Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.581
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(6): 1042-1050.e9, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575668

RESUMEN

KCNQ1 is the pore-forming subunit of cardiac slow-delayed rectifier potassium (IKs) channels. Mutations in the kcnq1 gene are the leading cause of congenital long QT syndrome (LQTS). Here, we present the cryoelectron microscopy (cryo-EM) structure of a KCNQ1/calmodulin (CaM) complex. The conformation corresponds to an "uncoupled," PIP2-free state of KCNQ1, with activated voltage sensors and a closed pore. Unique structural features within the S4-S5 linker permit uncoupling of the voltage sensor from the pore in the absence of PIP2. CaM contacts the KCNQ1 voltage sensor through a specific interface involving a residue on CaM that is mutated in a form of inherited LQTS. Using an electrophysiological assay, we find that this mutation on CaM shifts the KCNQ1 voltage-activation curve. This study describes one physiological form of KCNQ1, depolarized voltage sensors with a closed pore in the absence of PIP2, and reveals a regulatory interaction between CaM and KCNQ1 that may explain CaM-mediated LQTS.


Asunto(s)
Calmodulina/química , Canal de Potasio KCNQ1/química , Síndrome de QT Prolongado/metabolismo , Secuencia de Aminoácidos , Animales , Calmodulina/metabolismo , Microscopía por Crioelectrón , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Modelos Moleculares , Mutación , Alineación de Secuencia , Xenopus laevis
2.
Hum Mol Genet ; 33(2): 110-121, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37769355

RESUMEN

The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Miocitos Cardíacos/metabolismo , Mutación del Sistema de Lectura , Células Madre Pluripotentes Inducidas/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Heterocigoto , Mutación , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo
3.
J Biol Chem ; 300(8): 107526, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960041

RESUMEN

The human ether-a-go-go-related gene (hERG) encodes the Kv11.1 (or hERG) channel that conducts the rapidly activating delayed rectifier potassium current (IKr). Naturally occurring mutations in hERG impair the channel function and cause long QT syndrome type 2. Many missense hERG mutations lead to a lack of channel expression on the cell surface, representing a major mechanism for the loss-of-function of mutant channels. While it is generally thought that a trafficking defect underlies the lack of channel expression on the cell surface, in the present study, we demonstrate that the trafficking defective mutant hERG G601S can reach the plasma membrane but is unstable and quickly degrades, which is akin to WT hERG channels under low K+ conditions. We previously showed that serine (S) residue at 624 in the innermost position of the selectivity filter of hERG is involved in hERG membrane stability such that substitution of serine 624 with threonine (S624T) enhances hERG stability and renders hERG insensitive to low K+ culture. Here, we report that the intragenic addition of S624T substitution to trafficking defective hERG mutants G601S, N470D, and P596R led to a complete rescue of the function of these otherwise loss-of-function mutant channels to a level similar to the WT channel, representing the most effective rescue means for the function of mutant hERG channels. These findings not only provide novel insights into hERG mutation-mediated channel dysfunction but also point to the critical role of S624 in hERG stability on the plasma membrane.

4.
J Biol Chem ; 300(7): 107465, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876300

RESUMEN

The voltage-gated potassium ion channel KV11.1 plays a critical role in cardiac repolarization. Genetic variants that render Kv11.1 dysfunctional cause long QT syndrome (LQTS), which is associated with fatal arrhythmias. Approximately 90% of LQTS-associated variants cause intracellular protein transport (trafficking) dysfunction, which pharmacological chaperones like E-4031 can rescue. Protein folding and trafficking decisions are regulated by chaperones, protein quality control factors, and trafficking machinery comprising the cellular proteostasis network. Here, we test whether trafficking dysfunction is associated with alterations in the proteostasis network of pathogenic Kv11.1 variants and whether pharmacological chaperones can normalize the proteostasis network of responsive variants. We used affinity-purification coupled with tandem mass tag-based quantitative mass spectrometry to assess protein interaction changes of WT KV11.1 or trafficking-deficient channel variants in the presence or absence of E-4031. We identified 572 core KV11.1 protein interactors. Trafficking-deficient variants KV11.1-G601S and KV11.1-G601S-G965∗ had significantly increased interactions with proteins responsible for folding, trafficking, and degradation compared to WT. We confirmed previous findings that the proteasome is critical for KV11.1 degradation. Our report provides the first comprehensive characterization of protein quality control mechanisms of KV11.1. We find extensive interactome remodeling associated with trafficking-deficient KV11.1 variants and with pharmacological chaperone rescue of KV11.1 cell surface expression. The identified protein interactions could be targeted therapeutically to improve KV11.1 trafficking and treat LQTS.


Asunto(s)
Síndrome de QT Prolongado , Transporte de Proteínas , Proteostasis , Humanos , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/genética , Células HEK293 , Canales de Potasio Éter-A-Go-Go/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canal de Potasio ERG1/metabolismo , Canal de Potasio ERG1/genética , Animales
5.
Circulation ; 150(7): 516-530, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39051104

RESUMEN

BACKGROUND: Whether vigorous exercise increases risk of ventricular arrhythmias for individuals diagnosed and treated for congenital long QT syndrome (LQTS) remains unknown. METHODS: The National Institutes of Health-funded LIVE-LQTS study (Lifestyle and Exercise in the Long QT Syndrome) prospectively enrolled individuals 8 to 60 years of age with phenotypic and/or genotypic LQTS from 37 sites in 5 countries from May 2015 to February 2019. Participants (or parents) answered physical activity and clinical events surveys every 6 months for 3 years with follow-up completed in February 2022. Vigorous exercise was defined as ≥6 metabolic equivalents for >60 hours per year. A blinded Clinical Events Committee adjudicated the composite end point of sudden death, sudden cardiac arrest, ventricular arrhythmia treated by an implantable cardioverter defibrillator, and likely arrhythmic syncope. A National Death Index search ascertained vital status for those with incomplete follow-up. A noninferiority hypothesis (boundary of 1.5) between vigorous exercisers and others was tested with multivariable Cox regression analysis. RESULTS: Among the 1413 participants (13% <18 years of age, 35% 18-25 years of age, 67% female, 25% with implantable cardioverter defibrillators, 90% genotype positive, 49% with LQT1, 91% were treated with beta-blockers, left cardiac sympathetic denervation, and/or implantable cardioverter defibrillator), 52% participated in vigorous exercise (55% of these competitively). Thirty-seven individuals experienced the composite end point (including one sudden cardiac arrest and one sudden death in the nonvigorous group, one sudden cardiac arrest in the vigorous group) with overall event rates at 3 years of 2.6% in the vigorous and 2.7% in the nonvigorous exercise groups. The unadjusted hazard ratio for experience of events for the vigorous group compared with the nonvigorous group was 0.97 (90% CI, 0.57-1.67), with an adjusted hazard ratio of 1.17 (90% CI, 0.67-2.04). The upper 95% one-sided confidence level extended beyond the 1.5 boundary. Neither vigorous or nonvigorous exercise was found to be superior in any group or subgroup. CONCLUSIONS: Among individuals diagnosed with phenotypic and/or genotypic LQTS who were risk assessed and treated in experienced centers, LQTS-associated cardiac event rates were low and similar between those exercising vigorously and those not exercising vigorously. Consistent with the low event rate, CIs are wide, and noninferiority was not demonstrated. These data further inform shared decision-making discussions between patient and physician about exercise and competitive sports participation. REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02549664.


Asunto(s)
Ejercicio Físico , Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/congénito , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/mortalidad , Femenino , Masculino , Adolescente , Niño , Estudios Prospectivos , Adulto , Persona de Mediana Edad , Adulto Joven , Muerte Súbita Cardíaca/prevención & control , Muerte Súbita Cardíaca/epidemiología , Factores de Riesgo
6.
Circulation ; 149(4): 317-329, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-37965733

RESUMEN

BACKGROUND: Pathogenic variants in SCN5A can result in long QT syndrome type 3, a life-threatening genetic disease. Adenine base editors can convert targeted A T base pairs to G C base pairs, offering a promising tool to correct pathogenic variants. METHODS: We generated a long QT syndrome type 3 mouse model by introducing the T1307M pathogenic variant into the Scn5a gene. The adenine base editor was split into 2 smaller parts and delivered into the heart by adeno-associated virus serotype 9 (AAV9-ABEmax) to correct the T1307M pathogenic variant. RESULTS: Both homozygous and heterozygous T1307M mice showed significant QT prolongation. Carbachol administration induced Torsades de Pointes or ventricular tachycardia for homozygous T1307M mice (20%) but not for heterozygous or wild-type mice. A single intraperitoneal injection of AAV9-ABEmax at postnatal day 14 resulted in up to 99.20% Scn5a transcripts corrected in T1307M mice. Scn5a mRNA correction rate >60% eliminated QT prolongation; Scn5a mRNA correction rate <60% alleviated QT prolongation. Partial Scn5a correction resulted in cardiomyocytes heterogeneity, which did not induce severe arrhythmias. We did not detect off-target DNA or RNA editing events in ABEmax-treated mouse hearts. CONCLUSIONS: These findings show that in vivo AAV9-ABEmax editing can correct the variant Scn5a allele, effectively ameliorating arrhythmia phenotypes. Our results offer a proof of concept for the treatment of hereditary arrhythmias.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco , Edición Génica , Síndrome de QT Prolongado , Ratones , Animales , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/diagnóstico , Arritmias Cardíacas , Miocitos Cardíacos , Adenina , ARN Mensajero , Canal de Sodio Activado por Voltaje NAV1.5/genética , Mutación
7.
Circulation ; 150(7): 563-576, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38682330

RESUMEN

BACKGROUND: Drug-induced QT prolongation (diLQT) is a feared side effect that could expose susceptible individuals to fatal arrhythmias. The occurrence of diLQT is primarily attributed to unintended drug interactions with cardiac ion channels, notably the hERG (human ether-a-go-go-related gene) channels that generate the delayed-rectifier potassium current (IKr) and thereby regulate the late repolarization phase. There is an important interindividual susceptibility to develop diLQT, which is of unknown origin but can be reproduced in patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs). We aimed to investigate the dynamics of hERG channels in response to sotalol and to identify regulators of the susceptibility to developing diLQT. METHODS: We measured electrophysiological activity and cellular distribution of hERG channels after hERG blocker treatment in iPS-CMs derived from patients with highest sensitivity (HS) or lowest sensitivity (LS) to sotalol administration in vivo (ie, on the basis of the measure of the maximal change in QT interval 3 hours after administration). Specific small interfering RNAs and CAVIN1-T2A-GFP adenovirus were used to manipulate CAVIN1 expression. RESULTS: Whereas HS and LS iPS-CMs showed similar electrophysiological characteristics at baseline, the late repolarization phase was prolonged and IKr significantly decreased after exposure of HS iPS-CMs to low sotalol concentrations. IKr reduction was caused by a rapid translocation of hERG channel from the membrane to the cytoskeleton-associated fractions upon sotalol application. CAVIN1, essential for caveolae biogenesis, was 2× more highly expressed in HS iPS-CMs, and its knockdown by small interfering RNA reduced their sensitivity to sotalol. CAVIN1 overexpression in LS iPS-CMs using adenovirus showed reciprocal effects. We found that treatment with sotalol promoted translocation of the hERG channel from the plasma membrane to the cytoskeleton fractions in a process dependent on CAVIN1 (caveolae associated protein 1) expression. CAVIN1 silencing reduced the number of caveolae at the membrane and abrogated the translocation of hERG channel in sotalol-treated HS iPS-CMs. CAVIN1 also controlled cardiomyocyte responses to other hERG blockers, such as E4031, vandetanib, and clarithromycin. CONCLUSIONS: Our study identifies unbridled turnover of the potassium channel hERG as a mechanism supporting the interindividual susceptibility underlying diLQT development and demonstrates how this phenomenon is finely tuned by CAVIN1.


Asunto(s)
Canal de Potasio ERG1 , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Miocitos Cardíacos , Sotalol , Humanos , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Sotalol/farmacología , Potenciales de Acción/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Masculino
8.
Circulation ; 150(7): 531-543, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38939955

RESUMEN

BACKGROUND: Despite major advances in the clinical management of long QT syndrome, some patients are not fully protected by beta-blocker therapy. Mexiletine is a well-known sodium channel blocker, with proven efficacy in patients with sodium channel-mediated long QT syndrome type 3. Our aim was to evaluate the efficacy of mexiletine in long QT syndrome type 2 (LQT2) using cardiomyocytes derived from patient-specific human induced pluripotent stem cells, a transgenic LQT2 rabbit model, and patients with LQT2. METHODS: Heart rate-corrected field potential duration, a surrogate for QTc, was measured in human induced pluripotent stem cells from 2 patients with LQT2 (KCNH2-p.A561V, KCNH2-p.R366X) before and after mexiletine using a multiwell multi-electrode array system. Action potential duration at 90% repolarization (APD90) was evaluated in cardiomyocytes isolated from transgenic LQT2 rabbits (KCNH2-p.G628S) at baseline and after mexiletine application. Mexiletine was given to 96 patients with LQT2. Patients were defined as responders in the presence of a QTc shortening ≥40 ms. Antiarrhythmic efficacy of mexiletine was evaluated by a Poisson regression model. RESULTS: After acute treatment with mexiletine, human induced pluripotent stem cells from both patients with LQT2 showed a significant shortening of heart rate-corrected field potential duration compared with dimethyl sulfoxide control. In cardiomyocytes isolated from LQT2 rabbits, acute mexiletine significantly shortened APD90 by 113 ms, indicating a strong mexiletine-mediated shortening across different LQT2 model systems. Mexiletine was given to 96 patients with LQT2 either chronically (n=60) or after the acute oral drug test (n=36): 65% of the patients taking mexiletine only chronically and 75% of the patients who performed the acute oral test were responders. There was a significant correlation between basal QTc and ∆QTc during the test (r= -0.8; P<0.001). The oral drug test correctly predicted long-term effect in 93% of the patients. Mexiletine reduced the mean yearly event rate from 0.10 (95% CI, 0.07-0.14) to 0.04 (95% CI, 0.02-0.08), with an incidence rate ratio of 0.40 (95% CI, 0.16-0.84), reflecting a 60% reduction in the event rate (P=0.01). CONCLUSIONS: Mexiletine significantly shortens cardiac repolarization in LQT2 human induced pluripotent stem cells, in the LQT2 rabbit model, and in the majority of patients with LQT2. Furthermore, mexiletine showed antiarrhythmic efficacy. Mexiletine should therefore be considered a valid therapeutic option to be added to conventional therapies in higher-risk patients with LQT2.


Asunto(s)
Animales Modificados Genéticamente , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Mexiletine , Miocitos Cardíacos , Mexiletine/farmacología , Mexiletine/uso terapéutico , Animales , Humanos , Conejos , Miocitos Cardíacos/efectos de los fármacos , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/genética , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Masculino , Femenino , Adulto , Potenciales de Acción/efectos de los fármacos , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Adolescente , Persona de Mediana Edad , Adulto Joven , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Modelos Animales de Enfermedad , Niño , Resultado del Tratamiento
9.
Am J Hum Genet ; 109(7): 1208-1216, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35688148

RESUMEN

Many genes, including KCNH2, contain "hotspot" domains associated with a high density of variants associated with disease. This has led to the suggestion that variant location can be used as evidence supporting classification of clinical variants. However, it is not known what proportion of all potential variants in hotspot domains cause loss of function. Here, we have used a massively parallel trafficking assay to characterize all single-nucleotide variants in exon 2 of KCNH2, a known hotspot for variants that cause long QT syndrome type 2 and an increased risk of sudden cardiac death. Forty-two percent of KCNH2 exon 2 variants caused at least 50% reduction in protein trafficking, and 65% of these trafficking-defective variants exerted a dominant-negative effect when co-expressed with a WT KCNH2 allele as assessed using a calibrated patch-clamp electrophysiology assay. The massively parallel trafficking assay was more accurate (AUC of 0.94) than bioinformatic prediction tools (REVEL and CardioBoost, AUC of 0.81) in discriminating between functionally normal and abnormal variants. Interestingly, over half of variants in exon 2 were found to be functionally normal, suggesting a nuanced interpretation of variants in this "hotspot" domain is necessary. Our massively parallel trafficking assay can provide this information prospectively.


Asunto(s)
Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Síndrome de QT Prolongado , Alelos , Muerte Súbita Cardíaca , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Transporte de Proteínas/genética
10.
Am J Hum Genet ; 109(7): 1199-1207, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35688147

RESUMEN

Modern sequencing technologies have revolutionized our detection of gene variants. However, in most genes, including KCNH2, the majority of missense variants are currently classified as variants of uncertain significance (VUSs). The aim of this study was to investigate the utility of an automated patch-clamp assay for aiding clinical variant classification in KCNH2. The assay was designed according to recommendations proposed by the Clinical Genome Sequence Variant Interpretation Working Group. Thirty-one variants (17 pathogenic/likely pathogenic, 14 benign/likely benign) were classified internally as variant controls. They were heterozygously expressed in Flp-In HEK293 cells for assessing the effects of variants on current density and channel gating in order to determine the sensitivity and specificity of the assay. All 17 pathogenic variant controls had reduced current density, and 13 of 14 benign variant controls had normal current density, which enabled determination of normal and abnormal ranges for applying evidence of moderate or supporting strength for VUS reclassification. Inclusion of functional assay evidence enabled us to reclassify 6 out of 44 KCNH2 VUSs as likely pathogenic. The high-throughput patch-clamp assay can provide moderate-strength evidence for clinical interpretation of clinical KCNH2 variants and demonstrates the value of developing automated patch-clamp assays for functional characterization of ion channel gene variants.


Asunto(s)
Síndrome de QT Prolongado , Canal de Potasio ERG1/genética , Células HEK293 , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación Missense/genética
11.
Circ Res ; 132(1): 127-149, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36603066

RESUMEN

Cardiac alternans arises from dynamical instabilities in the electrical and calcium cycling systems of the heart, and often precedes ventricular arrhythmias and sudden cardiac death. In this review, we integrate clinical observations with theory and experiment to paint a holistic portrait of cardiac alternans: the underlying mechanisms, arrhythmic manifestations and electrocardiographic signatures. We first summarize the cellular and tissue mechanisms of alternans that have been demonstrated both theoretically and experimentally, including 3 voltage-driven and 2 calcium-driven alternans mechanisms. Based on experimental and simulation results, we describe their relevance to mechanisms of arrhythmogenesis under different disease conditions, and their link to electrocardiographic characteristics of alternans observed in patients. Our major conclusion is that alternans is not only a predictor, but also a causal mechanism of potentially lethal ventricular and atrial arrhythmias across the full spectrum of arrhythmia mechanisms that culminate in functional reentry, although less important for anatomic reentry and focal arrhythmias.


Asunto(s)
Calcio , Corazón , Humanos , Arritmias Cardíacas , Muerte Súbita Cardíaca/etiología , Electrocardiografía/métodos
12.
Mol Cell ; 65(1): 52-65, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27916661

RESUMEN

Tetrameric assembly of channel subunits in the endoplasmic reticulum (ER) is essential for surface expression and function of K+ channels, but the molecular mechanism underlying this process remains unclear. In this study, we found through genetic screening that ER-located J-domain-containing chaperone proteins (J-proteins) are critical for the biogenesis and physiological function of ether-a-go-go-related gene (ERG) K+ channels in both Caenorhabditis elegans and human cells. Human J-proteins DNAJB12 and DNAJB14 promoted tetrameric assembly of ERG (and Kv4.2) K+ channel subunits through a heat shock protein (HSP) 70-independent mechanism, whereas a mutated DNAJB12 that did not undergo oligomerization itself failed to assemble ERG channel subunits into tetramers in vitro and in C. elegans. Overexpressing DNAJB14 significantly rescued the defective function of human ether-a-go-go-related gene (hERG) mutant channels associated with long QT syndrome (LQTS), a condition that predisposes to life-threatening arrhythmia, by stabilizing the mutated proteins. Thus, chaperone proteins are required for subunit stability and assembly of K+ channels.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Canal de Potasio ERG1/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Canales de Potasio/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Línea Celular Tumoral , Canal de Potasio ERG1/química , Canal de Potasio ERG1/genética , Células HEK293 , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP47/química , Proteínas del Choque Térmico HSP47/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Potenciales de la Membrana , Chaperonas Moleculares , Mutación , Miocitos Cardíacos/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Interferencia de ARN , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Factores de Tiempo , Transfección
13.
Eur Heart J ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115049

RESUMEN

BACKGROUND AND AIMS: Type 1 long QT syndrome (LQT1) is caused by pathogenic variants in the KCNQ1-encoded Kv7.1 potassium channels, which pathologically prolong ventricular action potential duration (APD). Herein, the pathologic phenotype in transgenic LQT1 rabbits is rescued using a novel KCNQ1 suppression-replacement (SupRep) gene therapy. METHODS: KCNQ1-SupRep gene therapy was developed by combining into a single construct a KCNQ1 shRNA (suppression) and an shRNA-immune KCNQ1 cDNA (replacement), packaged into adeno-associated virus serotype 9, and delivered in vivo via an intra-aortic root injection (1E10 vg/kg). To ascertain the efficacy of SupRep, 12-lead electrocardiograms were assessed in adult LQT1 and wild-type (WT) rabbits and patch-clamp experiments were performed on isolated ventricular cardiomyocytes. RESULTS: KCNQ1-SupRep treatment of LQT1 rabbits resulted in significant shortening of the pathologically prolonged QT index (QTi) towards WT levels. Ventricular cardiomyocytes isolated from treated LQT1 rabbits demonstrated pronounced shortening of APD compared to LQT1 controls, leading to levels similar to WT (LQT1-UT vs. LQT1-SupRep, P < .0001, LQT1-SupRep vs. WT, P = ns). Under ß-adrenergic stimulation with isoproterenol, SupRep-treated rabbits demonstrated a WT-like physiological QTi and APD90 behaviour. CONCLUSIONS: This study provides the first animal-model, proof-of-concept gene therapy for correction of LQT1. In LQT1 rabbits, treatment with KCNQ1-SupRep gene therapy normalized the clinical QTi and cellular APD90 to near WT levels both at baseline and after isoproterenol. If similar QT/APD correction can be achieved with intravenous administration of KCNQ1-SupRep gene therapy in LQT1 rabbits, these encouraging data should compel continued development of this gene therapy for patients with LQT1.

14.
Eur Heart J ; 45(29): 2647-2656, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38751064

RESUMEN

BACKGROUND AND AIMS: Risk scores are proposed for genetic arrhythmias. Having proposed in 2010 one such score (M-FACT) for the long QT syndrome (LQTS), this study aims to test whether adherence to its suggestions would be appropriate. METHODS: LQT1/2/3 and genotype-negative patients without aborted cardiac arrest (ACA) before diagnosis or cardiac events (CEs) below age 1 were included in the study, focusing on an M-FACT score ≥2 (intermediate/high risk), either at presentation (static) or during follow-up (dynamic), previously associated with 40% risk of implantable cardioverter defibrillator (ICD) shocks within 4 years. RESULTS: Overall, 946 patients (26 ± 19 years at diagnosis, 51% female) were included. Beta-blocker (ßB) therapy in 94% of them reduced the rate of those with a QTc ≥500 ms from 18% to 12% (P < .001). During 7 ± 6 years of follow-up, none died; 4% had CEs, including 0.4% with ACA. A static M-FACT ≥2 was present in 110 patients, of whom 106 received ßBs. In 49/106 patients with persistent dynamic M-FACT ≥2, further therapeutic optimization (left cardiac sympathetic denervation in 55%, mexiletine in 31%, and ICD at 27%) resulted in just 7 (14%) patients with CEs (no ACA), with no CEs in the remaining 57. Additionally, 32 patients developed a dynamic M-FACT ≥2 but, after therapeutic optimization, only 3 (9%) had CEs. According to an M-FACT score ≥2, a total of 142 patients should have received an ICD, but only 22/142 (15%) were implanted, with shocks reported in 3. CONCLUSIONS: Beta-blockers often shorten QTc, thus changing risk scores and ICD indications for primary prevention. Yearly risk reassessment with therapy optimization leads to fewer ICD implants (3%) without increasing life-threatening events.


Asunto(s)
Antagonistas Adrenérgicos beta , Desfibriladores Implantables , Síndrome de QT Prolongado , Humanos , Femenino , Masculino , Adulto , Síndrome de QT Prolongado/terapia , Antagonistas Adrenérgicos beta/uso terapéutico , Medición de Riesgo , Adulto Joven , Adolescente , Niño , Persona de Mediana Edad , Muerte Súbita Cardíaca/prevención & control , Muerte Súbita Cardíaca/etiología , Antiarrítmicos/uso terapéutico , Preescolar , Electrocardiografía , Factores de Riesgo
15.
J Biol Chem ; 299(1): 102777, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496072

RESUMEN

Long QT syndrome (LQTS) is a human inherited heart condition that can cause life-threatening arrhythmia including sudden cardiac death. Mutations in the ubiquitous Ca2+-sensing protein calmodulin (CaM) are associated with LQTS, but the molecular mechanism by which these mutations lead to irregular heartbeats is not fully understood. Here, we use a multidisciplinary approach including protein biophysics, structural biology, confocal imaging, and patch-clamp electrophysiology to determine the effect of the disease-associated CaM mutation E140G on CaM structure and function. We present novel data showing that mutant-regulated CaMKIIδ kinase activity is impaired with a significant reduction in enzyme autophosphorylation rate. We report the first high-resolution crystal structure of a LQTS-associated CaM variant in complex with the CaMKIIδ peptide, which shows significant structural differences, compared to the WT complex. Furthermore, we demonstrate that the E140G mutation significantly disrupted Cav1.2 Ca2+/CaM-dependent inactivation, while cardiac ryanodine receptor (RyR2) activity remained unaffected. In addition, we show that the LQTS-associated mutation alters CaM's Ca2+-binding characteristics, secondary structure content, and interaction with key partners involved in excitation-contraction coupling (CaMKIIδ, Cav1.2, RyR2). In conclusion, LQTS-associated CaM mutation E140G severely impacts the structure-function relationship of CaM and its regulation of CaMKIIδ and Cav1.2. This provides a crucial insight into the molecular factors contributing to CaM-mediated arrhythmias with a central role for CaMKIIδ.


Asunto(s)
Canales de Calcio Tipo L , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Calmodulina , Síndrome de QT Prolongado , Humanos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Calcio/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Mutación , Estructura Secundaria de Proteína/genética , Unión Proteica/genética , Cristalografía
16.
Am J Physiol Heart Circ Physiol ; 326(6): H1350-H1365, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38551483

RESUMEN

Premature ventricular complexes (PVCs) are spontaneous excitations occurring in the ventricles of the heart that are associated with ventricular arrhythmias and sudden cardiac death. Under long QT conditions, PVCs can be mediated by repolarization gradient (RG) and early afterdepolarizations (EADs), yet the effects of heterogeneities or geometry of the RG or EAD regions on PVC genesis remain incompletely understood. In this study, we use computer simulation to systematically investigate the effects of the curvature of the RG border region on PVC genesis under long QT conditions. We show that PVCs can be either promoted or suppressed by negative or positive RG border curvature depending on the source and sink conditions. When the origin of oscillation is in the source region and the source is too strong, a positive RG border curvature can promote PVCs by causing the source area to oscillate. When the origin of oscillation is in the sink region, a negative RG border curvature can promote PVCs by causing the sink area to oscillate. Furthermore, EAD-mediated PVCs are also promoted by negative border curvature. We also investigate the effects of wavefront curvature and show that PVCs are promoted by convex but suppressed by concave wavefronts; however, the effect of wavefront curvature is much smaller than that of RG border curvature. In conclusion, besides the increase of RG and occurrence of EADs caused by QT prolongation, the geometry of the RG border plays important roles in PVC genesis, which can greatly increase the risk of arrhythmias in cardiac diseases.NEW & NOTEWORTHY The effects of the curvature or geometry of the repolarization gradient region and wavefront curvature on the genesis of premature ventricular complexes are systematically investigated using computer modeling and simulation. Premature ventricular complexes can be promoted by either positive or negative curvature of the gradient region depending on the source and sink conditions. The underlying mechanisms of the curvature effects are revealed, which provides mechanistic insights into arrhythmogenesis in cardiac diseases.


Asunto(s)
Simulación por Computador , Síndrome de QT Prolongado , Modelos Cardiovasculares , Complejos Prematuros Ventriculares , Complejos Prematuros Ventriculares/fisiopatología , Humanos , Síndrome de QT Prolongado/fisiopatología , Potenciales de Acción , Frecuencia Cardíaca , Sistema de Conducción Cardíaco/fisiopatología , Ventrículos Cardíacos/fisiopatología
17.
Am J Physiol Heart Circ Physiol ; 326(1): H89-H95, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37947435

RESUMEN

Long QT syndrome (LQTS) type 3 although less common than the first two forms, differs in that arrhythmic events are less likely triggered by adrenergic stimuli and are more often lethal. Effective pharmacological treatment is challenged by interindividual differences, mutation dependence, and adverse effects, translating into an increased use of invasive measures (implantable cardioverter-defibrillator, sympathetic denervation) in patients with LQTS type 3. Previous studies have demonstrated the therapeutic potential of polyclonal KCNQ1 antibody for LQTS type 2. Here, we sought to identify a monoclonal KCNQ1 antibody that preserves the electrophysiological properties of the polyclonal form. Using hybridoma technology, murine monoclonal antibodies were generated, and patch clamp studies were performed for functional characterization. We identified a monoclonal KCNQ1 antibody able to normalize cardiac action potential duration and to suppress arrhythmias in a pharmacological model of LQTS type 3 using human-induced pluripotent stem cell-derived cardiomyocytes.NEW & NOTEWORTHY Long QT syndrome is a leading cause of sudden cardiac death in the young. Recent research has highlighted KCNQ1 antibody therapy as a new treatment modality for long QT syndrome type 2. Here, we developed a monoclonal KCNQ1 antibody that similarly restores cardiac repolarization. Moreover, the identified monoclonal KCNQ1 antibody suppresses arrhythmias in a cellular model of long QT syndrome type 3, holding promise as a first-in-class antiarrhythmic immunotherapy.


Asunto(s)
Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Humanos , Ratones , Animales , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/terapia , Síndrome de QT Prolongado/tratamiento farmacológico , Arritmias Cardíacas , Miocitos Cardíacos , Inmunoterapia , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico
18.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657442

RESUMEN

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteínas del Citoesqueleto , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Animales , Femenino , Humanos , Masculino , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/química , Células CHO , Cricetulus , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/química , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Modelos Moleculares , Mutación , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica
19.
J Transl Med ; 22(1): 307, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528561

RESUMEN

OBJECTIVE: Long QT syndrome type 7 (Andersen-Tawil syndrome, ATS), which is caused by KCNJ2 gene mutation, often leads to ventricular arrhythmia, periodic paralysis and skeletal malformations. The development, differentiation and electrophysiological maturation of cardiomyocytes (CMs) changes promote the pathophysiology of Long QT syndrome type 7(LQT7). We aimed to specifically reproduce the ATS disease phenotype and study the pathogenic mechanism. METHODS AND RESULTS: We established a cardiac cell model derived from human induced pluripotent stem cells (hiPSCs) to the phenotypes and electrophysiological function, and the establishment of a human myocardial cell model that specifically reproduces the symptoms of ATS provides a reliable platform for exploring the mechanism of this disease or potential drugs. The spontaneous pulsation rate of myocardial cells in the mutation group was significantly lower than that in the repair CRISPR group, the action potential duration was prolonged, and the Kir2.1 current of the inward rectifier potassium ion channel was decreased, which is consistent with the clinical symptoms of ATS patients. Only ZNF528, a chromatin-accessible TF related to pathogenicity, was continuously regulated beginning from the cardiac mesodermal precursor cell stage (day 4), and continued to be expressed at low levels, which was identified by WGCNA method and verified with ATAC-seq data in the mutation group. Subsequently, it indicated that seven pathways were downregulated (all p < 0.05) by used single sample Gene Set Enrichment Analysis to evaluate the overall regulation of potassium-related pathways enriched in the transcriptome and proteome of late mature CMs. Among them, the three pathways (GO: 0008076, GO: 1990573 and GO: 0030007) containing the mutated gene KCNJ2 is involved that are related to the whole process by which a potassium ion enters the cell via the inward rectifier potassium channel to exert its effect were inhibited. The other four pathways are related to regulation of the potassium transmembrane pathway and sodium:potassium exchange ATPase (p < 0.05). ZNF528 small interfering (si)-RNA was applied to hiPSC-derived cardiomyocytes for CRISPR group to explore changes in potassium ion currents and growth and development related target protein levels that affect disease phenotype. Three consistently downregulated proteins (KCNJ2, CTTN and ATP1B1) associated with pathogenicity were verificated through correlation and intersection analysis. CONCLUSION: This study uncovers TFs and target proteins related to electrophysiology and developmental pathogenicity in ATS myocardial cells, obtaining novel targets for potential therapeutic candidate development that does not rely on gene editing.


Asunto(s)
Síndrome de Andersen , Células Madre Pluripotentes Inducidas , Humanos , Síndrome de Andersen/diagnóstico , Síndrome de Andersen/genética , Cromatina/metabolismo , Transcriptoma , Mutación/genética , Miocitos Cardíacos/metabolismo , Potasio/metabolismo
20.
J Cardiovasc Electrophysiol ; 35(7): 1370-1381, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38725227

RESUMEN

INTRODUCTION: Although prior studies indicate that a QTc > 500 ms on a single baseline 12-lead electrocardiogram (ECG) is associated with significantly increased risk of arrhythmic events in long QT syndrome (LQTS), less is known about the risk of persistent QT prolongation. We sought to determine QTc persistence and its prognostic effect on breakthrough cardiac events (BCEs) among pediatric patients treated for LQTS. METHODS: We performed a retrospective analysis of 433 patients with LQTS evaluated, risk-stratified, and undergoing active guideline-based LQTS treatment between 1999 and 2019. BCEs were defined as arrhythmogenic syncope/seizure, sudden cardiac arrest (SCA), appropriate VF-terminating ICD shock, and sudden cardiac death (SCD). RESULTS: During the median follow-up of 5.5 years (interquartile range [IQR] = 3-9), 32 (7%) patients experienced a total of 129 BCEs. A maximum QTc threshold of 520 ms and median QTc threshold of 490 ms were determined to be strong predictors for BCEs. A landmark analysis controlling for age, sex, genotype, and symptomatic status demonstrated models utilizing both the median QTc and maximum QTc demonstrated the highest discriminatory value (c-statistic = 0.93-0.95). Patients in the high-risk group (median QTc > 490 ms and maximum QTc > 520 ms) had a significantly lower BCE free survival (70%-81%) when compared to patients in both medium-risk (93%-97%) and low-risk (98%-99%) groups. CONCLUSIONS: The risk of BCE among patients treated for LQTS increases not only based upon their maximum QTc, but also their median QTc (persistence of QTc prolongation). Patients with a maximum QTc > 520 ms and median QTc > 490 ms over serial 12-lead ECGs are at the highest risk of BCE while on guideline-directed medical therapy.


Asunto(s)
Potenciales de Acción , Muerte Súbita Cardíaca , Electrocardiografía , Frecuencia Cardíaca , Síndrome de QT Prolongado , Valor Predictivo de las Pruebas , Humanos , Masculino , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/fisiopatología , Femenino , Estudios Retrospectivos , Niño , Medición de Riesgo , Factores de Riesgo , Adolescente , Muerte Súbita Cardíaca/prevención & control , Muerte Súbita Cardíaca/etiología , Preescolar , Factores de Tiempo , Factores de Edad , Lactante , Resultado del Tratamiento , Sistema de Conducción Cardíaco/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA