Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Plant J ; 110(4): 1082-1096, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35247019

RESUMEN

Jasmonoyl-isoleucine (JA-Ile) is a key signaling molecule that activates jasmonate-regulated flower development and the wound stress response. For years, JASMONATE RESISTANT1 (JAR1) has been the sole jasmonoyl-amino acid synthetase known to conjugate jasmonic acid (JA) to isoleucine, and the source of persisting JA-Ile in jar1 knockout mutants has remained elusive until now. Here we demonstrate through recombinant enzyme assays and loss-of-function mutant analyses that AtGH3.10 functions as a JA-amido synthetase. Recombinant AtGH3.10 could conjugate JA to isoleucine, alanine, leucine, methionine, and valine. The JA-Ile accumulation in the gh3.10-2 jar1-11 double mutant was nearly eliminated in the leaves and flower buds while its catabolism derivative 12OH-JA-Ile was undetected in the flower buds and unwounded leaves. Residual levels of JA-Ile, JA-Ala, and JA-Val were nonetheless detected in gh3.10-2 jar1-11, suggesting the activities of similar promiscuous enzymes. Upon wounding, the accumulation of JA-Ile and 12OH-JA-Ile and the expression of JA-responsive genes OXOPHYTODIENOIC ACID REDUCTASE3 and JASMONATE ZIM-DOMAIN1 observed in WT, gh3.10-1, and jar1-11 leaves were effectively abolished in gh3.10-2 jar1-11. Additionally, an increased proportion of undeveloped siliques associated with retarded stamen development was observed in gh3.10-2 jar1-11. These findings conclusively show that AtGH3.10 contributes to JA-amino acid biosynthesis and functions partially redundantly with AtJAR1 in sustaining flower development and the wound stress response in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/metabolismo , Ligasas/genética , Ligasas/metabolismo , Oxilipinas/metabolismo
2.
Plant Cell Physiol ; 64(4): 405-421, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36472361

RESUMEN

Jasmonic acid (JA) regulates plant growth, development and stress responses. Coronatine insensitive 1 (COI1) and jasmonate zinc-finger inflorescence meristem-domain (JAZ) proteins form a receptor complex for jasmonoyl-l-isoleucine, a biologically active form of JA. Three COIs (OsCOI1a, OsCOI1b and OsCOI2) are encoded in the rice genome. In the present study, we generated mutants for each rice COI gene using genome editing to reveal the physiological functions of the three rice COIs. The oscoi2 mutants, but not the oscoi1a and oscoi1b mutants, exhibited severely low fertility, indicating the crucial role of OsCOI2 in rice fertility. Transcriptomic analysis revealed that the transcriptional changes after methyl jasmonate (MeJA) treatment were moderate in the leaves of oscoi2 mutants compared to those in the wild type or oscoi1a and oscoi1b mutants. MeJA-induced chlorophyll degradation and accumulation of antimicrobial secondary metabolites were suppressed in oscoi2 mutants. These results indicate that OsCOI2 plays a central role in JA response in rice leaves. In contrast, the assessment of growth inhibition upon exogenous application of JA to seedlings of each mutant revealed that rice COIs are redundantly involved in shoot growth, whereas OsCOI2 plays a primary role in root growth. In addition, a co-immunoprecipitation assay showed that OsJAZ2 and OsJAZ5 containing divergent Jas motifs physically interacted only with OsCOI2, whereas OsJAZ4 with a canonical Jas motif interacts with all three rice COIs. The present study demonstrated the functional diversity of rice COIs, thereby providing clues to the mechanisms regulating the various physiological functions of JA.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Oryza/genética , Oryza/metabolismo , Edición Génica , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240102

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda, has become one of the most important pests on corn in China since it invaded in 2019. Although FAW has not been reported to cause widespread damage to rice plants in China, it has been sporadically found feeding in the field. If FAW infests rice in China, the fitness of other insect pests on rice may be influenced. However, how FAW and other insect pests on rice interact remains unknown. In this study, we found that the infestation of FAW larvae on rice plants prolonged the developmental duration of the brown planthopper (BPH, Nilaparvata lugens (Stål)) eggs and plants damaged by gravid BPH females did not induce defenses that influenced the growth of FAW larvae. Moreover, co-infestation by FAW larvae on rice plants did not influence the attractiveness of volatiles emitted from BPH-infested plants to Anagrus nilaparvatae, an egg parasitoid of rice planthoppers. FAW larvae were able to prey on BPH eggs laid on rice plants and grew faster compared to those larvae that lacked available eggs. Studies revealed that the delay in the development of BPH eggs on FAW-infested plants was probably related to the increase in levels of jasmonoyl-isoleucine, abscisic acid and the defensive compounds in the rice leaf sheaths on which BPH eggs were laid. These findings indicate that, if FAW invades rice plants in China, the population density of BPH may be decreased by intraguild predation and induced plant defenses, whereas the population density of FAW may be increased.


Asunto(s)
Hemípteros , Oryza , Animales , Femenino , Larva , Crecimiento Demográfico , Spodoptera
4.
Plant J ; 107(4): 1119-1130, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34145662

RESUMEN

The F-box protein CORONANTINE INSENSITIVE1 (COI1) serves as the receptor for the plant hormone jasmonoyl-isoleucine (JA-Ile). COI1, its co-receptors of the JASMONATE ZIM-domain (JAZ) protein family, and JA-Ile form a functional unit that regulates growth or defense mechanisms in response to various stress cues. Strikingly, COI1, but not JA-Ile, is required for susceptibility of Arabidopsis thaliana towards the soil-borne vascular pathogen Verticillium longisporum. In order to obtain marker genes for further analysis of this JA-Ile-independent COI1 function, transcriptome analysis of roots of coi1 and allene oxide synthase (aos) plants (impaired in JA biosynthesis) was performed. Intriguingly, nearly all of the genes that are differentially expressed in coi1 versus aos and wild type are constitutively more highly expressed in coi1. To support our notion that COI1 acts independently of its known downstream signaling components, coi1 plants were complemented with a COI1 variant (COI1AA ) that is compromised in its interaction with JAZs. As expected, these plants showed only weak induction of the expression of the JA-Ile marker gene VEGETATIVE STORAGE PROTEIN2 after wounding and remained sterile. On the other hand, genes affected by COI1 but not by JA-Ile were still strongly repressed by COI1AA . We suggest that COI1 has a potential moonlighting function that serves to repress gene expression in a JA-Ile- and JAZ-independent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Raíces de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Heterocigoto , Transferasas Intramoleculares/genética , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
5.
Planta ; 253(2): 36, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462640

RESUMEN

MAIN CONCLUSION: Jasmonic acid positively modulates vitamin E accumulation, but the latter can also partly influence the capacity to accumulate the jasmonic acid precursor, 12-oxo-phytodienoic acid, in white-leaved rockrose (Cistus albidus L.) plants growing in their natural habitat. This study suggests a bidirectional link between chloroplastic antioxidants and lipid peroxidation-derived hormones in plants. While vitamin E is well known for its antioxidant properties being involved in plant responses to abiotic stress, jasmonates are generally related to biotic stress responses in plants. Studying them in non-model plants under natural conditions is crucial for the knowledge on their relationship, which will help us to better understand mechanisms and limits of stress tolerance to implement better conservation strategies in vulnerable ecosystems. We studied a typical Mediterranean shrub, white-leaved rockrose (Cistus albidus) under natural conditions during three winters and we analyzed both α and γ-tocopherol, and the three main jasmonates forms 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile). We found that JA contents positively correlated with vitamin E accumulation, most particularly with γ-tocopherol, the precursor of α-tocopherol (the most active vitamin E form). This finding was confirmed by exogenous application of methyl jasmonate (MeJA) in leaf discs under controlled conditions, which increased γ-tocopherol when applied at 0.1 mM MeJA and α-tocopherol at 1 mM MeJA. Furthermore, a complementary meta-analysis study with previously published reports revealed a positive correlation between JA and vitamin E, although this relationship turned to be strongly species specific. A strong negative correlation was observed, however, between total tocopherols and OPDA (a JA precursor located in chloroplasts). This antagonistic effect was observed between α-tocopherol and OPDA, but not between γ-tocopherol and OPDA. It is concluded that (i) variations in jasmonates and vitamin E due to yearly, inter-individual and sun orientation-driven variability are compatible with a partial regulation of vitamin E accumulation by jasmonates, (ii) vitamin E may also exert a role in the modulation of the biosynthesis of OPDA, with a much smaller effect, if any, on other jasmonates, and (iii) a trade-off in the accumulation of vitamin E and jasmonates might occur in the regulation of biotic and abiotic stress responses in plants.


Asunto(s)
Cistus , Ciclopentanos , Oxilipinas , Vitamina E , Cistus/efectos de los fármacos , Cistus/metabolismo , Ciclopentanos/farmacología , Ecosistema , Oxilipinas/farmacología , Vitamina E/metabolismo
6.
J Integr Plant Biol ; 58(6): 564-76, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26466818

RESUMEN

Jasmonic acid (JA) and related metabolites play a key role in plant defense and growth. JA carboxyl methyltransferase (JMT) may be involved in plant defense and development by methylating JA to methyl jasmonate (MeJA) and thus influencing the concentrations of JA and related metabolites. However, no JMT gene has been well characterized in monocotyledon defense and development at the molecular level. After we cloned a rice JMT gene, OsJMT1, whose encoding protein was localized in the cytosol, we found that the recombinant OsJMT1 protein catalyzed JA to MeJA. OsJMT1 is up-regulated in response to infestation with the brown planthopper (BPH; Nilaparvata lugens). Plants in which OsJMT1 had been overexpressed (oe-JMT plants) showed reduced height and yield. These oe-JMT plants also exhibited increased MeJA levels but reduced levels of herbivore-induced JA and jasmonoyl-isoleucine (JA-Ile). The oe-JMT plants were more attractive to BPH female adults but showed increased resistance to BPH nymphs, probably owing to the different responses of BPH female adults and nymphs to the changes in levels of H2 O2 and MeJA in oe-JMT plants. These results indicate that OsJMT1, by altering levels of JA and related metabolites, plays a role in regulating plant development and herbivore-induced defense responses in rice.


Asunto(s)
Ciclopentanos/metabolismo , Herbivoria/fisiología , Metiltransferasas/metabolismo , Oryza/enzimología , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oxilipinas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/fisiología , Acetatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Herbivoria/genética , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Metiltransferasas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
7.
Plant Cell Physiol ; 56(7): 1287-96, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25759328

RESUMEN

Studies have indicated that endogenous concentrations of plant hormones are regulated very locally within plants. To understand the mechanisms underlying hormone-mediated physiological processes, it is indispensable to know the exact hormone concentrations at cellular levels. In the present study, we established a system to determine levels of ABA and jasmonoyl-isoleucine (JA-Ile) from single cells. Samples taken from a cell of Vicia faba leaves using nano-electrospray ionization (ESI) tips under a microscope were directly introduced into mass spectrometers by infusion and subjected to tandem mass spectrometry (MS/MS) analysis. Stable isotope-labeled [D(6)]ABA or [(13)C(6)]JA-Ile was used as an internal standard to compensate ionization efficiencies, which determine the amount of ions introduced into mass spectrometers. We detected ABA and JA-Ile from single cells of water- and wound-stressed leaves, whereas they were almost undetectable in non-stressed single cells. The levels of ABA and JA-Ile found in the single-cell analysis were compared with levels found by analysis of purified extracts with liquid chromatography-tandem mass spectrometry (LC-MS/MS). These results demonstrated that stress-induced accumulation of ABA and JA-Ile could be monitored from living single cells.


Asunto(s)
Ácido Abscísico/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Espectrometría de Masas/métodos , Análisis de la Célula Individual/métodos , Cromatografía Liquida/métodos , Isoleucina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/citología , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem/métodos , Vicia faba/química , Vicia faba/citología
8.
J Plant Physiol ; 270: 153637, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35144140

RESUMEN

Jasmonates play important roles in several plant developmental processes and responses to biotic and abiotic stresses. This study identified a gene encoding jasmonate resistant 1 (JAR1) protein that catalyzes the production of bioactive jasmonoyl-isoleucine (JA-Ile) from hexaploid wheat (Triticum aestivum L), designated as TaJAR1B. The nucleotide sequence of TaJAR1B and amino acid sequence of the corresponding protein exhibited high identity and similarity with other plant JAR1s. Feeding the culture of E. coli cells heterologously expressing TaJAR1B with jasmonic acid (JA) resulted in the production of JA-Ile, indicating the functionality of TaJAR1B in converting JA to JA-Ile. TaJAR1B was highly expressed in the internodes of adult plants and maturing seeds. Salt treatment induced the expression level of TaJAR1B in seedling tissues. Our results indicate that TaJAR1B encodes a functional JAR and is involved in the regulation of plant growth and developmental processes and response to salinity in wheat.

9.
Front Plant Sci ; 12: 799249, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111178

RESUMEN

Inter-organ communication and the heat stress (HS; 45°C, 6 h) responses of organs exposed and not directly exposed to HS were evaluated in rice (Oryza sativa) by comparing the impact of HS applied either to whole plants, or only to shoots or roots. Whole-plant HS reduced photosynthetic activity (F v /F m and QY_Lss ), but this effect was alleviated by prior acclimation (37°C, 2 h). Dynamics of HSFA2d, HSP90.2, HSP90.3, and SIG5 expression revealed high protection of crowns and roots. Additionally, HSP26.2 was strongly expressed in leaves. Whole-plant HS increased levels of jasmonic acid (JA) and cytokinin cis-zeatin in leaves, while up-regulating auxin indole-3-acetic acid and down-regulating trans-zeatin in leaves and crowns. Ascorbate peroxidase activity and expression of alternative oxidases (AOX) increased in leaves and crowns. HS targeted to leaves elevated levels of JA in roots, cis-zeatin in crowns, and ascorbate peroxidase activity in crowns and roots. HS targeted to roots increased levels of abscisic acid and auxin in leaves and crowns, cis-zeatin in leaves, and JA in crowns, while reducing trans-zeatin levels. The weaker protection of leaves reflects the growth strategy of rice. HS treatment of individual organs induced changes in phytohormone levels and antioxidant enzyme activity in non-exposed organs, in order to enhance plant stress tolerance.

10.
Plants (Basel) ; 9(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255380

RESUMEN

The plant hormone jasmonoyl-isoleucine (JA-Ile) is an important regulator of plant growth and defense in response to various biotic and abiotic stress cues. Under our experimental conditions, JA-Ile levels increased approximately seven-fold in NaCl-treated Arabidopsis thaliana roots. Although these levels were around 1000-fold lower than in wounded leaves, genes of the JA-Ile signaling pathway were induced by a factor of 100 or more. Induction was severely compromised in plants lacking the JA-Ile receptor CORONATINE INSENSITIVE 1 or enzymes required for JA-Ile biosynthesis. To explain efficient gene expression at very low JA-Ile levels, we hypothesized that salt-induced expression of the JA/JA-Ile transporter JAT1/AtABCG16 would lead to increased nuclear levels of JA-Ile. However, mutant plants with different jat1 alleles were similar to wild-type ones with respect to salt-induced gene expression. The mechanism that allows COI1-dependent gene expression at very low JA-Ile levels remains to be elucidated.

11.
J Mol Graph Model ; 85: 250-261, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30243225

RESUMEN

The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates fundamental plant processes. Fragaria vesca, the woodland strawberry, is a model plant for the Rosaceae family, in which the JA-Ile perception is poorly understood at the molecular level. JA-Ile promotes binding of JAZ repressor to COI1 protein in Arabidopsis to activate jasmonate (JA)-dependent responses. The aim of this work was to understand the molecular basis of the interaction between the F. vesca COI1 (FvCOI1) and JAZ1 (FvJAZ1) promoted by JA-Ile using a computational approach. Multiple sequence alignments and phylogenetic analyses of amino acid sequences were performed for FvCOI1, FvJAZ1 and their ortholog sequences. 3D structures for FvCOI1 and FvJAZ1 proteins were built by methods of homology modeling, using AtCOI1-JA-Ile-AtJAZ1 as template and then they were further refined and validated by molecular dynamics (MD) simulation. A molecular docking approach along with MDS analysis were used to gain insights into the interaction between a putative degron-like sequence present in FvJAZ1 with the FvCOI1-JA-Ile complex. FvCOI1 and FvJAZ1 showed high and moderate sequence identity, respectively, with the corresponding ortholog proteins from other plant species including apple, grape, tomato and Arabidopsis. Moreover, the FvJAZ1 has a variant C-terminal IPMQRK sequence instead of the canonical LPIARR degron sequence located in the Jas domain of AtJAZ1. The MD simulation results showed that the FvCOI1-JA-Ile-FvJAZ1 complex was stable, and the IPMQRK peptide of FvJAZ1 directly interacted with FvCOI1 and JA-Ile. The present research provides novel insight into the molecular interactions among key JA-signaling components in the model plant F. vesca, being few examples of characterized JA-Ile receptors at a structural level in plants.


Asunto(s)
Ciclopentanos/química , Fragaria/genética , Isoleucina/análogos & derivados , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Ciclopentanos/metabolismo , Fragaria/metabolismo , Isoleucina/química , Isoleucina/genética , Isoleucina/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Complejos Multiproteicos/química , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Análisis de Secuencia de ADN , Relación Estructura-Actividad
12.
Front Plant Sci ; 9: 787, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29963064

RESUMEN

The jasmonate hormones are essential regulators of plant defense against herbivores and include several dozen derivatives of the oxylipin jasmonic acid (JA). Among these, the conjugate jasmonoyl isoleucine (JA-Ile) has been shown to interact directly with the jasmonate co-receptor complex to regulate responses to jasmonate signaling. However, functional studies indicate that some aspects of jasmonate-mediated defense are not regulated by JA-Ile. Thus, it is not clear whether JA-Ile is best characterized as the master jasmonate regulator of defense, or if it regulates more specific aspects. We investigated possible functions of JA-Ile in anti-herbivore resistance of the wild tobacco Nicotiana attenuata, a model system for plant-herbivore interactions. We first analyzed the soluble and volatile secondary metabolomes of irJAR4xirJAR6, asLOX3, and WT plants, as well as an RNAi line targeting the jasmonate co-receptor CORONATINE INSENSITIVE 1 (irCOI1), following a standardized herbivory treatment. irJAR4xirJAR6 were the most similar to WT plants, having a ca. 60% overlap in differentially regulated metabolites with either asLOX3 or irCOI1. In contrast, while at least 25 volatiles differed between irCOI1 or asLOX3 and WT plants, there were few or no differences in herbivore-induced volatile emission between irJAR4xirJAR6 and WT plants, in glasshouse- or field-collected samples. We then measured the susceptibility of jasmonate-deficient vs. JA-Ile-deficient plants in nature, in comparison to wild-type (WT) controls, and found that JA-Ile-deficient plants (irJAR4xirJAR6) are much better defended even than a mildly jasmonate-deficient line (asLOX3). The differences among lines could be attributed to differences in damage from specific herbivores, which appeared to prefer either one or the other jasmonate-deficient phenotype. We further investigated the elicitation of one herbivore-induced volatile known to be jasmonate-regulated and to mediate resistance to herbivores: (E)-α-bergamotene. We found that JA was a more potent elicitor of (E)-α-bergamotene emission than was JA-Ile, and when treated with JA, irJAR4xirJAR6 plants emitted 20- to 40-fold as much (E)-α-bergamotene than WT. We conclude that JA-Ile regulates specific aspects of herbivore resistance in N. attenuata. This specificity may allow plants flexibility in their responses to herbivores and in managing trade-offs between resistance, vs. growth and reproduction, over the course of ontogeny.

13.
Mol Plant ; 10(5): 695-708, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28179150

RESUMEN

To control gene expression by directly responding to hormone concentrations, both animal and plant cells have exploited comparable mechanisms to sense small-molecule hormones in nucleus. Whether nuclear entry of these hormones is actively transported or passively diffused, as conventionally postulated, through the nuclear pore complex, remains enigmatic. Here, we identified and characterized a jasmonate transporter in Arabidopsis thaliana, AtJAT1/AtABCG16, which exhibits an unexpected dual localization at the nuclear envelope and plasma membrane. We show that AtJAT1/AtABCG16 controls the cytoplasmic and nuclear partition of jasmonate phytohormones by mediating both cellular efflux of jasmonic acid (JA) and nuclear influx of jasmonoyl-isoleucine (JA-Ile), and is essential for maintaining a critical nuclear JA-Ile concentration to activate JA signaling. These results illustrate that transporter-mediated nuclear entry of small hormone molecules is a new mechanism to regulate nuclear hormone signaling. Our findings provide an avenue to develop pharmaceutical agents targeting the nuclear entry of small molecules.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Transporte Activo de Núcleo Celular , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Transducción de Señal , Transportadoras de Casetes de Unión a ATP/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Isoleucina/metabolismo , Membrana Nuclear/metabolismo , Saccharomyces cerevisiae/genética
14.
Plant Signal Behav ; 11(11): e1253646, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27813689

RESUMEN

Expression takes place for most of the jasmonic acid (JA)-induced genes in a COI1-dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.


Asunto(s)
Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos Insaturados/metabolismo , Isoleucina/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/fisiología
15.
Plant Sci ; 252: 151-161, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27717451

RESUMEN

Sustained abscisic acid (ABA) accumulation in dehydrated citrus roots depends on the transport from aerial organs. Under this condition, the role of the ß,ß-carotenoids (ABA precursors) to the de novo synthesis of ABA in roots needs to be clarified since their low availability in this organ restricts its accumulation. To accomplish that, detached citrus roots were exposed to light (to increase their carotenoid content) and subsequently dehydrated (to trigger ABA accumulation). Stress imposition sharply decreased the pool of ß,ß-carotenoids but, unexpectedly, no concomitant rise in ABA content was observed. Contrastingly, roots of intact plants (with low levels of carotenoids) showed a similar decrease of ABA precursor together with a significant ABA accumulation. Furthermore, upon dehydration both types of roots showed similar upregulation of the key genes involved in biosynthesis of carotenoids and ABA (CsPSY3a; CsßCHX1; CsßCHX2; CsNCED1; CsNCED2), demonstrating a conserved transcriptional response triggered by water stress. Thus, the sharp decrease in root carotenoid levels in response to dehydration should be related to other stress-related signals instead of contributing to ABA biosynthesis. In summary, ABA accumulation in dehydrated-citrus roots largely relies on the presence of the aerial organs and it is independent of the amount of available root ß,ß-carotenoids.


Asunto(s)
Ácido Abscísico/metabolismo , Carotenoides/metabolismo , Citrus/metabolismo , Estrés Fisiológico , Agua/metabolismo , Transporte Biológico , Citrus/fisiología , Regulación de la Expresión Génica de las Plantas , Presión Osmótica , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Regulación hacia Arriba
16.
Plant Signal Behav ; 8(11): e27008, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24300304

RESUMEN

Verticillium longisporum is a soil-borne vascular pathogen found primarily on oilseed rape in Northern Europe. Infection of the model plant Arabidopsis thaliana can be achieved under laboratory conditions. In the article related to this addendum, we have shown that Arabidopsis dde2-2 mutants that are compromised in their ability to synthesize the defense hormone jasmonoyl-isoleucine (JA-Ile) are slightly more susceptible than wild-type. Contrary to the expectation that hormone biosynthesis mutants and their respective receptor mutants should have the same phenotype, we found that plants that lack the JA-Ile receptor CORONATINE INSENSITIVE1 (COI1) are more tolerant to the disease. This addendum addressed the question whether the increased JA-Ile levels found in coi1 are responsible for its tolerance phenotype. Based on the evidence that the JA-Ile-deficient dde2-2 coi1-t double mutant is as tolerant as coi1-t, we conclude that increased JA-Ile levels do not protect Arabidopsis against the fungus in the absence of COI1.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/genética , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Mutación/genética , Haz Vascular de Plantas/microbiología , Verticillium/fisiología , Arabidopsis/inmunología , Biomasa , Isoleucina/metabolismo , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología
17.
Plant Signal Behav ; 7(11): 1378-81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22918499

RESUMEN

Plants have developed multifaceted defensive systems against adverse environmental factors. One such recognized system is the production of metabolites in plants. Jasmonic acid (JA) and its metabolite methyl jasmonate (MeJA) are known to play key roles in metabolites production. The role of MeJA as a mobile signal has been established in Arabidopsis and Solanaceae plants. However, it remains largely unclear how MeJA-based signaling is organized via its elicited metabolites. Here, we investigated the signaling ability of MeJA by means of vascular transport using Achyranthes bidentata as an experimental plant. Results showed that MeJA was transported and essentially metabolized into its active form JA-Ile in the distal undamaged leaves accompanied by emission of volatile organic compounds. Results presented and discussed therein provide convincing evidence that MeJA acts as a transportable inter-cellular mobile compound in plants self-defense scheme.


Asunto(s)
Acetatos/metabolismo , Achyranthes/metabolismo , Ciclopentanos/metabolismo , Isoleucina/análogos & derivados , Oxilipinas/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas , Isoleucina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA