commentary, we introduce the term relative uteroplacental insufficiency of labor and highlight the pathophysiology, as well as the common features observed in the fetal heart rate tracing and clinical implications.


Asunto(s)
Insuficiencia Placentaria , Humanos , Femenino , Embarazo , Insuficiencia Placentaria/fisiopatología , Frecuencia Cardíaca Fetal/fisiología , Cardiotocografía , Contracción Uterina/fisiología , Complicaciones del Trabajo de Parto , Trabajo de Parto/fisiología
2.
Anim Biotechnol ; 35(1): 2299241, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38178593

RESUMEN

Hypoxia is an important characteristic of Tibetan plateau environment. It can lead to apoptosis, but the mechanism of apoptosis caused by hypoxic stress needs further clarification. Here, cattle kidney cell MDBK were used as cell model. The effect of hypoxic stress on apoptosis and its molecular mechanism were explored. MDBK cells were treated with hypoxic stress, apoptosis and mitochondrial apoptotic pathway were significantly increased, and the expression of B-cell lymphoma 6 (BCL6) was significantly decreased. Overexpressing or inhibiting BCL6 demonstrated that BCL6 inhibited the apoptosis. And the increase of apoptosis controlled by hypoxic stress was blocked by BCL6 overexpressing. MDBK cells were treated with hypoxic stress, the expression and the nuclear localization of p53 were significantly increased. Overexpressing or inhibiting p53 demonstrated that hypoxic stress suppressed the expression of BCL6 through p53. Together, these results indicated that hypoxic stress induced the apoptosis of MDBK cells, and BCL6 was an important negative factor for this regulation process. In MDBK cells, hypoxic stress suppressed the expression of BCL6 through p53/BCL6-mitochondrial apoptotic pathway. This study enhanced current understanding of the molecular mechanisms underlying the regulation of apoptosis by hypoxic stress in MDBK cells.


Asunto(s)
Apoptosis , Proteína p53 Supresora de Tumor , Animales , Bovinos , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/farmacología , Hipoxia
3.
Odontology ; 112(3): 906-916, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38197987

RESUMEN

Early-life stress affects brain development, eventually resulting in adverse behavioral and physical health consequences in adulthood. The present study assessed the hypothesis that short-term early-life stress during infancy before weaning, a period for the maturation of mastication and sleep, poses long-lasting adverse effects on masticatory function and intraoral sensations later in life.Rat pups were exposed to either maternal separation (MS) or intermittent hypoxia (IH-Infancy) for 6 h/day in the light/sleep phase from postnatal day (P)17 to P20 to generate "neglect" and "pediatric obstructive sleep apnea" models, respectively. The remaining rats were exposed to IH during P45-P48 (IH-Adult). Masticatory ability was evaluated based on the rats' ability to chew pellets and bite pasta throughout the growth period (P21-P70). Intraoral chemical and mechanical sensitivities were assessed using two-bottle preference drinking tests, and hind paw pain thresholds were measured in adulthood (after P60).No differences were found in body weight, grip force, and hind paw sensitivity in MS, IH-Infancy, and IH-Adult rats compared with naïve rats. Masticatory ability was lower in MS and IH-Infancy rats from P28 to P70 than in naïve rats. MS and IH-Infancy rats exhibited intraoral hypersensitivity to capsaicin and mechanical stimulations in adulthood. The IH-Adult rats did not display inferior masticatory ability or intraoral hypersensitivity.In conclusion, short-term early-life stress during the suckling-mastication transition period potentially causes a persistent decrease in masticatory ability and intraoral hypersensitivity in adulthood. The period is a "critical window" for the maturation of oral motor and sensory functions.


Asunto(s)
Animales Lactantes , Masticación , Privación Materna , Animales , Ratas , Masticación/fisiología , Masculino , Estrés Psicológico/fisiopatología , Femenino , Ratas Sprague-Dawley , Animales Recién Nacidos , Hipoxia/fisiopatología , Umbral del Dolor/fisiología
4.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256129

RESUMEN

Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress (1.5 ± 0.1 mg·L-1 for 6 h) and re-oxygenation (5.8 ± 0.3 mg·L-1 for 12 h) in T. ovatus liver at both the transcriptomic and metabolic levels to elucidate hypoxia adaptation mechanism. Integrated transcriptomics and metabolomics analyses identified 36 genes and seven metabolites as key molecules that were highly related to signal transduction, cell growth and death, carbohydrate metabolism, amino acid metabolism, and lipid metabolism, and all played key roles in hypoxia adaptation. Of these, the hub genes FOS and JUN were pivotal hypoxia adaptation biomarkers for regulating cell growth and death. During hypoxia, up-regulation of GADD45B and CDKN1A genes induced cell cycle arrest. Enhancing intrinsic and extrinsic pathways in combination with glutathione metabolism triggered apoptosis; meanwhile, anti-apoptosis mechanism was activated after hypoxia. Expression of genes related to glycolysis, gluconeogenesis, amino acid metabolism, fat mobilization, and fatty acid biosynthesis were up-regulated after acute hypoxic stress, promoting energy supply. After re-oxygenation for 12 h, continuous apoptosis favored cellular function and tissue repair. Shifting from anaerobic metabolism (glycolysis) during hypoxia to aerobic metabolism (fatty acid ß-oxidation and TCA cycle) after re-oxygenation was an important energy metabolism adaptation mechanism. Hypoxia 6 h was a critical period for metabolism alteration and cellular homeostasis, and re-oxygenation intervention should be implemented in a timely way. This study thoroughly examined the molecular response mechanism of T. ovatus under acute hypoxic stress, which contributes to the molecular breeding of hypoxia-tolerant cultivars.


Asunto(s)
Metabolismo Energético , Hipoxia , Animales , Hipoxia/genética , Perfilación de la Expresión Génica , Peces , Homeostasis , Aminoácidos , Ácidos Grasos
5.
Curr Issues Mol Biol ; 45(2): 1655-1680, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36826052

RESUMEN

Experimental models of a clinical, pathophysiological context are used to understand molecular mechanisms and develop novel therapies. Previous studies revealed better outcomes for spinal cord injury chronic ethanol-consuming patients. This study evaluated cellular and molecular changes in a model mimicking spinal cord injury (hypoxic stress induced by treatment with deferoxamine or cobalt chloride) in chronic ethanol-consuming patients (ethanol-exposed neural cultures (SK-N-SH)) in order to explain the clinical paradigm of better outcomes for spinal cord injury chronic ethanol-consuming patients. The results show that long-term ethanol exposure has a cytotoxic effect, inducing apoptosis. At 24 h after the induction of hypoxic stress (by deferoxamine or cobalt chloride treatments), reduced ROS in long-term ethanol-exposed SK-N-SH cells was observed, which might be due to an adaptation to stressful conditions. In addition, the HIF-1α protein level was increased after hypoxic treatment of long-term ethanol-exposed cells, inducing fluctuations in its target metabolic enzymes proportionally with treatment intensity. The wound healing assay demonstrated that the cells recovered after stress conditions, showing that the ethanol-exposed cells that passed the acute step had the same proliferation profile as the cells unexposed to ethanol. Deferoxamine-treated cells displayed higher proliferative activity than the control cells in the proliferation-migration assay, emphasizing the neuroprotective effect. Cells have overcome the critical point of the alcohol-induced traumatic impact and adapted to ethanol (a chronic phenomenon), sustaining the regeneration process. However, further experiments are needed to ensure recovery efficiency is more effective in chronic ethanol exposure.

6.
Fish Shellfish Immunol ; 134: 108624, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36809842

RESUMEN

The use of selenium nanoparticles (SeNPs) in aquaculture has been increasing gradually over the past few years. SeNPs enhance immunity, are highly effective against pathogens, and have low toxicity. In this study, SeNPs were prepared using polysaccharide-protein complexes (PSP) from abalone viscera. The acute toxicity of PSP-SeNPs to juvenile Nile tilapia and their effect on growth performance, intestinal tissue structure, antioxidation capacity, hypoxic stress, and Streptococcus agalactiae infection were investigated. The results showed that the spherical PSP-SeNPs were stable and safe, with an LC50 of 13.645 mg/L against tilapia, which was about 13-fold higher than that of sodium selenite (Na2SeO3). A basal diet supplemented with 0.1-1.5 mg/kg PSP-SeNPs improved the growth performance of tilapia juveniles to a certain extent, increased the intestinal villus length, and significantly enhanced the activities of liver antioxidant enzymes, including superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), and catalase (CAT). PSP-SeNPs also enhanced the resistance of tilapia to hypoxic stress and Streptococcus agalactiae infection, with supplementation at 0.1-0.3 mg/kg exerting more obvious effects than 1.5 mg/kg. However, PSP-SeNPs at a concentration of 4.5 mg/kg and Na2SeO3 at 0.3 mg/kg negatively affected the growth, gut health, and the activity of the antioxidant enzymes of tilapia. Quadric polynomial regression analysis revealed that 0.1-1.2 mg/kg was the optimal PSP-SeNP supplementation concentration for tilapia feeds. The findings of this study lay a foundation for the application of PSP-SeNPs in aquaculture.


Asunto(s)
Cíclidos , Nanopartículas , Selenio , Tilapia , Animales , Antioxidantes , Vísceras , Suplementos Dietéticos/análisis , Dieta , Hipoxia , Alimentación Animal/análisis
7.
Bioorg Med Chem ; 73: 117039, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36198217

RESUMEN

Hypoxia-inducible factor (HIF) activators aid the treatment of renal anemia and ischemia. Recently, PyrzA (5-(1-acetyl-5-phenylpyrazolidin-3-ylidene)-1,3-dimethylbarbituric acid), a HIF activator by PHD inhibition without a 2-oxoglutarate moiety was reported. However, PyrzA has low lipophilicity, and it was necessary to improve its solubility by synthesizing derivatives. In this study, we synthesized and evaluated a higher lipophilic derivative of PyrzA and found that it exhibited higher HIF activity and stabilizing ability at low concentrations compared to Roxadustat, a commercially available HIF activator.


Asunto(s)
Hipoxia , Ácidos Cetoglutáricos , Humanos , Barbitúricos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Prolina Dioxigenasas del Factor Inducible por Hipoxia
8.
Adv Exp Med Biol ; 1395: 65-68, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36527615

RESUMEN

Perinatal hypoxia leads to changes in cerebral angiogenesis and persistent structural and functional changes in the adult brain. It may also result in greater vulnerability to subsequent challenges. We investigated the effect of postnatal day 2 (P2) hypoxic preconditioning on adult brain capillary density and brain vascular endothelial growth factor (VEGF) expression in mice. P2 mice were exposed to hypoxia (5% O2) in a normobaric chamber for 2 h then returned to normoxia while their littermates remained in normoxia (P2 control). After 2-6 months, they were euthanised and their brains were removed for capillary density determination. Another set of animals (P2 hypoxic mice and P2 controls) were euthanised at 2, 10, 23, and 60 days after birth and brain VEGF expression was assessed by western blot. Adult brain capillary density was significantly increased in the P2 hypoxic mice when compared to the P2 control mice. Additionally, VEGF expression appeared to be elevated in the P2-hypoxia mice when compared to the P2-control mice at all time points, and VEGF levels in P2-hypoxia mice declined with age similarly to P2-control mice. These data demonstrate that transient early-postnatal hypoxic stress leads to an increase in capillary density that persists in the adult, possibly due to increased VEGF expression. These results might be explained by epigenetic factors in the VEGF gene.


Asunto(s)
Hipoxia Encefálica , Factor A de Crecimiento Endotelial Vascular , Embarazo , Femenino , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Hipoxia , Factores de Crecimiento Endotelial Vascular/metabolismo , Capilares/metabolismo , Encéfalo/metabolismo
9.
Glia ; 69(6): 1540-1562, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33609060

RESUMEN

When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.


Asunto(s)
Astrocitos , Animales , Drosophila , Retículo Endoplásmico/metabolismo , Gotas Lipídicas/metabolismo , Mitocondrias , Ratas
10.
J Neurochem ; 159(4): 742-761, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34216036

RESUMEN

Protein arginine methyltransferases (PRMTs) are a family of enzymes involved in gene regulation and protein/histone modifications. PRMT8 is primarily expressed in the central nervous system, specifically within the cellular membrane and synaptic vesicles. Recently, PRMT8 has been described to play key roles in neuronal signaling such as a regulator of dendritic arborization, synaptic function and maturation, and neuronal differentiation and plasticity. Here, we examined the role of PRMT8 in response to hypoxia-induced stress in brain metabolism. Our results from liquid chromatography mass spectrometry, mitochondrial oxygen consumption rate, and protein analyses indicate that PRMT8(-/-) knockout mice presented with altered membrane phospholipid composition, decreased mitochondrial stress capacity, and increased neuroinflammatory markers, such as tumor necrosis factor alpha and ionized calcium binding adaptor molecule 1 (Iba1, a specific marker for microglia/macrophage activation) after hypoxic stress. Furthermore, adenovirus-based overexpression of PRMT8 reversed the changes in membrane phospholipid composition, mitochondrial stress capacity, and neuroinflammatory markers. Together, our findings establish PRMT8 as an important regulatory component of membrane phospholipid composition, short-term memory function, mitochondrial function, and neuroinflammation in response to hypoxic stress.


Asunto(s)
Metabolismo Energético/genética , Hipoxia/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Neuroinflamatorias/genética , Proteína-Arginina N-Metiltransferasas/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citocinas/análisis , Citocinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Células-Madre Neurales , Consumo de Oxígeno , Fosfolípidos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
J Exp Bot ; 72(3): 904-916, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-32976588

RESUMEN

Plants are aerobic organisms that have evolved to maintain specific requirements for oxygen (O2), leading to a correct respiratory energy supply during growth and development. There are certain plant developmental cues and biotic or abiotic stress responses where O2 is scarce. This O2 deprivation known as hypoxia may occur in hypoxic niches of plant-specific tissues and during adverse environmental cues such as pathogen attack and flooding. In general, plants respond to hypoxia through a complex reprogramming of their molecular activities with the aim of reducing the impact of stress on their physiological and cellular homeostasis. This review focuses on the fine-tuned regulation of hypoxia triggered by a network of gaseous compounds that includes O2, ethylene, and nitric oxide. In view of recent scientific advances, we summarize the molecular mechanisms mediated by phytoglobins and by the N-degron proteolytic pathway, focusing on embryogenesis, seed imbibition, and germination, and also specific structures, most notably root apical and shoot apical meristems. In addition, those biotic and abiotic stresses that comprise hypoxia are also highlighted.


Asunto(s)
Óxido Nítrico , Oxígeno , Meristema , Desarrollo de la Planta , Plantas , Estrés Fisiológico
12.
Fish Shellfish Immunol ; 119: 409-419, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34687881

RESUMEN

Fish gills are the primary organ that respond to sudden changes in the dissolved oxygen (DO) level in the aquatic environment. Hypoxic stress impairs the normal function of gill tissues. However, little is known about the mechanisms of the response of yellow catfish gills to hypoxic stress. In this study, we compared transcriptomic and physiological changes in gill tissues of hybrid yellow catfish (Tachysurus fulvidraco ♀ × Pseudobagrus vachellii ♂) between a hypoxia-treated group (DO: 1.5 mg/L) and a control group (DO: 6.5 mg/L). In fish in the hypoxia-treated group, gill filaments underwent adaptive changes, and the number of vacuoles in gill tissues increased. Exposure to hypoxic conditions for 96 h resulted in increased anaerobic metabolism and decreased antioxidant and immune capacity in gill tissues. Transcriptome analyses revealed 1556 differentially expressed genes, including 316 up-regulated and 1240 down-regulated genes, between fish in the hypoxia-treated and control groups. Functional analyses indicated that the main pathway enriched with differentially expressed genes was immune response, followed by energy metabolism and signal transduction. Under hypoxic stress, the transcript levels of genes involved in the NOD-like receptor signaling pathway initially increased rapidly but then decreased over time, suggesting that the NOD-like receptor-mediated immune response plays an essential role in hypoxia tolerance and resistance in hybrid yellow catfish. Our results provide novel insights into which immune-related genes and pathways are activated under hypoxic stress, and reveal details of early adaptation of the immune response and defense mechanisms under hypoxic stress.


Asunto(s)
Bagres , Animales , Bagres/genética , Perfilación de la Expresión Génica , Branquias , Hipoxia/genética , Hipoxia/veterinaria , Inmunidad , Proteínas NLR , Oxígeno , Transcriptoma
13.
BMC Plant Biol ; 20(1): 198, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384870

RESUMEN

BACKGROUND: Abscisic acid (ABA) and proline play important roles in rice acclimation to different stress conditions. To study whether cross-talk exists between ABA and proline, their roles in rice acclimation to hypoxia, rice growth, root oxidative damage and endogenous ABA and proline accumulation were investigated in two different rice genotypes ('Nipponbare' (Nip) and 'Upland 502' (U502)). RESULTS: Compared with U502 seedlings, Nip seedlings were highly tolerant to hypoxic stress, with increased plant biomass and leaf photosynthesis and decreased root oxidative damage. Hypoxia significantly stimulated the accumulation of proline and ABA in the roots of both cultivars, with a higher ABA level observed in Nip than in U502, whereas the proline levels showed no significant difference in the two cultivars. The time course variation showed that the root ABA and proline contents under hypoxia increased 1.5- and 1.2-fold in Nip, and 2.2- and 0.7-fold in U502, respectively, within the 1 d of hypoxic stress, but peak ABA production (1 d) occurred before proline accumulation (5 d) in both cultivars. Treatment with an ABA synthesis inhibitor (norflurazon, Norf) inhibited proline synthesis and simultaneously aggravated hypoxia-induced oxidative damage in the roots of both cultivars, but these effects were reversed by exogenous ABA application. Hypoxia plus Norf treatment also induced an increase in glutamate (the main precursor of proline). This indicates that proline accumulation is regulated by ABA-dependent signals under hypoxic stress. Moreover, genes involved in proline metabolism were differentially expressed between the two genotypes, with expression mediated by ABA under hypoxic stress. In Nip, hypoxia-induced proline accumulation in roots was attributed to the upregulation of OsP5CS2 and downregulation of OsProDH, whereas upregulation of OsP5CS1 combined with downregulation of OsProDH enhanced the proline level in U502. CONCLUSION: These results suggest that the high tolerance of the Nip cultivar is related to the high ABA level and ABA-mediated antioxidant capacity in roots. ABA acts upstream of proline accumulation by regulating the expression of genes encoding the key enzymes in proline biosynthesis, which also partly improves rice acclimation to hypoxic stress. However, other signaling pathways enhancing tolerance to hypoxia in the Nip cultivar still need to be elucidated.


Asunto(s)
Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Oryza/metabolismo , Prolina/biosíntesis , Genotipo , Oryza/genética , Oxígeno/metabolismo , Raíces de Plantas/metabolismo
14.
Exp Physiol ; 105(9): 1660-1668, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32706493

RESUMEN

NEW FINDINGS: What is the central question of this study? The acute hypoxic compensatory reaction is based on haemodynamic changes, and ß-adrenoceptors are involved in haemodynamic regulation. What is the role of ß-adrenoceptors in haemodynamics during hypoxic exposure? What is the main finding and its importance? Activation of ß2 -adrenoceptors attenuates the increase in pulmonary artery pressure during hypoxic exposure. This compensatory reaction activated by ß2 -adrenoceptors during hypoxic stress is very important to maintain the activities of normal life. ABSTRACT: The acute hypoxic compensatory reaction is accompanied by haemodynamic changes. We monitored the haemodynamic changes in rats undergoing acute hypoxic stress and applied antagonists of ß-adrenoceptor (ß-ARs) subtypes to reveal the regulatory role of ß-ARs on haemodynamics. Sprague-Dawley rats were randomly divided into control, atenolol (ß1 -AR antagonist), ICI 118,551 (ß2 -AR antagonist) and propranolol (non-selective ß-AR antagonist) groups. Rats were continuously recorded for changes in haemodynamic indexes for 10 min after administration. Then, a hypoxic ventilation experiment [15% O2 , 2200 m a.sl., 582 mmHg (0.765 Pa), PO2 87.3 mmHg; Xining, China] was conducted, and the indexes were monitored for 5 min after induction of hypoxia. Plasma catecholamine concentrations were also measured. We found that, during normoxia, the mean arterial pressure, heart rate, ascending aortic blood flow and pulmonary artery pressure were reduced in the propranolol and atenolol groups. Catecholamine concentrations were increased significantly in the atenolol group compared with the control group. During hypoxia, mean arterial pressure and total peripheral resistance were decreased in the control, propranolol and ICI 118,551 groups. Pulmonary arterial pressure and pulmonary vascular resistance were increased in the propranolol and ICI 118,551 groups. During hypoxia, catecholamine concentrations were increased significantly in the control group, but decreased in ß-AR antagonist groups. In conclusion, the ß2 -AR is involved in regulation of pulmonary haemodynamics in the acute hypoxic compensatory reaction, and the activation of ß2 -ARs attenuates the increase in pulmonary arterial pressure during hypoxic stress. This compensatory reaction activated by ß2 -ARs during hypoxic stress is very important to maintain activities of normal life.


Asunto(s)
Hemodinámica , Hipoxia/fisiopatología , Receptores Adrenérgicos beta 2/fisiología , Animales , Presión Arterial , Atenolol/farmacología , Catecolaminas/sangre , Frecuencia Cardíaca , Masculino , Propanolaminas/farmacología , Propranolol/farmacología , Ratas , Ratas Sprague-Dawley , Resistencia Vascular
15.
Fish Physiol Biochem ; 46(6): 2157-2167, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32862281

RESUMEN

This study aimed to evaluate hematological, biochemical, and gasometric parameters of tambaqui juveniles (Colossoma macropomum) exposed to hypoxia and subsequent recovery. Six animals were subjected to normoxia (basal) treatment with dissolved oxygen (DO) 6.27 ± 0.42 mg L-1. Water flow and aeration were reduced for 3 days (hypoxia), during which DO was 0.92 ± 0.37 mg L-1. Water flow and aeration were then reestablished with DO remaining similar to basal. The treatments were as follows: normoxia (basal); 24 h after initiating hypoxia (24H); 72 h after initiating hypoxia (72H); 24 h after reestablishing normoxia (24R); 48 h after reestablishing normoxia (48R); and 96 after reestablishing normoxia (96R). The highest glucose level was recorded at 24H (P < 0.05); the highest lactate level was at 72R; and the highest blood pH was at 24H and 72H (P < 0.05). The highest concentration of PvCO2 was at 24H (P < 0.05), while at 96R it was equivalent to basal (P > 0.05). The variable PvO2 was only higher than basal at 24R (P < 0.05). Juvenile C. macropomum managed to reestablish the main stress indicators (glucose and lactate) at 96R, while the other indicators varied during the study, with homeostatic physiology being reestablished during the recovery period.


Asunto(s)
Characiformes , Estrés Fisiológico , Anaerobiosis , Animales , Glucemia/análisis , Characiformes/sangre , Ácido Láctico/sangre , Oxígeno/análisis , Agua/análisis
16.
Fish Physiol Biochem ; 46(5): 1873-1882, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32617789

RESUMEN

Hypoxia stress may affect the fish intestine and thereby threaten the growth and survival of the fish. Teprenone is a clinically effective agent in protecting gastrointestinal mucosa. This study aims to assess the effect of teprenone in the intestine of Chinese sea bass Lateolabrax maculatus under intermittent hypoxic stress. L. maculatus juveniles were either raised under intermittent hypoxic condition or normal condition (NC). Part of the hypoxic-intervened fish were treated with teprenone at different concentrations (HTs), and the rest were regarded as hypoxic control (HC). Histological analysis was performed on the epithelial tissue of the fish intestine. High-throughput sequencing technology was used to analyze the diversity and composition of the microbial community in L. maculatus intestine. Reduced villi length and goblet cell, exfoliated enterocyte, and improper arrangement of villi were observed in HC compared with NC and HTs. Proteobacteria, Firmicutes, and Bacteroidetes represented the most abundant phyla in each sample. Significantly higher microbial diversity was detected in HC compared with NC (P < 0.05). At the phylum level, HC presented significantly decreased relative abundance of Proteobacteria, and significantly increased relative abundance of Bacteroidetes, Chloroflex, and Cyanobacteria compared with NC (P < 0.05). At the class level, HC showed significantly reduced relative abundance of Alphaproteobacteria and Bacilli, and significantly increased relative abundance of Clostridia, Gammaproteobacteria, and Bacteroides (P < 0.05). Teprenone protects the intestine from epithelial damages and maintains the microbial harmony in L. maculatus under intermittent hypoxic stress.


Asunto(s)
Antiulcerosos/farmacología , Lubina , Diterpenos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Intestinos/patología
17.
BMC Genomics ; 20(1): 60, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30658567

RESUMEN

BACKGROUND: Waterlogging is one of the main abiotic stresses that limit wheat production. Quantitative proteomics analysis has been applied in the study of crop abiotic stress as an effective way in recent years (e.g. salt stress, drought stress, heat stress and waterlogging stress). However, only a few proteins related to primary metabolism and signal transduction, such as UDP - glucose dehydrogenase, UGP, beta glucosidases, were reported to response to waterlogging stress in wheat. The differentially expressed proteins between genotypes of wheat in response to waterlogging are less-defined. In this study, two wheat genotypes, one is sensitive to waterlogging stress (Seri M82, named as S) and the other is tolerant to waterlogging (CIGM90.863, named as T), were compared in seedling roots under hypoxia conditions to evaluate the different responses at proteomic level. RESULTS: A total of 4560 proteins were identified and the number of differentially expressed proteins (DEPs) were 361, 640, 788 in S and 33, 207, 279 in T in 1, 2, 3 days, respectively. These DEPs included 270 common proteins, 681 S-specific and 50 T-specific proteins, most of which were misc., protein processing, DNA and RNA processing, amino acid metabolism and stress related proteins induced by hypoxia. Some specific proteins related to waterlogging stress, including acid phosphatase, oxidant protective enzyme, S-adenosylmethionine synthetase 1, were significantly different between S and T. A total of 20 representative genes encoding DEPs, including 7 shared DEPs and 13 cultivar-specific DEPs, were selected for further RT-qPCR analysis. Fourteen genes showed consistent dynamic expression patterns at mRNA and protein levels. CONCLUSIONS: Proteins involved in primary metabolisms and protein processing were inclined to be affected under hypoxia stress. The negative effects were more severe in the sensitive genotype. The expression patterns of some specific proteins, such as alcohol dehydrogenases and S-adenosylmethionine synthetase 1, could be applied as indexes for improving the waterlogging tolerance in wheat. Some specific proteins identified in this study will facilitate the subsequent protein function validation and biomarker development.


Asunto(s)
Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Triticum/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Genotipo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteoma/genética , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico , Triticum/genética , Agua/metabolismo
18.
Exp Eye Res ; 180: 92-101, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30578788

RESUMEN

The Retinal Pigment Epithelium (RPE) is a monolayer of cells located above the choroid. It mediates human visual cycle and nourishes photoreceptors. Hypoxia-induced oxidative stress to RPE is a vital cause of retinal degeneration such as the Age-related Macular Degeneration. Most of these retinal diseases are irreversible with no efficient treatment, therefore protecting RPE cells from hypoxia stress is an important way to prevent or slow down the progression of retinal degeneration. Betulinic acid (BA) and betulin (BE) are pentacyclic triterpenoids with anti-oxidative property, but little is known about their effect on RPE cells. We investigated the protective effect of BA, BE and their derivatives against cobalt chloride-induced hypoxia stress in RPE cells. Human ARPE-19 cells were exposed to BA, BE and their eighteen derivatives (named as H3H20) that we customized through replacing moieties at C3 and C28 positions. We found that cobalt chloride reduced cell viability, increased Reactive Oxygen Species (ROS) production as well as induced apoptosis and necrosis in ARPE-19 cells. Interestingly, the pretreatment of 3-O-acetyl-glycyl- 28-O-glycyl-betulinic acid effectively protected cells from acute hypoxia stress induced by cobalt chloride. Our immunoblotting results suggested that this derivative attenuated the cobalt chloride-induced activation of Akt, Erk and JNK pathways. All findings were further validated in human primary RPE cells. In summary, this BA derivate has protective effect against the acute hypoxic stress in human RPE cells and may be developed into a candidate agent effective in the prevention of prevalent retinal diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Hipoxia/prevención & control , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/efectos de los fármacos , Triterpenos/farmacología , Enfermedad Aguda , Adulto , Anciano , Antimutagênicos/toxicidad , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular , Cobalto/toxicidad , Citoprotección , Humanos , Hipoxia/metabolismo , Persona de Mediana Edad , Triterpenos Pentacíclicos , Especies Reactivas de Oxígeno/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Ácido Betulínico
19.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30909368

RESUMEN

BACKGROUND: Vascular endothelial injury during ischemia generates apoptotic cell death and precedes apoptosis of underlying tissues. We aimed at studying the role of extracellular adenosine triphosphate (ATP) on endothelial cells protection against hypoxia injury. METHODS: In a hypoxic model on endothelial cells, we quantified the extracellular concentration of ATP and adenosine. The expression of mRNA (ectonucleotidases, adenosine, and P2 receptors) was measured. Apoptosis was evaluated by the expression of cleaved caspase 3. The involvement of P2 and adenosine receptors and signaling pathways was investigated using selective inhibitors. RESULTS: Hypoxic stress induced a significant increase in extracellular ATP and adenosine. After a 2-h hypoxic injury, an increase of cleaved caspase 3 was observed. ATP anti-apoptotic effect was prevented by suramin, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), and CGS15943, as well as by selective A2A, A2B, and A3 receptor antagonists. P2 receptor-mediated anti-apoptotic effect of ATP involved phosphoinositide 3-kinase (PI3K), extracellular signal-regulated kinases (ERK1/2), mitoKATP, and nitric oxide synthase (NOS) pathways whereas adenosine receptor-mediated anti-apoptotic effect involved ERK1/2, protein kinase A (PKA), and NOS. CONCLUSIONS: These results suggest a complementary role of P2 and adenosine receptors in ATP-induced protective effects against hypoxia injury of endothelial. This could be considered therapeutic targets to limit the development of ischemic injury of organs such as heart, brain, and kidney.


Asunto(s)
Adenosina Trifosfato/metabolismo , Apoptosis , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hipoxia/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Adenosina/metabolismo , Apoptosis/genética , Biomarcadores , Espacio Extracelular/metabolismo , Expresión Génica , Humanos , Hipoxia/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Óxido Nítrico Sintasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , ARN Mensajero/genética , Receptores Purinérgicos P1/genética , Receptores Purinérgicos P2/genética , Transducción de Señal , Estrés Fisiológico/genética
20.
Fish Physiol Biochem ; 45(2): 743-752, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30758701

RESUMEN

Two-dimensional gel electrophoresis (2-DE) was combined with liquid chromatography-mass spectrometry (LC-MS/MS) to identify the differential proteomics of grass carp gills after hypoxic stress to better understand the roles of proteins in the hypoxic response and to explore the possible molecular mechanisms. Protein spots were obtained from a hypoxia-stressed group (372 ± 11 individuals) and a control group (406 ± 14 individuals) using the lmage Master 2D Platinum 7.0 analysis software. Fifteen protein spots were expressed differentially in the hypoxia-stressed group and varied significantly after exposure to the hypoxic conditions. In addition, these differential proteins were identified by mass spectrometry and then searched in a database. We found the expression and upregulation of the toll-like receptor 4, ephx1 protein, isocitrate dehydrogenase, L-lactate dehydrogenase, GTP-binding nuclear protein Ran, and glyceraldehyde-3-phosphate dehydrogenase; however, the expression of the keratin type II cytoskeletal 8, type I cytokeratin, ARP3 actin-related protein 3 homolog, thyroid hormone receptor alpha-A, ATP synthase subunit beta, citrate synthase, tropomyosin 2, and tropomyosin 3 were downregulated. Six proteins were found in the hypoxia-inducible factor-1 (HIF-1) signaling pathway. We concluded that the grass carp gill is involved in response processes, including energy generation, metabolic processes, cellular structure, antioxidation, immunity, and signal transduction, to hypoxic stress. To our knowledge, this is the first study to conduct a proteomics analysis of expressed proteins in the gills of grass carp, and this study will help increase the understanding of the molecular mechanisms involved in hypoxic stress responses in fish at the protein level.


Asunto(s)
Carpas/metabolismo , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Branquias/anatomía & histología , Branquias/metabolismo , Oxígeno/administración & dosificación , Adaptación Fisiológica , Animales , Proteínas de Peces/genética , Factor 1 Inducible por Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Oxígeno/química , Oxígeno/farmacología , Transducción de Señal/efectos de los fármacos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA