Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 394
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Physiol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991558

RESUMEN

Cytosolic invertase (CIN) in plants hydrolyzes sucrose into fructose and glucose, influencing flowering time and organ development. However, the underlying molecular mechanisms remain elusive. Through expressional, genetic, and histological analyses, we identified a substantially role of SlCIN2 (localized in mitochondria) in regulating flowering and pollen development in tomato (Solanum lycopersicum). The overexpression of SlCIN2 resulted in increased hexose accumulation and decreased sucrose and starch content. Our findings indicated that SlCIN2 interacts with Sucrose transporter2 (SlSUT2) to inhibit the sucrose transport activity of SlSUT2, thereby suppressing sucrose content in flower buds and delaying flowering. We found that higher levels of glucose in SlCIN2-overexpressing anthers result in the accumulation of abscisic acid (ABA) and reactive oxygen species (ROS), thereby disrupting programmed cell death (PCD) in anthers and delaying the end of tapetal degradation. Exogenous sucrose partially restored fertility in SlCIN2-overexpressing plants. This study revealed the mechanism by which SlCIN2 regulates pollen development and demonstrated a strategy for creating sugar-regulated gene male sterility lines for tomato hybrid seed production.

2.
Plant J ; 113(2): 327-341, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36448213

RESUMEN

To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Désirée' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4°C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2 O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response.


Asunto(s)
Frío , Solanum tuberosum , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Metabolismo de los Hidratos de Carbono , Hexosas/metabolismo , Sacarosa/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Tubérculos de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
BMC Plant Biol ; 24(1): 396, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745125

RESUMEN

BACKGROUND: Dendrobium officinale Kimura et Migo, a renowned traditional Chinese orchid herb esteemed for its significant horticultural and medicinal value, thrives in adverse habitats and contends with various abiotic or biotic stresses. Acid invertases (AINV) are widely considered enzymes involved in regulating sucrose metabolism and have been revealed to participate in plant responses to environmental stress. Although members of AINV gene family have been identified and characterized in multiple plant genomes, detailed information regarding this gene family and its expression patterns remains unknown in D. officinale, despite their significance in polysaccharide biosynthesis. RESULTS: This study systematically analyzed the D. officinale genome and identified four DoAINV genes, which were classified into two subfamilies based on subcellular prediction and phylogenetic analysis. Comparison of gene structures and conserved motifs in DoAINV genes indicated a high-level conservation during their evolution history. The conserved amino acids and domains of DoAINV proteins were identified as pivotal for their functional roles. Additionally, cis-elements associated with responses to abiotic and biotic stress were found to be the most prevalent motif in all DoAINV genes, indicating their responsiveness to stress. Furthermore, bioinformatics analysis of transcriptome data, validated by quantitative real-time reverse transcription PCR (qRT-PCR), revealed distinct organ-specific expression patterns of DoAINV genes across various tissues and in response to abiotic stress. Examination of soluble sugar content and interaction networks provided insights into stress release and sucrose metabolism. CONCLUSIONS: DoAINV genes are implicated in various activities including growth and development, stress response, and polysaccharide biosynthesis. These findings provide valuable insights into the AINV gene amily of D. officinale and will aid in further elucidating the functions of DoAINV genes.


Asunto(s)
Dendrobium , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , beta-Fructofuranosidasa , Dendrobium/genética , Dendrobium/enzimología , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , Estrés Fisiológico/genética , Genes de Plantas
4.
Anal Biochem ; 690: 115515, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38522812

RESUMEN

In this study, immobilization of invertase enzyme was performed on a previously synthesized and characterized poly(N-vinylpyrrolidone-co-butylacrylate-co-N hydroxymethylacrylamide) terpolymer membranes by covalent bonding method. Glutaraldehyde(GA) was used as the crosslinker and Bovine Serum Albumin(BSA) was used as the binding agent. Optimum pH, temperature, amount of polymer, substrate concentration, amount of BSA and amount of GA values were determined for both free and immobilized enzyme. Optimum pH and temperature values were found as pH = 5.0, T = 55 °C, pH = 7.0 and T = 80 °C for free and immobilized enzyme, respectively. In particular, the optimum temperature of 80 °C for the immobilized enzyme provides its potential to be used commercially. The kinetic parameters of the free enzyme and the immobilized enzyme were determined using the well known Lineweaver-Burk method. The Vmax values for free (13.4 µM/min) and immobilized enzyme (12.2 µM/min) were found as close to each other, while the Km value of the immobilized enzyme (8.33 mM) was much lower than that of the free enzyme (29.41 mM). In reuse studies conducted with peach and orange juices, it was determined that the immobilized enzyme retained approximately 90% of its activity even after 30 reuses within 1 month.

5.
Plant Cell Rep ; 43(2): 30, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195770

RESUMEN

KEY MESSAGE: Sucrose invertase activity is positively related to osmotic and salt stress resistance in peanut. Sucrose invertases (INVs) have important functions in plant growth and response to environmental stresses. However, their biological roles in peanut are still not fully revealed. In this research, we identified 42 AhINV genes in the peanut genome. They were highly conserved and clustered into three groups with 24 segmental duplication events occurred under purifying selection. Transcriptional expression analysis exhibited that they were all ubiquitously expressed, and most of them were up-regulated by osmotic and salt stresses, with AhINV09, AhINV23 and AhINV19 showed the most significant up-regulation. Further physiochemical analysis showed that the resistance of peanut to osmotic and salt stress was positively related to the high sugar content and sucrose invertase activity. Our results provided fundamental information on the structure and evolutionary relationship of INV gene family in peanut and gave theoretical guideline for further functional study of AhINV genes in response to abiotic stress.


Asunto(s)
Arachis , Azúcares , Arachis/genética , beta-Fructofuranosidasa/genética , Estrés Salino , Sacarosa
6.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542248

RESUMEN

Strigolactones (SLs) were recently defined as a novel class of plant hormones that act as key regulators of diverse developmental processes and environmental responses. Much research has focused on SL biosynthesis and signaling in roots and shoots, but little is known about whether SLs are produced in early developing seeds and about their roles in ovule development after fertilization. This study revealed that the fertilized ovules and early developing pericarp in Xanthoceras sorbifolium produced minute amounts of two strigolactones: 5-deoxystrigol and strigol. Their content decreased in the plants with the addition of exogenous phosphate (Pi) compared to those without the Pi treatment. The exogenous application of an SL analog (GR24) and a specific inhibitor of SL biosynthesis (TIS108) affected early seed development and fruit set. In the Xanthoceras genome, we identified 69 potential homologs of genes involved in SL biological synthesis and signaling. Using RNA-seq to characterize the expression of these genes in the fertilized ovules, 37 genes were found to express differently in the fertilized ovules that were aborting compared to the normally developing ovules. A transcriptome analysis also revealed that in normally developing ovules after fertilization, 12 potential invertase genes were actively expressed. Hexoses (glucose and fructose) accumulated at high concentrations in normally developing ovules during syncytial endosperm development. In contrast, a low ratio of hexose and sucrose levels was detected in aborting ovules with a high strigolactone content. XsD14 virus-induced gene silencing (VIGS) increased the hexose content in fertilized ovules and induced the proliferation of endosperm free nuclei, thereby promoting early seed development and fruit set. We propose that the crosstalk between sugar and strigolactone signals may be an important part of a system that accurately regulates the abortion of ovules after fertilization. This study is useful for understanding the mechanisms underlying ovule abortion, which will serve as a guide for genetic or chemical approaches to promote seed yield in Xanthoceras.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos , Lactonas , Óvulo Vegetal , Sapindaceae , Óvulo Vegetal/genética , Fertilización/genética , Semillas , Sapindaceae/genética , Hexosas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
Traffic ; 22(1-2): 38-44, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33225520

RESUMEN

AP-3 (adaptor complex 3) mediates traffic from the late Golgi or early endosomes to late endosomal compartments. In mammals, mutations in AP-3 cause Hermansky-Pudlak syndrome type 2, cyclic neutropenias, and a form of epileptic encephalopathy. In budding yeast, AP-3 carries cargo directly from the trans-Golgi to the lysosomal vacuole. Despite the pathway's importance and its discovery two decades ago, rapid screens and selections for AP-3 mutants have not been available. We now report GNSI, a synthetic, genetically encoded reporter that allows rapid plate-based assessment of AP-3 functional deficiency, using either chromogenic or growth phenotype readouts. This system identifies defects in both the formation and consumption of AP-3 carrier vesicles and is adaptable to high-throughput screening or selection in both plate array and liquid batch culture formats. Episomal and integrating plasmids encoding GNSI have been submitted to the Addgene repository.


Asunto(s)
Síndrome de Hermanski-Pudlak , Saccharomycetales , Complejo 3 de Proteína Adaptadora , Animales , Endosomas , Vesículas Transportadoras , Vacuolas
8.
Plant J ; 112(1): 115-134, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35942603

RESUMEN

Vegetative propagation (VP) is an important practice for production in many horticultural plants. Sugar supply constitutes the basis of VP in bulb flowers, but the underlying molecular basis remains elusive. By performing a combined sequencing technologies coupled with ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry approach for metabolic analyses, we compared two Lycoris species with contrasting regeneration rates: high-regeneration Lycoris sprengeri and low-regeneration Lycoris aurea. A comprehensive multi-omics analyses identified both expected processes involving carbohydrate metabolism and transcription factor networks, as well as the metabolic characteristics for each developmental stage. A higher abundance of the differentially expressed genes including those encoding ethylene responsive factors was detected at bulblet initiation stage compared to the late stage of bulblet development. High hexose-to-sucrose ratio correlated to bulblet formation across all the species examined, indicating its role in the VP process in Lycoris bulb. Importantly, a clear difference between cell wall invertase (CWIN)-catalyzed sucrose unloading in high-regeneration species and the sucrose synthase-catalyzed pathway in low-regeneration species was observed at the bulblet initiation stage, which was supported by findings from carboxyfluorescein tracing and quantitative real-time PCR analyses. Collectively, the findings indicate a sugar-mediated model of the regulation of VP in which high CWIN expression or activity may promote bulblet initiation via enhancing apoplasmic unloading of sucrose or sugar signals, whereas the subsequent high ratio of hexose-to-sucrose likely supports cell division characterized in the next phase of bulblet formation.


Asunto(s)
Lycoris , Transcriptoma , Metabolismo de los Hidratos de Carbono/genética , Etilenos , Lycoris/genética , Lycoris/metabolismo , Metaboloma , Sacarosa/metabolismo , Factores de Transcripción/metabolismo , beta-Fructofuranosidasa/metabolismo
9.
Plant J ; 112(4): 1098-1111, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209488

RESUMEN

To understand how grapevine sinks compete with each other during water stress and subsequent rehydration, carbon (C) allocation patterns in drought-rehydrated vines (REC) at the beginning of fruit ripening were compared with control vines maintained under drought (WS) or fully irrigated (WW). In the 30 days following rehydration, the quantity and distribution of newly fixed C between leaves, roots and fruits was evaluated through 13 CO2 pulse-labeling and stable isotope ratio mass spectrometry. REC plants diverted the same percentage of fixed C towards the berries as the WS plants, although the percentage was higher than that of WW plants. Net photosynthesis (measured simultaneously with root respiration in a multichamber system for analysis of gas exchange above- and below-ground) was approximately two-fold greater in REC compared to WS treatment, and comparable or even higher than in WW plants. Maximizing C assimilation and delivery in REC plants led to a significantly higher amount of newly fixed C compared to both control treatments, already 2 days after rehydration in root, and 2 days later in the berries, in line with the expression of genes responsible for sugar metabolism. In REC plants, the increase in C assimilation was able to support the requests of the sinks during fruit ripening, without affecting the reserves, as was the case in WS. These mechanisms clarify what is experienced in fruit crops, when occasional rain or irrigation events are more effective in determining sugar delivery towards fruits, rather than constant and satisfactory water availabilities.


Asunto(s)
Sequías , Vitis , Frutas/metabolismo , Vitis/genética , Vitis/metabolismo , Fotosíntesis , Hojas de la Planta/metabolismo , Azúcares/metabolismo
10.
BMC Genomics ; 24(1): 18, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639618

RESUMEN

BACKGROUND: The importance of uridine 5'-diphosphate glucose (UDP-G) synthesis and degradation on carbon (C) partitioning has been indicated in several studies of plant systems, whereby the kinetic properties and abundance of involved enzymes had a significant effect upon the volume of C moving into the hemicellulose, cellulose and sucrose pools. In this study, the expression of 136 genes belonging to 32 gene families related to UDP-G metabolism was studied in 3 major sugarcane organs (including leaf, internode and root) at 6 different developmental stages in 2 commercial genotypes. RESULTS: Analysis of the genes associated with UDP-G metabolism in leaves indicated low expression of sucrose synthase, but relatively high expression of invertase genes, specifically cell-wall invertase 4 and neutral acid invertase 1-1 and 3 genes. Further, organs that are primarily responsible for sucrose synthesis or bioaccumulation, i.e., in source organs (mature leaves) and storage sink organs (mature internodes), had very low expression of sucrose, cellulose and hemicellulose synthesis genes, specifically sucrose synthase 1 and 2, UDP-G dehydrogenase 5 and several cellulose synthase subunit genes. Gene expression was mostly very low in both leaf and mature internode samples; however, leaves did have a comparatively heightened invertase and sucrose phosphate synthase expression. Major differences were observed in the transcription of several genes between immature sink organs (roots and immature internodes). Gene transcription favoured utilisation of UDP-G toward insoluble and respiratory pools in roots. Whereas, there was comparatively higher expression of sucrose synthetic genes, sucrose phosphate synthase 1 and 4, and comparatively lower expression of many genes associated with C flow to insoluble and respiratory pools including myo-Inositol oxygenase, UDP-G dehydrogenase 4, vacuolar invertase 1, and several cell-wall invertases in immature internodes. CONCLUSION: This study represents the first effort to quantify the expression of gene families associated with UDP-G metabolism in sugarcane. Transcriptional analysis displayed the likelihood that C partitioning in sugarcane is closely related to the transcription of genes associated with the UDP-G metabolism. The data presented may provide an accurate genetic reference for future efforts in altering UDP-G metabolism and in turn C partitioning in sugarcane.


Asunto(s)
Saccharum , Saccharum/metabolismo , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Uridina Difosfato/metabolismo , Sacarosa/metabolismo , Celulosa/metabolismo , Glucosa/metabolismo , Oxidorreductasas/metabolismo
11.
Mol Genet Genomics ; 298(3): 777-789, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37041390

RESUMEN

Sugar is crucial for grape berry, whether used for fresh food or wine. However, berry enlargement treatment with forchlorfenuron (N-(2-chloro4-pyridyl)-N'-phenylurea) (CPPU, a synthetic cytokinin) and gibberellin (GA) always had adverse effects on sugar accumulation in some grape varieties, especially CPPU. Therefore exploring the molecular mechanisms behind these adverse effects could provide a foundation for improving or developing technology to mitigate the effects of CPPU/GA treatments for grape growers. In the present study, invertase (INV) family, the key gene controlling sugar accumulation, was identified and characterized on the latest annotated grape genome. Their express pattern, as well as invertase activity and sugar content, were analyzed during grape berry development under CPPU and GA3 treatment to explore the potential role of INV members under berry enlargement treatment in grapes. Eighteen INV genes were identified and divided into two sub-families: 10 neutral INV genes (Vv-A/N-INV1-10) and 8 acid INV genes containing 5 CWINV (VvCWINV1-5) and 3 VIN (VvVIN1-3). At the early development stage, both CPPU and GA3 treatment decreased the hexose level in berries of 'Pinot Noir' grape, whereas the activity of three types inverstase (soluble acid INV, insoluble acid INV, and neutral INV) increased. Correspondingly, most of INV members were up-regulated by GA3 /CPPU application at least one sampling time point during early berry development, including VvCWINV1, 2, 3, 4, 5, VvVIN1, 2, 3 and Vv-A/N-INV1, 2, 5, 6, 7, 8, 10. At maturity, the sugar content in CPPU-treated berries is still lower than that in the control. Soluble acid INV and neutral INV, rather than insoluble acid INV, presented lower activity in CPPU-treated berries. Meanwhile, several corresponding genes, such as VvVIN2 and Vv-A/N-INV2, 8, 10 in ripening berries were obviously down-regulated by CPPU treatment. These results suggested that most of INV members could be triggered by berry enlargement treatment during early berry development, whereas VvVINs and Vv-A/N-INVs, but not VvCWINVs, could be the limiting factor resulting in decreased sugar accumulation in CPPU-treated berries at maturity. In conclusion, this study identified the INV family on the latest annotated grape genome and selected several potential members involving in the limit of CPPU on final sugar accumulation in grape berry. These results provide candidate genes for further study of the molecular regulation of CPPU and GA on sugar accumulation in grape.


Asunto(s)
Vitis , Humanos , beta-Fructofuranosidasa/genética , Frutas , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
Plant Cell Environ ; 46(7): 2097-2111, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37151187

RESUMEN

Endodormancy (ED) is a crucial stage in the life cycle of many perennial plants. ED release requires accumulating a certain amount of cold exposure, measured as chilling units. However, the mechanism governing the effect of chilling on ED duration is poorly understood. We used the potato tuber model to investigate the response to chilling as associated with ED release. We measured the accumulation of specific sugars during and after chilling, defined as sugar units. We discovered that ED duration correlated better with sugar units accumulation than chilling units. A logistic function was developed based on sugar units measurements to predict ED duration. Knockout or overexpression of the vacuolar invertase gene (StVInv) unexpectedly modified sugar units levels and extended or shortened ED, respectively. Silencing the energy sensor SNF1-related protein kinase 1, induced higher sugar units accumulation and shorter ED. Sugar units accumulation induced by chilling or transgenic lines reduced plasmodesmal (PD) closure in the dormant bud meristem. Chilling or knockout of abscisic acid (ABA) 8'-hydroxylase induced ABA accumulation, in parallel to sweetening, and antagonistically promoted PD closure. Our results suggest that chilling induce sugar units and ABA accumulation, resulting in antagonistic signals for symplastic connection of the dormant bud.


Asunto(s)
Solanum tuberosum , Azúcares , Azúcares/metabolismo , Ácido Abscísico/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Carbohidratos , Regulación de la Expresión Génica de las Plantas
13.
Anal Bioanal Chem ; 415(22): 5297-5309, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37439855

RESUMEN

Invertase is the key enzyme involved in several crucial biological processes by hydrolyzing sucrose for production of glucose and fructose. Invertase plays important roles in the fields of food, pharmacy, cosmetics, biofuels, and agriculture. Detection of invertase activity is urgently necessary for scientific research and industrial processes. Herein, a continuous fluorometric method was developed for real-time detection of invertase activity. 8-Isoquinolinylboronic acid responded to fructose by formation of a fluorescent complex in turn-on manner, and served as a fluorescent sensor to selectively recognize fructose in ternary enzymatic mixture containing sucrose and glucose. The limit of detection (LOD) for fructose was 0.07 mM. Progress curve for fructose production was established by directly and continuously monitoring the fluorescence for invertase reaction with sucrose as substrate. Initial velocity was obtained to characterize invertase activity. LOD for invertase assay was 0.10 U·mL-1. Km and υmax for invertase were determined as 7.70 mM and 0.86 mM·min-1, respectively. Copper ion was demonstrated to inhibit the invertase activity with IC50 of 33.61 mM. Applicability in high-throughput screening for inhibitor was demonstrated. The proposed method allows for real-time, simple, and rapidly monitoring the invertase activity. It has a broad range of potential applications for kinetics and screening inhibitor.


Asunto(s)
Glucosa , beta-Fructofuranosidasa , beta-Fructofuranosidasa/química , Fructosa , Sacarosa , Límite de Detección
14.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38037435

RESUMEN

The enzymatic approach is a highly effective and the major scientific method to eliminating bitter components in citrus-derived products nowadays. Microbial production of limonin invertase stands out due to its pivotal role in the removal of the bitter substance, limonin. The optimization of fermentation parameters and the study of scale-up fermentation are imperative for product commercialization. In this study, we focused on optimizing stirring speed, fermentation temperature, and initial pH to enhance the growth and limonin invertase production by the Aspergillus tabin strain UA13 in a 5-l stirred-tank bioreactor. Our results revealed the following optimal parameters are: a stirring speed of 300 rpm, a fermentation temperature of 35°C and a pH 5.0. Under these optimized conditions, the limonin invertase activity reached its peak at 63.38 U ml-1, representing a 1.67-fold increase compared to the unoptimized conditions (38.10 U ml-1), while also reducing the fermentation duration by 12 h. Furthermore, our research demonstrated that limonin invertase effectively hydrolyze limonin in grapefruit juice, reducing its content from 13.28 to 2.14 µg ml-1, as determined by HPLC, resulting in a 6.21-fold reduction of the bitter substance.


Asunto(s)
Limoninas , beta-Fructofuranosidasa , Fermentación , Aspergillus
15.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37686228

RESUMEN

Invertases and their inhibitors play important roles in sucrose metabolism, growth and development, signal transduction, and biotic and abiotic stress tolerance in many plant species. However, in cucumber, both the gene members and functions of invertase and its inhibitor families remain largely unclear. In this study, in comparison with the orthologues of Citrullus lanatus (watermelon), Cucumis melo (melon), and Arabidopsis thaliana (Arabidopsis), 12 invertase genes and 12 invertase inhibitor genes were identified from the genome of Cucumis sativus (cucumber). Among them, the 12 invertase genes were classified as 4 cell wall invertases, 6 cytoplasmic invertases, and 2 vacuolar invertases. Most invertase genes were conserved in cucumber, melon, and watermelon, with several duplicate genes in melon and watermelon. Transcriptome analysis distinguished these genes into various expression patterns, which included genes CsaV3_2G025540 and CsaV3_2G007220, which were significantly expressed in different tissues, organs, and development stages, and genes CsaV3_7G034730 and CsaV3_5G005910, which might be involved in biotic and abiotic stress. Six genes were further validated in cucumber based on quantitative real-time PCR (qRT-PCR), and three of them showed consistent expression patterns as revealed in the transcriptome. These results provide important information for further studies on the physiological functions of cucumber invertases (CSINVs) and their inhibitors (CSINHs).


Asunto(s)
Arabidopsis , Citrullus , Cucumis melo , Cucumis sativus , Humanos , Cucumis sativus/genética , beta-Fructofuranosidasa , Genes Duplicados , Citrullus/genética
16.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38003642

RESUMEN

Black rot disease, caused by Ceratocystis fimbriata Ellis & Halsted, severely affects both plant growth and post-harvest storage of sweet potatoes. Invertase (INV) enzymes play essential roles in hydrolyzing sucrose into glucose and fructose and participate in the regulation of plant defense responses. However, little is known about the functions of INV in the growth and responses to black rot disease in sweet potato. In this study, we identified and characterized an INV-like gene, named IbINV, from sweet potato. IbINV contained a pectin methylesterase-conserved domain. IbINV transcripts were most abundant in the stem and were significantly induced in response to C. fimbriata, salicylic acid, and jasmonic acid treatments. Overexpressing IbINV in sweet potato (OEV plants) led to vigorous growth and high resistance to black rot disease, while the down-regulation of IbINV by RNA interference (RiV plants) resulted in reduced plant growth and high sensitivity to black rot disease. Furthermore, OEV plants contained a decreased sucrose content and increased hexoses content, which might be responsible for the increased INV activities; not surprisingly, RiV plants showed the opposite effects. Taken together, these results indicate that IbINV positively regulates plant growth and black rot disease resistance in sweet potato, mainly by modulating sugar metabolism.


Asunto(s)
Ascomicetos , Ipomoea batatas , Ascomicetos/fisiología , Ipomoea batatas/genética , Ceratocystis , Sacarosa/farmacología
17.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769375

RESUMEN

In this study, the influences of long-term soil drought with three levels [soil-relative water content (SRWC) (75 ± 5)%, as the control; SRWC (55 ± 5)%, mild drought; SRWC (45 ± 5)%, severe drought] were investigated on sucrose-starch metabolism in sweet potato tuberous roots (TRs) by pot experiment. Compared to the control, drought stress increased soluble sugar and sucrose content by 4-60% and 9-75%, respectively, but reduced starch accumulation by 30-66% through decreasing the starch accumulate rate in TRs. In the drought-treated TRs, the inhibition of sucrose decomposition was attributed to the reduced activities of acid invertase (AI) and alkaline invertase (AKI) and the IbA-INV3 expression, rather than sucrose synthase (SuSy), consequently leading to the increased sucrose content in TRs. In addition, starch synthesis was inhibited mainly by reducing ADP-glucose pyrophosphorylase (AGPase), granular starch synthase (GBSS) and starch branching enzyme (SBE) activities in TRs under drought stress, and AGPase was the rate-limiting enzyme. Furthermore, soil drought remarkably up-regulated the IbSWEET11, IbSWEET605, and IbSUT4 expressions in Jishu 26 TRs, while it down-regulated or had no significant differences in Xushu 32 and Ningzishu 1 TRs. These results suggested that the sucrose-loading capability in Jishu 26 TRs were stronger than that in Xushu 32 and Ningzishu 1 TRs. Moreover, IbA-INV3, IbAGPS1, IbAGPS2, IbGBSSI and IbSBEII play important roles in different drought-tolerant cultivars under drought stress.


Asunto(s)
Ipomoea batatas , Almidón , Almidón/metabolismo , Ipomoea batatas/metabolismo , Sequías , Suelo , beta-Fructofuranosidasa , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Sacarosa/metabolismo
18.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139109

RESUMEN

Exogenous nitrogen and carbon can affect plant cell walls, which are composed of structural carbon. Sucrose synthase (SUS), invertase (INV), hexokinase (HXK), phosphoglucomutase (PGM), and UDP-glucose pyrophosphorylase (UGP) are the key enzymes of sucrose metabolism involved in cell wall synthesis. To understand whether these genes are regulated by carbon and nitrogen to participate in structural carbon biosynthesis, we performed genome-wide identification, analyzed their expression patterns under different carbon and nitrogen treatments, and conducted preliminary functional verification. Different concentrations of nitrogen and carbon were applied to poplar (Populus trichocarpa Torr. and Gray), which caused changes in cellulose, lignin, and hemicellulose contents. In poplar, 6 SUSs, 20 INVs, 6 HXKs, 4 PGMs, and 2 UGPs were identified. Moreover, the physicochemical properties, collinearity, and tissue specificity were analyzed. The correlation analysis showed that the expression levels of PtrSUS3/5, PtrNINV1/2/3/5/12, PtrCWINV3, PtrVINV2, PtrHXK5/6, PtrPGM1/2, and PtrUGP1 were positively correlated with the cellulose content. Meanwhile, the knockout of PtrNINV12 significantly reduced the cellulose content. This study could lay the foundation for revealing the functions of SUSs, INVs, HXKs, PGMs, and UGPs, which affected structural carbon synthesis regulated by nitrogen and carbon, proving that PtrNINV12 is involved in cell wall synthesis.


Asunto(s)
Populus , Populus/metabolismo , Celulosa/metabolismo , Lignina/metabolismo , Carbono/metabolismo , Nitrógeno/metabolismo , Regulación de la Expresión Génica de las Plantas
19.
World J Microbiol Biotechnol ; 39(10): 267, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37528302

RESUMEN

Invertase, an industrially significant glycoenzyme, was purified from baker's yeast using poly (2-Hydroxyethyl methacrylate) [PHema-Pba] cryogels functionalized with boronic acid. At subzero temperatures, PHema-Pba cryogels were synthesized and characterized using swelling tests, scanning electron microscopy, and Fourier-transform infrared spectroscopy. The surface area of the PHema-Pba cryogels was 14 m2/g with a swelling ratio of 88.3% and macroporosity of 72%. The interconnected macropores of PHema-Pba cryogels were shown via scanning electron microscopy. Invertase binding capacity of PHema-Pba cryogel was evaluated by binding studies in different pH, temperature, and interaction time conditions and the maximum Invertase binding of PHema-Pba cryogel was found as 15.2 mg/g. and 23.7 fold Invertase purification was achieved from baker's yeast using PHema-Pba cryogels. The results show that PHema-Pba cryogels have high Invertase binding capacity and may be used as an alternative method for enzyme purification via boronate affinity systems.


Asunto(s)
Criogeles , beta-Fructofuranosidasa , Criogeles/química , Saccharomyces cerevisiae , Polihidroxietil Metacrilato/química , Ácidos Borónicos , Adsorción
20.
Mol Biol (Mosk) ; 57(2): 197-208, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37000649

RESUMEN

In this study, we performed expression analysis of genes associated with cold-induced sweetening in potato tubers: vacuolar invertase (Pain-1), sucrose synthase (SUS4), and invertase inhibitor (InvInh2). Potato varieties Nikulinsky, Symfonia, and Nevsky were used. All three varieties were found to accumulate sugars at low temperatures; the maximum accumulation of reducing sugars was observed at 4°C. It was found that the expression pattern of genes associated with cold-induced sweetening differs depending on the variety and storage duration. The increased expression of vacuolar invertase and its inhibitor is more pronounced at the beginning of storage period, whereas the increased expression of sucrose synthase is more pronounced after 3 months of storage. At early storage periods, high expression of invertase and low expression of inhibitor is observed in the Dutch variety Symfonia, and vice versa in the Russian varieties Nikulinsky and Nevsky. The involvement of the studied genes in the process of cold-induced sweetening is discussed.


Asunto(s)
Solanum tuberosum , beta-Fructofuranosidasa , beta-Fructofuranosidasa/genética , beta-Fructofuranosidasa/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Frío , Azúcares/metabolismo , Genotipo , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA