Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Drug Metab Rev ; 52(1): 19-43, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31984816

RESUMEN

Today, it is very challenging to develop new active pharmaceutical ingredients. Developing good preparations of well-recognized natural medicines is certainly a practical and economic strategy. Low-solubility, low-permeability natural medicines (LLNMs) possess valuable advantages such as effectiveness, relative low cost and low toxicity, which is shown by the presence of popular products on the market. Understanding the in vivo metabolic and pharmacokinetic characteristics of LLNMs contributes to overcoming their associated problems, such as low absorption and low bioavailability. In this review, the structure-based metabolic reactions of LLNMs and related enzymatic systems, cellular and bodily pharmacological effects and metabolic influences, drug-drug interactions involved in metabolism and microenvironmental changes, and pharmacokinetics and dose-dependent/linear pharmacokinetic models are comprehensively evaluated. This review suggests that better pharmacological activity and pharmacokinetic behaviors may be achieved by modifying the metabolism through using nanotechnology and nanosystem in combination with the suitable administration route and dosage. It is noteworthy that novel nanosystems, such as triggered-release liposomes, nucleic acid polymer nanosystems and PEGylated dendrimers, in addition to prodrug and intestinal penetration enhancer, demonstrate encouraging performance. Insights into the metabolic and pharmacokinetic characteristics of LLNMs may help pharmacists to identify new LLNM formulations with high bioavailability and amazing efficacy and help physicians carry out LLNM-based precision medicine and individualized therapies.


Asunto(s)
Productos Biológicos/farmacocinética , Animales , Productos Biológicos/química , Flavonoides/química , Flavonoides/farmacocinética , Humanos , Permeabilidad , Solubilidad , Relación Estructura-Actividad , Terpenos/química , Terpenos/farmacocinética
2.
Part Fibre Toxicol ; 17(1): 21, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32503677

RESUMEN

BACKGROUND: There is a steadily increasing quantity of silver nanoparticles (AgNP) produced for numerous industrial, medicinal and private purposes, leading to an increased risk of inhalation exposure for both professionals and consumers. Particle inhalation can result in inflammatory and allergic responses, and there are concerns about other negative health effects from either acute or chronic low-dose exposure. RESULTS: To study the fate of inhaled AgNP, healthy adult rats were exposed to 1½-hour intra-tracheal inhalations of pristine 105Ag-radiolabeled, 20 nm AgNP aerosols (with mean doses across all rats of each exposure group of deposited NP-mass and NP-number being 13.5 ± 3.6 µg, 7.9 ± 3.2•1011, respectively). At five time-points (0.75 h, 4 h, 24 h, 7d, 28d) post-exposure (p.e.), a complete balance of the [105Ag]AgNP fate and its degradation products were quantified in organs, tissues, carcass, lavage and body fluids, including excretions. Rapid dissolution of [105Ag]Ag-ions from the [105Ag]AgNP surface was apparent together with both fast particulate airway clearance and long-term particulate clearance from the alveolar region to the larynx. The results are compatible with evidence from the literature that the released [105Ag]Ag-ions precipitate rapidly to low-solubility [105Ag]Ag-salts in the ion-rich epithelial lining lung fluid (ELF) and blood. Based on the existing literature, the degradation products rapidly translocate across the air-blood-barrier (ABB) into the blood and are eliminated via the liver and gall-bladder into the small intestine for fecal excretion. The pathway of [105Ag]Ag-salt precipitates was compatible with auxiliary biokinetics studies at 24 h and 7 days after either intravenous injection or intratracheal or oral instillation of [110mAg]AgNO3 solutions in sentinel groups of rats. However, dissolution of [105Ag]Ag-ions appeared not to be complete after a few hours or days but continued over two weeks p.e. This was due to the additional formation of salt layers on the [105Ag]AgNP surface that mediate and prolonge the dissolution process. The concurrent clearance of persistent cores of [105Ag]AgNP and [105Ag]Ag-salt precipitates results in the elimination of a fraction > 0.8 (per ILD) after one week, each particulate Ag-species accounting for about half of this. After 28 days p.e. the cleared fraction rises marginally to 0.94 while 2/3 of the remaining [105Ag]AgNP are retained in the lungs and 1/3 in secondary organs and tissues with an unknown partition of the Ag species involved. However, making use of our previous biokinetics studies of poorly soluble [195Au]AuNP of the same size and under identical experimental and exposure conditions (Kreyling et al., ACS Nano 2018), the kinetics of the ABB-translocation of [105Ag]Ag-salt precipitates was estimated to reach a fractional maximum of 0.12 at day 3 p.e. and became undetectable 16 days p.e. Hence, persistent cores of [105Ag]AgNP were cleared throughout the study period. Urinary [105Ag]Ag excretion is minimal, finally accumulating to 0.016. CONCLUSION: The biokinetics of inhaled [105Ag]AgNP is relatively complex since the dissolving [105Ag]Ag-ions (a) form salt layers on the [105Ag]AgNP surface which retard dissolution and (b) the [105Ag]Ag-ions released from the [105Ag]AgNP surface form poorly-soluble precipitates of [105Ag]Ag-salts in ELF. Therefore, hardly any [105Ag]Ag-ion clearance occurs from the lungs but instead [105Ag]AgNP and nano-sized precipitated [105Ag]Ag-salt are cleared via the larynx into GIT and, in addition, via blood, liver, gall bladder into GIT with one common excretional pathway via feces out of the body.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Plata/farmacocinética , Plata/toxicidad , Aerosoles , Animales , Líquido del Lavado Bronquioalveolar/química , Relación Dosis-Respuesta a Droga , Femenino , Exposición por Inhalación/análisis , Inyecciones Intravenosas , Pulmón/metabolismo , Nanopartículas del Metal/química , Especificidad de Órganos , Tamaño de la Partícula , Ratas , Ratas Endogámicas WKY , Plata/sangre , Plata/química , Propiedades de Superficie , Distribución Tisular
3.
Mol Pharm ; 16(7): 2884-2891, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31120762

RESUMEN

The purpose of this work was to investigate the use of the dimethylaminoethyl methacrylate-copolymer Eudragit EPO (EPO) in oral solubility-enabling formulations for anionic lipophilic drugs, aiming to guide optional formulation design and maximize oral bioavailability. We have studied the solubility, the permeability, and their interplay, using the low-solubility nonsteroidal anti-inflammatory drug mefenamic acid as a model drug. Then, we studied the biorelevant solubility enhancement of mefenamic acid from EPO-based formulations throughout the gastrointestinal tract (GIT), using the pH-dilution dissolution method. EPO allowed a profound and linear solubility increase of mefenamic acid, from 10 µg/mL without EPO to 9.41 mg/mL in the presence of 7.5% EPO (∼940-fold; 37 °C); however, a concomitant decrease of the drug permeability was obtained, both in vitro and in vivo in rats, indicating a solubility-permeability trade-off. In the absence of an excipient, the unstirred water layer (UWL) adjacent to the GI membrane was found to hinder the permeability of the drug, accounting for this UWL effect and revealing that the true membrane permeability allowed good prediction of the solubility-permeability trade-off as a function of EPO level using a direct relationship between the increased solubility afforded by a given EPO level and the consequent decreased permeability. Biorelevant dissolution studies revealed that EPO levels of 0.05 and 0.1% were insufficient to dissolve mefenamic acid dose during the entire dissolution time course, whereas 0.5 and 1% EPO allowed complete solubility with no drug precipitation. In conclusion, EPO may serve as a potent solubility-enabling excipient for BCS class II/IV acidic drugs; however, it should be used carefully. It is prudent to use the minimal EPO amounts just sufficient to dissolve the drug dose throughout the GIT and not more than that. Excess amounts of EPO provide no solubility gain and cause further permeability loss, jeopardizing the overall success of the formulation. This work may help the formulator to hit the optimal solubility-permeability balance, maximizing the oral bioavailability afforded by the formulation.


Asunto(s)
Permeabilidad de la Membrana Celular/efectos de los fármacos , Química Farmacéutica/métodos , Excipientes/química , Absorción Intestinal/efectos de los fármacos , Ácido Mefenámico/química , Ácido Mefenámico/farmacocinética , Ácidos Polimetacrílicos/química , Administración Oral , Animales , Disponibilidad Biológica , Composición de Medicamentos/métodos , Liberación de Fármacos , Membranas Artificiales , Ratas , Ratas Wistar , Solubilidad
4.
Drug Metab Rev ; 50(2): 140-160, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29390894

RESUMEN

Drug metabolism plays vital roles in the absorption and pharmacological activity of poorly soluble natural medicines. It is important to choose suitable delivery systems to increase the bioavailability and bioactivity of natural medicines with low solubility by regulating their metabolism and pharmacokinetics. This review investigates recent developments about the metabolic and pharmacokinetic behavior of poorly soluble natural medicines and their delivery systems. Delivery systems, dosage, administration route and drug-drug interactions alter the metabolic pathway, and bioavailability of low-solubility natural medicines to different degrees. Influencing factors such as formulation, dosage, and administration route are discussed. The metabolic reactions, metabolic enzymes, metabolites and pharmacokinetic behaviors of low-solubility natural medicines, and their delivery systems are systematically reviewed. There are various metabolic situations in the case of low-solubility natural medicines. CYP3A4 and CYP2C are the most common metabolic enzymes, and hydroxylation is the most common metabolic reaction of low solubility natural medicines. The stereo isomeric configuration can have a large influence on metabolism. This review will be useful for physicians and pharmacists to guide more accurate treatment with low-solubility natural medicines by increasing drug efficacies and protecting patients from toxic side effects.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/farmacocinética , Animales , Productos Biológicos/metabolismo , Humanos , Solubilidad
5.
Mol Pharm ; 14(6): 2138-2146, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28505451

RESUMEN

The purpose of this work was to investigate key factors dictating the success/failure of cyclodextrin-based solubility-enabling formulations for oral delivery of low-solubility drugs. We have studied the solubility, the permeability, and the solubility-permeability interplay, of the highly lipophilic drug danazol, formulated with different levels (8.5, 10, 20, and 30%) of the commonly used hydroxypropyl-ß-cyclodextrin (HPßCD), accounting for the biorelevant solubilization of the drug along the gastrointestinal tract (GIT), the unstirred water layer (UWL) adjacent to the GI membrane, and the overall absorption. HPßCD significantly increased danazol solubility, and decreased the drugs' permeability, in a concentration-dependent manner. These Peff results were in good correlation (R2 = 0.977) to literature rat AUC data of the same formulations. Unlike vehicle without HPßCD, formulations containing 8.5% HPßCD and above were shown to successfully dissolve the drug dose during the entire biorelevant dissolution experiment. We conclude that CD-based solubility-enabling formulations should contain the minimal amount of CD sufficient to dissolve the drug dose throughout the GIT, and not more than that; excess CD does not provide solubility gain but causes further permeability loss, and the overall absorption is then impaired. Moreover, a significant UWL effect was revealed in danazol intestinal permeability, and accounting for this effect allowed an excellent prediction of the solubility-permeability trade-off vs % HPßCD. Overall, this work assessed the contribution of each individual step of the absorption cascade to the success/failure of HPßCD-based formulation, allowing a more mechanistic development process of better solubility-enabling formulations.


Asunto(s)
Ciclodextrinas/química , Administración Oral , Química Farmacéutica , Danazol/química , Excipientes/química , Absorción Intestinal , Solubilidad , beta-Ciclodextrinas
6.
Mol Pharm ; 14(1): 319-327, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27981848

RESUMEN

The purpose of this research was to investigate the performance of cosolvent based solubility-enabling formulations in oral delivery of lipophilic drugs, accounting for the gastrointestinal tract (GIT) luminal solubilization processes, the solubility-permeability interplay, and the overall in vivo systemic absorption. The poorly soluble antiepileptic agent carbamazepine was formulated in three cosolvent-based formulations: 20%, 60%, and 100% PEG-400, and the apparent solubility and rat permeability of the drug in these formulations were evaluated. The performance of the formulations in the dynamic GIT environment was assessed utilizing the biorelevant pH-dilution method. Then, the overall in vivo drug exposure was investigated following oral administration to rats. The three formulations showed dramatic solubility and permeability differences; the 100% PEG-400 provided the highest solubility enhancement and the 20% the poorest, while the exact opposite was evident from the permeability point of view. The dissolution results indicated that the 20% PEG-400 formulation crashes quickly following oral administration, but both the 60% and the 100% PEG-400 formulations allowed full solubilization of the dose throughout the entire GIT-like journey. The best in vivo performing formulation was the 60% PEG-400 (Fsys > 90%), followed by the 100% PEG-400 (Fsys = 76%), and the 20% PEG-400 formulation (Fsys ≈ 60%). In conclusion, this work demonstrates the in vivo solubility-permeability trade-off in oral delivery of lipophilic drugs; when a solubility-enabling formulation is developed, minimal threshold solubility should be targeted, that is just enough to allow solubilization of the drug dose throughout the GIT, while excess solubilizer should be avoided.


Asunto(s)
Carbamazepina/sangre , Carbamazepina/química , Preparaciones Farmacéuticas/sangre , Preparaciones Farmacéuticas/química , Administración Oral , Animales , Química Farmacéutica/métodos , Masculino , Permeabilidad , Polietilenglicoles/química , Ratas , Ratas Wistar , Solubilidad
7.
Environ Eng Sci ; 31(10): 548-555, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25317036

RESUMEN

We performed Monte Carlo simulations of batch transformations of hydrophobic compounds using typical numbers of data points, extent of reaction, and measurement error, to identify the most appropriate biotransformation model to describe such data under different conditions. Highly hydrophobic compounds such as polychlorinated biphenyls (PCBs) and dioxins present special challenges for parameterization due to low environmental concentrations and slow biotransformation rates, which result in high sample variability, few samples, and limited substrate concentration range. Four models of varying complexity (zero-order, first-order, Monod, and Best) were fit to simulated data. Various combinations of initial concentration (S0), half saturation concentration (KS), maximum substrate utilization rate (qmax), measurement error, number of data points per batch run, and extent of biotransformation were simulated. One thousand Monte-Carlo runs were performed for each parameter combination, and AICc (Akaike's information criterion corrected for small numbers of data points) was used to determine the most appropriate model. Neither the Best model nor the zero-order model ever produced the lowest AICc for a majority of simulations under any combination of test conditions. With 10% measurement error, the first-order model always outperformed the others. In the case of 1% measurement error with 10 evenly-spaced data points, the Monod model was the better choice when S0>KS and the system was not mass transfer limited [Formula: see text] otherwise, the first-order model was indicated. S0 is constrained by the compound's aqueous solubility; therefore, for highly hydrophobic compounds such as PCBs or polychlorinated dibenzo-p-dioxins and dibenzofurans, a first-order model is likely to fit batch biotransformation data as well or better than a more complicated model.

8.
J Pharm Pharmacol ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276338

RESUMEN

OBJECTIVES: The aim of this study was to investigate the pharmacokinetics (PK) of poorly soluble compounds when administered intramuscularly (i.m.) as crystalline particles of different sizes. METHODS: Three uncharged compounds (griseofulvin, AZ'72, and AZ'07) with varying aqueous solubility were dosed to mice at 10 and 50 mg/kg as nano- and microparticle formulations. The PK of the compounds was evaluated. KEY FINDINGS: The smaller particles of the drugs resulted in higher maximum plasma concentration (Cmax) and area under the plasma concentration-time profile (AUC) at 50 mg/kg. There was a dose-proportional increase in AUC but less than dose dose-proportional increase in Cmax. The evaluation at 10 mg/kg was more complex as increased exposure for nanoparticles was only observed for griseofulvin which has the highest solubility. In addition, there was an increase in half-life with an increase in dose. CONCLUSIONS: This study highlights that general expectations based on in vitro dissolution (i.e. that smaller particles dissolve faster than larger particles when surrounded by liquid) do not always translate to in vivo and demonstrates the importance of understanding the physicochemical properties of the drug, the characteristics of the formulations and the microphysiology at the delivery site.

9.
Expert Opin Drug Deliv ; 21(1): 13-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38124383

RESUMEN

INTRODUCTION: Tackling low water solubility of drug candidates is a major challenge in today's pharmaceutics/biopharmaceutics, especially by means of modern solubility-enabling formulations. However, drug absorption from these formulations oftentimes remains unchanged or even decreases, despite substantial solubility enhancement. AREAS COVERED: In this article, we overview the simultaneous effects of the formulation on the solubility and the apparent permeability of the drug, and analyze the contribution of this solubility-permeability interplay to the success/failure of the formulation to increase the overall absorption and bioavailability. Three different patterns of interplay were identified: (1) solubility-permeability tradeoff in which every solubility gain comes with a price of concomitant permeability loss; (2) an advantageous interplay pattern in which the permeability remains unchanged alongside the solubility gain; and (3) an optimal interplay pattern in which the formulation increases both the solubility and the permeability. Passive vs. active intestinal permeability considerations in the context of the solubility-permeability interplay are also thoroughly discussed. EXPERT OPINION: The solubility-permeability interplay pattern of a given formulation has a critical effect on its overall success/failure, and hence, taking into account both parameters in solubility-enabling formulation development is prudent and highly recommended.


Asunto(s)
Química Farmacéutica , Absorción Intestinal , Preparaciones Farmacéuticas , Solubilidad , Administración Oral , Permeabilidad
10.
Int J Pharm ; 653: 123893, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38346600

RESUMEN

The aim of the current work was to investigate the key factors that govern the success/failure of an ethanol-based solubility-enabling oral drug formulation, including the effects of the ethanol on the solubility of the drug, the permeability across the intestinal membrane, the drug's dissolution in the aqueous milieu of the gastrointestinal tract (GIT), and the resulting solubility-permeability interplay. The concentration-dependent effects of ethanol-based vehicles on the solubility, the in-vitro Caco-2 permeability, the in-vivo rat permeability, and the biorelevant dissolution of the BCS class II antiepileptic drug carbamazepine were studied, and a predictive model describing the solubility-permeability relationship was developed. Significant concentration-dependent solubility increase of CBZ was obtained with increasing ethanol levels, that was accompanied by permeability decrease, both in Caco-2 and in rat perfusion studies, demonstrating a tradeoff between the increased solubility afforded by the ethanol and a concomitant permeability decrease. When ethanol absorption was accounted for, an excellent agreement was achieved between the predicted permeability and the experimental data. Biorelevant dissolution studies revealed that minimal ethanol levels of 30 % and 50 % were needed to fully dissolve 1 and 5 mg CBZ dose respectively, with no drug precipitation.In conclusion, key factors to be accounted for when developing ethanol-based formulation include the drug's solubility, permeability, the solubility-permeability interplay, and the drug dose intended to be delivered. Only the minimal amount of ethanol sufficient to solubilize the drug dose throughout the GIT should be used, and not more than that, to avoid unnecessarily permeability loss, and to maximize overall drug absorption.


Asunto(s)
Química Farmacéutica , Etanol , Humanos , Ratas , Animales , Solubilidad , Composición de Medicamentos , Química Farmacéutica/métodos , Etanol/farmacología , Células CACO-2 , Absorción Intestinal , Administración Oral , Permeabilidad , Carbamazepina/farmacología
11.
Biotechnol Bioeng ; 110(9): 2536-47, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23592239

RESUMEN

Significant effort and resource expenditure is dedicated to enabling low-solubility oral drug delivery using solubilization technologies. Cyclodextrins (CD) are cyclic oligosaccharides which form inclusion complexes with many drugs and are often used as solubilizing agents. It is not clear prior to developing a drug delivery device with CD what level of absorption enhancement might be achieved; modeling can provide useful guidance in formulation and minimize resource intensive iterative formulation development. A model was developed to enable quantitative, dynamic prediction of the influence of CD on oral absorption of low solubility drug administered as a pre-formed complex. The predominant effects of CD considered were enhancement of dissolution and slowing of precipitation kinetics, as well as binding of free drug in solution. Simulation results with different parameter values reflective of typical drug and CD properties indicate a potential positive (up to five times increase in drug absorption), negative (up to 50% decrease in absorption) or lack of effect of CD. Comparison of model predictions with in vitro and in vivo experimental results indicate that a systems-based dynamic model incorporating CD complexation and key process kinetics may enable quantitative prediction of impact of CD delivered as a pre-formed complex on drug bioavailability.


Asunto(s)
Química Farmacéutica , Ciclodextrinas/farmacología , Portadores de Fármacos/farmacología , Absorción Intestinal/efectos de los fármacos , Administración Oral , Disponibilidad Biológica , Células CACO-2 , Ciclodextrinas/administración & dosificación , Ciclodextrinas/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Humanos , Modelos Biológicos , Solubilidad
12.
Acta Crystallogr C ; 69(Pt 12): 1462-6, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24311491

RESUMEN

The rhodium complexes [RhCl3(NH3)3], (I), and [Rh(NO3)3(NH3)3], (II), are built from octahedral RhX3(NH3)3 units; in (I) they are isolated units, while in (II) the units are stacked in columns with partially filled sites for the Rh atoms. The octahedra of monoclinic crystals of (I) are linked by N-H···Cl hydrogen bonds and the Rh(3+) ions are located on the mirror planes. In the trigonal crystals of (II), the discontinuous `columns' along the threefold axis are linked by N-H···O hydrogen bonds. The structure of (I) has been solved using laboratory powder diffraction data, the structure of (II) has been solved by single-crystal methods using data from a merohedrally twinned sample. Both compounds possess low solubility in water.

13.
Int J Pharm ; 634: 122670, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736968

RESUMEN

The objective of the present study was to confirm the usefulness of BioGIT data in the evaluation of the impact of dose and/or formulation on early exposure after oral administration of immediate release or enabling products of low solubility active pharmaceutical ingredients (APIs) with a glass of water in the fasted state. BioGIT experiments were performed with four APIs: Compound Α (tablet, three dose levels), Compound E (capsule PiC1, capsule PiC2 and tablet), fenofibrate (Lipidil® capsule and Lipidil 145 ONE® tablet) and Compound F (HP-ß-CD aqueous solution and tablet). Based on mean plasma AUC0-60min values which became available after completion of the BioGIT experiments, mean BioGIT AUC0-50min values were useful for the evaluation of the impact of dose and/or formulation on early exposure. The log-transformed ratios of mean BioGIT AUC0-50min values for two doses and/or two formulations estimated in this study and in a recent study for two diclofenac potassium products (Cataflam® tablet and Voltfast® sachet, same dose) vs. the corresponding log-transformed ratios of mean plasma AUC0-60min values (n = 7 pairs of ratios), were included in a previously established correlation between log-transformed ratios of mean BioGIT AUC0-50min values and log-transformed ratios of plasma AUC0-60min values (n = 9 pairs of ratios). The correlation between log-transformed plasma AUC0-60min ratios vs. log-transformed BioGIT AUC0-50min ratios was confirmed (n = 16 pairs of ratios, R = 0.90). Compared with the previously established correlation the statistical characteristics were improved. Based on this study, the BioGIT system could be useful as a screening tool for assessing the impact of dose and/or formulation differences on early exposure, after administration of immediate release or enabling drug products of low solubility APIs with a glass of water in the fasted state, on an a priori basis.


Asunto(s)
Fenofibrato , Administración Oral , Diclofenaco , Ayuno , Comprimidos , Estudios Cruzados , Equivalencia Terapéutica , Área Bajo la Curva
14.
Pharm Nanotechnol ; 11(1): 56-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36111774

RESUMEN

BACKGROUND: Formulations of eprosartan mesylate with a surfactant, like Kolliphor HS 15, an oil phase like Labrafil M 1944 CS, and a cosurfactant Transcutol HP by employing a liquid self-microemulsifying drug delivery system (SMEDDS) after screening several vehicles have been studied. OBJECTIVE: This study aimed to prepare a liquid self-microemulsifying drug delivery system for increasing the solubility and bioavailability of a poorly water-soluble eprosartan mesylate. METHODS: The micro-emulsion unit, achieved through the phase diagram and augmented with the central-composite design (CCD) surface response process, was adjusted into SMEDDS by lyophilization using sucrose as a cryoprotective agent. Particle size, self-emulsification time, polydispersion index (PDI), zeta potential, differential scanning calorimeter (DSC) screening, in-vitro drug release, and in-vivo pharmacokinetics were the essential features of the formulations. The subsequent DSC experimentation indicated that the drug was integrated into S-SMEDDS. Eprosartan mesylate loaded SMEDDS formulation showed greater in-vitro and in-vivo drug release than conventional solid doses. RESULTS: SMEDDS has reported effectiveness in reducing the impact of pH of eprosartan mesylate, thereby improving its release efficiency. The HPLC method was successfully implemented to assess eprosartan mesylate concentration in Wister rat plasma after oral administration of commercial tablet EM, SMEDDS, and eprosartan mesylate. The pharmacokinetics parameters for rats were Cmax 1064.91 ± 225 and 1856.22 ± 749 ngmL-1, Tmax 1.9 ± 0.3 hr, and 1.2 ± 0.4 hr and AUC0~t were 5314.36 ± 322.61 and 7760.09 ± 249 ng/ml hr for marketed tablets and prepared SSMEDDS, respectively. When determined by AUC0~1, the relative bioavailability of eprosartan mesylate S-SMEDDC was 152.09 ± 14.33%. CONCLUSION: The present study reports the formulation of a self-microemulsifying drug delivery system for enhancing the solubility and bioavailability of a poorly water-soluble eprosartan mesylate in an appropriate solid dosage form.


Asunto(s)
Química Farmacéutica , Sistemas de Liberación de Medicamentos , Ratas , Animales , Solubilidad , Disponibilidad Biológica , Química Farmacéutica/métodos , Ratas Wistar , Sistemas de Liberación de Medicamentos/métodos , Agua , Mesilatos
15.
Adv Drug Deliv Rev ; 199: 114969, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348678

RESUMEN

Nystatin is an antifungal molecule with a remarkable yet squandered versatility. In this review, its mechanism of action is explored, along with its extensive action spectrum and toxicity. A multitude of methodologies to tackle the drug's physical and chemical hurdles are outlined along with some proven-effective strategies to increase its activity and/or decrease its toxicity. A separate detailed section focused on micro and nanotechnology solutions addresses new drug delivery systems made of polymeric, metallic or lipid materials. Although the topical route depicts greater representativeness amongst these formulations, the intravenous, dental, oral, vaginal and inhalation routes are also mentioned. The unsuccessful previous attempts at developing parenteral formulations of nystatin or even the withdrawal of a nystatin-loaded multilamellar liposome should not divert research away from this drug. In fact, the interest in nystatin ought to be reawakened with the ongoing clinical trials on the promising nystatin-like genetically engineered derivate BSG005.


Asunto(s)
Antifúngicos , Nistatina , Humanos , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Nistatina/farmacología , Nistatina/uso terapéutico , Liposomas , Sistemas de Liberación de Medicamentos , Polímeros
16.
Int J Biol Macromol ; 162: 1699-1710, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777429

RESUMEN

Improved ocular delivery of a poorly soluble anti-glaucoma drug, acetazolamide (ACZ), in a stable nanosuspension (NS) was the main target of the study. The anionic polypeptide, poly-γ-glutamic acid (PG) and the glycosaminoglycan, hyaluronic acid, were used to stabilize ACZ-NS prepared using the antisolvent precipitation (AS-PT) coupled with sonication technique. To endue in site biocompatibility with high tolerability, soya lecithin (SL) phospholipid has been also combined with polyvinyl alcohol (PVA). NS with uniform PS in the range 100-300 nm, high ζ > ±20 mV, and enhanced saturation solubility were produced. Targeting solvent removal with control on future particle growth, post-production processing of NS was done using spray drying. The carriers' composition and amount relative to ACZ-NS were optimized to allow for the production of a redispersible dry crystalline powder. Particles crystallinity was confirmed using X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) in liquid and spray dried NS. The modified Draize test proved the safety and tolerability following application to rabbit eyes accompanying an efficient ocular hypotensive activity using a steroid glaucoma model.


Asunto(s)
Acetazolamida , Materiales Biocompatibles/uso terapéutico , Portadores de Fármacos/uso terapéutico , Ojo/efectos de los fármacos , Glaucoma/tratamiento farmacológico , Nanopartículas/uso terapéutico , Acetazolamida/administración & dosificación , Acetazolamida/farmacocinética , Animales , Disponibilidad Biológica , Ojo/patología , Glicosaminoglicanos/química , Lecitinas/química , Péptidos/química , Alcohol Polivinílico/química , Conejos , Glycine max/química
17.
Front Chem ; 8: 787, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33062636

RESUMEN

Macrophages are potent to modulate inflammation via phenotypic switch and production of inflammatory factors. Baicalein (BCL) is frequently used to alleviate inflammation; however, its application is always hindered due to low solubility. Herein, BCL nanocrystals (BNRs) were prepared to improve its delivery to macrophages. The prepared BNRs have a diameter of 150 nm with a rod-like structure. The nanocrystals could be well-taken up by macrophages via the caveolar pathway and, therefore, promote the polarization switch from proinflammatory phenotype to anti-inflammatory macrophages and alleviate the inflammation via reducing production cytokine IL-12. In conclusion, the crystallization strategy is promising for the improvement of the solubility of BCL and promotion of its anti-inflammatory activities.

18.
ACS Appl Mater Interfaces ; 12(47): 52952-52958, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33180452

RESUMEN

The fundamental challenge for enhancing the thermoelectric performance of n-type PbTe to match p-type counterparts is to eliminate the Pb vacancy and reduce the lattice thermal conductivity. The Cu atom has shown the ability to fill the cationic vacancy, triggering improved mobility. However, the relatively higher solubility of Cu2Te limits the interface density in the n-type PbTe matrix, leading to a higher lattice thermal conductivity. In particular, a quantitative relationship between the precipitate scattering and the reduction of lattice thermal conductivity in the n-type PbTe with low solubility of Cu2Te alloys still remains unclear. In this work, trivalent Sb atoms are introduced, aiming at decreasing the solubility of Cu in PbTe for improving the precipitate volumetric density and ensuring n-type degenerate conduction. Benefiting from the multiscale hierarchical microstructures by Sb and Cu codoping, the lattice thermal conductivity is considerably decreased to 0.38 W m-1 K-1. The Debye-Callaway model quantifies the contribution from point defects and nano/microscale precipitates. Moreover, the mobility increases from 228 to 948 cm2 V-1 s-1 because of the elimination of cationic vacancies. Consequently, a high quality factor is obtained, enabling a superior peak figure of merit ZT of ∼1.32 in n-type Pb0.975Sb0.025Te by alloying with only ∼1.2% Cu2Te. The present finding demonstrates the significant role of low-solubility Cu2Te in advancing thermoelectrics in n-type PbTe.

19.
Eur J Pharm Sci ; 145: 105242, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32014580

RESUMEN

Although the effect of NSAIDs such as celecoxib on the progression of colorectal polyps has been established, it is currently unknown how sufficiently high concentrations of celecoxib are reached in colonic tissue. Indeed, the lipophilic and poorly soluble celecoxib is orally dosed as an immediate release capsule without any colon-targeting delivery strategy. In the present study, we aimed to distinguish between plasma and gut driven caecal tissue accumulation of celecoxib in healthy volunteers. After developing a protocol to reliably collect colonic biopsies and contents, the disposition of celecoxib was assessed in plasma, caecal tissue and caecal contents collected after intake of a celecoxib capsule (200 mg; Celebrex®) with 240 mL of tap water. During a first colonoscopy (1.0-2.5 h after drug intake), plasma concentrations of celecoxib and its carboxy metabolite were increasing, while caecal tissue concentrations were relatively low. As no celecoxib was present in caecal contents, tissue accumulation was clearly plasma driven. During a second colonoscopy (6.0-7.5 h after drug intake), tissue concentrations of the drug and its metabolite were substantially higher despite decreasing plasma concentrations. As a high amount of celecoxib was found in the caecal contents, the increased tissue accumulation most likely resulted from direct uptake of celecoxib from the gut. These data demonstrate that incomplete small intestinal absorption of the poorly soluble drug celecoxib enables gut driven drug accumulation in caecal tissue, which is, most likely, critical for the role of this NSAID in the prevention of colorectal cancer.


Asunto(s)
Celecoxib/metabolismo , Celecoxib/farmacología , Colon/efectos de los fármacos , Colon/metabolismo , Inhibidores de la Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Adulto , Colon/diagnóstico por imagen , Colonoscopía/métodos , Femenino , Humanos , Masculino , Distribución Tisular/efectos de los fármacos , Distribución Tisular/fisiología , Adulto Joven
20.
Int J Pharm ; 582: 119307, 2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32276090

RESUMEN

The purpose of this research was to investigate drug dose, solubility, permeability, and their interplay, as key factors in oral formulation development for lipophilic drugs. A PEG400-based formulation was studied for five doses of the lipophilic drug carbamazepine, accounting for biorelevant dissolution of the dose in the GIT, and in-vivo bioavailability in rats. With the three lower doses (10, 25 and 50 mg/kg), complete in-vitro dissolution was achieved and maintained throughout the experiment with this formulation, while significant precipitation was obtained with higher doses (100 and 200 mg/kg). Likewise, the studied formulation allowed complete bioavailability in-vivo with the three lower doses, while the same formulation allowed only 76% and 42% bioavailability for the 100 and 200 mg/kg doses, respectively. There was good correlation between the in-vitro and in-vivo results. In conclusion, this work demonstrates that the dose is a crucial factor in formulation development; while a given formulation may be optimal for a certain drug dose, it may no longer be optimal for higher doses of the same drug. Hence, the solubility, the permeability, and their interplay, have to be considered in light of the drug dose intended to be administered in order to achieve successful oral formulation development.


Asunto(s)
Carbamazepina/administración & dosificación , Absorción Intestinal , Polietilenglicoles/química , Solventes/química , Administración Oral , Animales , Disponibilidad Biológica , Carbamazepina/química , Carbamazepina/farmacocinética , Composición de Medicamentos , Concentración de Iones de Hidrógeno , Masculino , Permeabilidad , Ratas Wistar , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA