Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657042

RESUMEN

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Asunto(s)
Endocitosis , Depresión Sináptica a Largo Plazo , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Receptores AMPA , Receptores de Glutamato Metabotrópico , Receptores AMPA/metabolismo , Animales , Fosforilación , Endocitosis/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Ratas , Tirosina/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Sinapsis/metabolismo , Ratones , Humanos , Neuronas/metabolismo
2.
Annu Rev Pharmacol Toxicol ; 62: 235-254, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34516293

RESUMEN

Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. ß-Amyloid 42 (Aß42) oligomers interact with a mGluR5/cellular prion protein (PrPC) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered.


Asunto(s)
Enfermedad de Alzheimer , Receptor del Glutamato Metabotropico 5 , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/uso terapéutico , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/uso terapéutico , Transducción de Señal
3.
J Neurosci ; 43(33): 5918-5935, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37507231

RESUMEN

The ventromedial hypothalamus (VMH) is a functionally heterogeneous nucleus critical for systemic energy, glucose, and lipid balance. We showed previously that the metabotropic glutamate receptor 5 (mGluR5) plays essential roles regulating excitatory and inhibitory transmission in SF1+ neurons of the VMH and facilitating glucose and lipid homeostasis in female mice. Although mGluR5 is also highly expressed in VMH astrocytes in the mature brain, its role there influencing central metabolic circuits is unknown. In contrast to the glucose intolerance observed only in female mice lacking mGluR5 in VMH SF1 neurons, selective depletion of mGluR5 in VMH astrocytes enhanced glucose tolerance without affecting food intake or body weight in both adult female and male mice. The improved glucose tolerance was associated with elevated glucose-stimulated insulin release. Astrocytic mGluR5 male and female mutants also exhibited reduced adipocyte size and increased sympathetic tone in gonadal white adipose tissue. Diminished excitatory drive and synaptic inputs onto VMH Pituitary adenylate cyclase-activating polypeptide (PACAP+) neurons and reduced activity of these cells during acute hyperglycemia underlie the observed changes in glycemic control. These studies reveal an essential role of astrocytic mGluR5 in the VMH regulating the excitatory drive onto PACAP+ neurons and activity of these cells facilitating glucose homeostasis in male and female mice.SIGNIFICANCE STATEMENT Neuronal circuits within the VMH play chief roles in the regulation of whole-body metabolic homeostasis. It remains unclear how astrocytes influence neurotransmission in this region to facilitate energy and glucose balance control. Here, we explored the role of the metabotropic glutamate receptor, mGluR5, using a mouse model with selective depletion of mGluR5 from VMH astrocytes. We show that astrocytic mGluR5 critically regulates the excitatory drive and activity of PACAP-expressing neurons in the VMH to control glucose homeostasis in both female and male mice. Furthermore, mGluR5 in VMH astrocytes influences adipocyte size and sympathetic tone in white adipose tissue. These studies provide novel insight toward the importance of hypothalamic astrocytes participating in central circuits regulating peripheral metabolism.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Receptor del Glutamato Metabotropico 5 , Animales , Femenino , Masculino , Astrocitos/metabolismo , Glucosa/metabolismo , Homeostasis , Hipotálamo/metabolismo , Lípidos , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Núcleo Hipotalámico Ventromedial/metabolismo , Ratones
4.
Am J Hum Genet ; 108(4): 739-748, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33711248

RESUMEN

Neurochondrin (NCDN) is a cytoplasmatic neural protein of importance for neural growth, glutamate receptor (mGluR) signaling, and synaptic plasticity. Conditional loss of Ncdn in mice neural tissue causes depressive-like behaviors, impaired spatial learning, and epileptic seizures. We report on NCDN missense variants in six affected individuals with variable degrees of developmental delay, intellectual disability (ID), and seizures. Three siblings were found homozygous for a NCDN missense variant, whereas another three unrelated individuals carried different de novo missense variants in NCDN. We assayed the missense variants for their capability to rescue impaired neurite formation in human neuroblastoma (SH-SY5Y) cells depleted of NCDN. Overexpression of wild-type NCDN rescued the neurite-phenotype in contrast to expression of NCDN containing the variants of affected individuals. Two missense variants, associated with severe neurodevelopmental features and epilepsy, were unable to restore mGluR5-induced ERK phosphorylation. Electrophysiological analysis of SH-SY5Y cells depleted of NCDN exhibited altered membrane potential and impaired action potentials at repolarization, suggesting NCDN to be required for normal biophysical properties. Using available transcriptome data from human fetal cortex, we show that NCDN is highly expressed in maturing excitatory neurons. In combination, our data provide evidence that bi-allelic and de novo variants in NCDN cause a clinically variable form of neurodevelopmental delay and epilepsy, highlighting a critical role for NCDN in human brain development.


Asunto(s)
Alelos , Epilepsia/genética , Discapacidad Intelectual/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Secuencia de Bases , Línea Celular , Preescolar , Consanguinidad , Femenino , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Mutación Missense , Neuritas , Pakistán
5.
Epilepsia ; 65(7): 2152-2164, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38804501

RESUMEN

OBJECTIVES: Pathological forms of neural activity, such as epileptic seizures, modify the expression pattern of multiple proteins, leading to persistent changes in brain function. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which is critically involved in protein-synthesis-dependent synaptic plasticity underlying learning and memory. In the present study, we have investigated how the expression of ArcKR, a form of Arc in which the ubiquitination sites have been mutated, resulting in slowed Arc degradation, modifies group I metabotropic glutamate receptor-mediated long-term depression (G1-mGluR-LTD) following seizures. METHODS: We used a knock-in mice line that express ArcKR and two hyperexcitation models: an in vitro model, where hippocampal slices were exposed to zero Mg2+, 6 mM K+; and an in vivo model, where kainic acid was injected unilaterally into the hippocampus. In both models, field excitatory postsynaptic potentials (fEPSPs) were recorded from the CA1 region of hippocampal slices in response to Schaffer collateral stimulation and G1-mGluR-LTD was induced chemically with the group 1 mGluR agonist DHPG. RESULTS: In the in vitro model, ArcKR expression enhanced the effects of seizure activity and increased the magnitude of G1-mGluR LTD, an effect that could be blocked with the mGluR5 antagonist MTEP. In the in vivo model, fEPSPs were significantly smaller in slices from ArcKR mice and were less contaminated by population spikes. In this model, the amount of G1-mGluR-LTD was significantly less in epileptic slices from ArcKR mice as compared to wildtype (WT) mice. SIGNIFICANCE: We have shown that expression of ArcKR, a form of Arc in which degradation is reduced, significantly modulates the magnitude of G1-mGluR-LTD following epileptic seizures. However, the effect of ArcKR on LTD depends on the epileptic model used, with enhancement of LTD in an in vitro model and a reduction in the kainate mouse model.


Asunto(s)
Hipocampo , Ácido Kaínico , Ratones Transgénicos , Plasticidad Neuronal , Animales , Ratones , Plasticidad Neuronal/fisiología , Plasticidad Neuronal/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ácido Kaínico/farmacología , Convulsiones/fisiopatología , Convulsiones/metabolismo , Convulsiones/inducido químicamente , Convulsiones/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Epilepsia/fisiopatología , Epilepsia/metabolismo , Epilepsia/inducido químicamente , Epilepsia/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones Endogámicos C57BL , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/fisiología , Agonistas de Aminoácidos Excitadores/farmacología
6.
Pharmacol Res ; 200: 107081, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38278430

RESUMEN

Ketamine, a non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, has received much attention for its rapid antidepressant effects. A single administration of ketamine elicits rapid and sustained antidepressant effects in both humans and animals. Current efforts are focused on uncovering molecular mechanisms responsible for ketamine's antidepressant activity. Ketamine primarily acts via the glutamatergic pathway, and increasing evidence suggests that ketamine induces synaptic and structural plasticity through increased translation and release of neurotrophic factors, activation of mammalian target of rapamycin (mTOR), and α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated synaptic potentiation. However, the initial events triggering activation of intracellular signaling cascades and the mechanisms responsible for the sustained antidepressant effects of ketamine remain poorly understood. Over the last few years, it has become apparent that in addition to the fast actions of the ligand-gated AMPARs and NMDARs, metabotropic glutamate receptors (mGluRs), and particularly mGluR5, may also play a role in the antidepressant action of ketamine. Although research on mGluR5 in relation to the beneficial actions of ketamine is still in its infancy, a careful evaluation of the existing literature can identify converging trends and provide new interpretations. Here, we review the current literature on mGluR5 regulation in response to ketamine from a molecular perspective and propose a possible mechanism linking NMDAR inhibition to mGluR5 modulation.


Asunto(s)
Ketamina , Humanos , Animales , Ketamina/farmacología , Ketamina/uso terapéutico , Depresión/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Receptores de N-Metil-D-Aspartato , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Mamíferos/metabolismo
7.
J Labelled Comp Radiopharm ; 67(4): 155-164, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369901

RESUMEN

The radioligand [18F]FPEB, used for PET imaging of the brain's metabotropic glutamate receptor subtype 5 (mGluR5), undergoes a thorough validation process to ensure its safety, efficacy, and quality for clinical use. The process starts by optimizing the synthesis of [18F]FPEB to achieve high radiochemical yield and purity. This study focuses on optimizing the radiolabeling process using an aryl-chloro precursor and validating the GMP production for clinical applications. Fully automated radiolabeling was achieved via one-step nucleophilic substitution reaction. [18F]FPEB was produced and isolated in high radioactivity and radiochemical purity. Throughout the validation process, thorough quality control measures are implemented. Radiopharmaceutical batch release criteria are established, including testing for physical appearance, filter integrity, pH, radiochemical purity, molar activity, radiochemical identity, chemical impurity, structural identity, stability, residual solvent, sterility, and endotoxin levels. In conclusion, the validation of [18F]FPEB involved a comprehensive process of synthesis optimization, quality control, which ensure the safety, efficacy, and quality of [18F]FPEB, enabling its reliable use in clinical PET. Here, we successfully radiolabeled and validated [18F]FPEB using aryl-chloro precursor according to GMP production for clinical application.


Asunto(s)
Nitrilos , Piridinas , Radiofármacos , Tomografía de Emisión de Positrones/métodos , Radioquímica
8.
Alzheimers Dement ; 20(6): 3876-3888, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38634334

RESUMEN

INTRODUCTION: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the pathophysiological mechanism of Alzheimer's disease (AD). METHODS: Ten cognitively impaired (CI) individuals and 10 healthy controls (HCs) underwent [18F]SynVesT-1 and [18F]PSS232 positron emission tomography (PET)/magnetic resonance to assess synaptic density and mGluR5 availability. The associations between mGluR5 availability and synaptic density were examined. A mediation analysis was performed to investigate the possible mediating effects of mGluR5 availability and synaptic loss on the relationship between amyloid deposition and cognition. RESULTS: CI patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and cognition. CONCLUSIONS: Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD and are closely linked. HIGHLIGHTS: Cognitively impaired patients exhibited lower mGluR5 availability and synaptic density in the medial temporal lobe than HCs. Reductions in mGluR5 availability and synaptic density exhibit similar spatial patterns in AD. Regional synaptic density was closely associated with regional mGluR5 availability. mGluR5 availability and synaptic loss partially mediated the relationship between amyloid deposition and global cognition. With further research, modulating mGluR5 availability might be a potential therapeutic strategy for improving synaptic function in AD.


Asunto(s)
Disfunción Cognitiva , Tomografía de Emisión de Positrones , Receptor del Glutamato Metabotropico 5 , Humanos , Receptor del Glutamato Metabotropico 5/metabolismo , Masculino , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Femenino , Anciano , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Sinapsis/metabolismo , Sinapsis/patología , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología
9.
Brain Behav Immun ; 114: 131-143, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37604212

RESUMEN

Within the brain, a pro-inflammatory response is essential to prevent clinical disease due to Toxoplasma gondii reactivation. Infection in the immunocompromised leads to lethal Toxoplasmic encephalitis while in the immunocompetent, there is persistent low-grade inflammation which is devoid of clinical symptoms. This signifies that there is a well-balanced and regulated inflammatory response to T. gondii in the brain. T cells are the dominant immune cells that prevent clinical disease, and this is mediated through the secretion of effector molecules such as perforins and IFN-γ. The presence of cognate antigen, the expression of survival cytokines, and the alteration of the epigenetic landscape drive the development of memory T cells. However, specific extrinsic signals that promote the formation and maintenance of memory T cells within tissue are poorly understood. During chronic infection, there is an increase in extracellular glutamate that, due to its function as an excitatory neurotransmitter, is normally tightly controlled in the CNS. Here we demonstrate that CD8+ T cells from the T. gondii-infected brain parenchyma are enriched for metabotropic glutamate receptors (mGluR's). Characterization studies determined that mGluR+ expression by CD8+ T cells defines a distinct memory population at the transcriptional and protein level. Finally, using receptor antagonists and agonists we demonstrate mGluR signaling is required for optimal CD8+ T cell production of the effector cytokine IFNγ. This work suggests that glutamate is an important environmental signal of inflammation that promotes T cell function. Understanding glutamate's influence on T cells in the brain can provide insights into the mechanisms that govern protective immunity against CNS-infiltrating pathogens and neuroinflammation.

10.
Mol Biol Rep ; 50(5): 4535-4549, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36853472

RESUMEN

Parkinson's disease is a progressive neurodegenerative disorder caused by the degeneration of dopaminergic neurons. This leads to the pathogenesis of multiple basal ganglia-thalamomotor loops and diverse neurotransmission alterations. Dopamine replacement therapy, and on top of that, levodopa and l-3,4-dihydroxyphenylalanine (L-DOPA), is the gold standard treatment, while it develops numerous complications. Levodopa-induced dyskinesia (LID) is well-known as the most prominent side effect. Several studies have been devoted to tackling this problem. Studies showed that metabotropic glutamate receptor 5 (mGluR5) antagonists and 5-hydroxytryptamine receptor 1B (5HT1B) agonists significantly reduced LID when considering the glutamatergic overactivity and compensatory mechanisms of serotonergic neurons after L-DOPA therapy. Moreover, it is documented that these receptors act through an adaptor protein called P11 (S100A10). This protein has been thought to play a crucial role in LID due to its interactions with numerous ion channels and receptors. Lately, experiments have shown successful evidence of the effects of P11 blockade on alleviating LID greater than 5HT1B and mGluR5 manipulations. In contrast, there is a trace of ambiguity in the exact mechanism of action. P11 has shown the potential to be a promising target to diminish LID and prolong L-DOPA therapy in parkinsonian patients owing to further studies and experiments.


Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Humanos , Levodopa/efectos adversos , Discinesia Inducida por Medicamentos/tratamiento farmacológico , Discinesia Inducida por Medicamentos/metabolismo , Discinesia Inducida por Medicamentos/patología , Enfermedad de Parkinson/tratamiento farmacológico , Ganglios Basales/metabolismo , Ganglios Basales/patología , Dopamina/metabolismo , Dopamina/farmacología , Dopamina/uso terapéutico
11.
Proc Natl Acad Sci U S A ; 117(40): 25092-25103, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958647

RESUMEN

The loss of fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common inherited intellectual disability. How the loss of FMRP alters protein expression and astroglial functions remains essentially unknown. Here we showed that selective loss of astroglial FMRP in vivo up-regulates a brain-enriched miRNA, miR-128-3p, in mouse and human FMRP-deficient astroglia, which suppresses developmental expression of astroglial metabotropic glutamate receptor 5 (mGluR5), a major receptor in mediating developmental astroglia to neuron communication. Selective in vivo inhibition of miR-128-3p in FMRP-deficient astroglia sufficiently rescues decreased mGluR5 function, while astroglial overexpression of miR-128-3p strongly and selectively diminishes developmental astroglial mGluR5 signaling. Subsequent transcriptome and proteome profiling further suggests that FMRP commonly and preferentially regulates protein expression through posttranscriptional, but not transcriptional, mechanisms in astroglia. Overall, our study defines an FMRP-dependent cell-autonomous miR pathway that selectively alters developmental astroglial mGluR5 signaling, unveiling astroglial molecular mechanisms involved in FXS pathogenesis.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , MicroARNs/genética , Receptor del Glutamato Metabotropico 5/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Modelos Animales de Enfermedad , Síndrome del Cromosoma X Frágil/patología , Humanos , Ratones , Neuronas/metabolismo , Transducción de Señal/genética , Activación Transcripcional/genética
12.
Int J Mol Sci ; 24(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37629191

RESUMEN

Alzheimer's disease (AD) is one representative dementia characterized by the accumulation of amyloid beta (Aß) plaques and neurofibrillary tangles (NFTs) in the brain, resulting in cognitive decline and memory loss. AD is associated with neuropsychiatric symptoms, including major depressive disorder (MDD). Recent studies showed a reduction in mGluR5 expression in the brains of stress-induced mice models and individuals with MDD compared to controls. In our study, we identified depressive-like behavior and memory impairment in a mouse model of AD, specifically in the 6xTg model with tau and Aß pathologies. In addition, we investigated the expression of mGluR5 in the brains of 6xTg mice using micro-positron emission tomography (micro-PET) imaging, histological analysis, and Western blot analysis, and we observed a decrease in mGluR5 levels in the brains of 6xTg mice compared to wild-type (WT) mice. Additionally, we identified alterations in the ERK/AKT/GSK-3ß signaling pathway in the brains of 6xTg mice. Notably, we identified a significant negative correlation between depressive-like behavior and the protein level of mGluR5 in 6xTg mice. Additionally, we also found a significant positive correlation between depressive-like behavior and AD pathologies, including phosphorylated tau and Aß. These findings suggested that abnormal mGluR5 expression and AD-related pathologies were involved in depressive-like behavior in the 6xTg mouse model. Further research is warranted to elucidate the underlying mechanisms and explore potential therapeutic targets in the intersection of AD and depressive-like symptoms.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Depresivo Mayor , Receptores de Ácido Kaínico , Animales , Ratones , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/genética , Trastornos de la Memoria , Placa Amiloide , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo
13.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047048

RESUMEN

The blockade of metabotropic glutamate receptor type 5 (mGluR5) was previously found to reduce fat accumulation in HEPG2 cells. Here, we evaluated the effects of mGluR5 blockade in a mouse model of steatosis. Male ob/ob mice fed a high-fat diet were treated with MPEP or vehicle. After 7 weeks, liver biopsies were collected, and nuclei were isolated from fresh tissue. Lipid droplet area and collagen deposition were evaluated on tissue slices; total lipids, lipid peroxidation, and ROS were evaluated on tissue homogenates; PPARα, SREBP-1, mTOR, and NF-κB were assayed on isolated nuclei by Western Blot. Target genes of the above-mentioned factors were assayed by RT-PCR. Reduced steatosis and hepatocyte ballooning were observed in the MPEP group with respect to the vehicle group. Concomitantly, increased nuclear PPARα and reduced nuclear SREBP-1 levels were observed in the MPEP group. Similar trends were obtained in target genes of PPARα and SREBP-1, Acox1 and Acc1, respectively. MPEP administration also reduced oxidative stress and NF-κB activation, probably via NF-κB inhibition. Levels of common markers of inflammation (Il-6, Il1ß and Tnf-α) and oxidative stress (Nrf2) were significantly reduced. mTOR, as well as collagen deposition, were unchanged. Concluding, MPEP, a selective mGluR5 negative allosteric modulator, reduces both fat accumulation and oxidative stress in a 7-week murine model of steatosis. Although underlying mechanisms need to be further investigated, this is the first in vivo study showing the beneficial effects of MPEP in a murine model of steatosis.


Asunto(s)
Hígado Graso , Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Animales , Hígado/patología , Ratones Obesos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , FN-kappa B/farmacología , PPAR alfa , Modelos Animales de Enfermedad , Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , Hígado Graso/patología , Dieta Alta en Grasa/efectos adversos , Serina-Treonina Quinasas TOR , Enfermedad del Hígado Graso no Alcohólico/patología , Ratones Endogámicos C57BL
14.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982315

RESUMEN

Microglia cells are the resident immune cells of the central nervous system. They act as the first-line immune guardians of nervous tissue and central drivers of neuroinflammation. Any homeostatic alteration that can compromise neuron and tissue integrity could activate microglia. Once activated, microglia exhibit highly diverse phenotypes and functions related to either beneficial or harmful consequences. Microglia activation is associated with the release of protective or deleterious cytokines, chemokines, and growth factors that can in turn determine defensive or pathological outcomes. This scenario is complicated by the pathology-related specific phenotypes that microglia can assume, thus leading to the so-called disease-associated microglia phenotypes. Microglia express several receptors that regulate the balance between pro- and anti-inflammatory features, sometimes exerting opposite actions on microglial functions according to specific conditions. In this context, group I metabotropic glutamate receptors (mGluRs) are molecular structures that may contribute to the modulation of the reactive phenotype of microglia cells, and this is worthy of exploration. Here, we summarize the role of group I mGluRs in shaping microglia cells' phenotype in specific physio-pathological conditions, including some neurodegenerative disorders. A significant section of the review is specifically focused on amyotrophic lateral sclerosis (ALS) since it represents an entirely unexplored topic of research in the field.


Asunto(s)
Esclerosis Amiotrófica Lateral , Receptores de Glutamato Metabotrópico , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo
15.
Neurobiol Dis ; 172: 105834, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35905927

RESUMEN

Synapse dysfunction and loss are central features of neurodegenerative diseases, caused in part by the accumulation of protein oligomers. Amyloid-ß, tau, prion, and α-synuclein oligomers bind to the cellular prion protein (PrPC), resulting in the activation of macromolecular complexes and signaling at the post-synapse, yet the early signaling events are unclear. Here we sought to determine the early transcript and protein alterations in the hippocampus during the pre-clinical stages of prion disease. We used a transcriptomic approach focused on the early-stage, prion-infected hippocampus of male wild-type mice, and identify immediate early genes, including the synaptic activity response gene, Arc/Arg3.1, as significantly upregulated. In a longitudinal study of male, prion-infected mice, Arc/Arg-3.1 protein was increased early (40% of the incubation period), and by mid-disease (pre-clinical), phosphorylated AMPA receptors (pGluA1-S845) were increased and metabotropic glutamate receptors (mGluR5 dimers) were markedly reduced in the hippocampus. Notably, sporadic Creutzfeldt-Jakob disease (sCJD) post-mortem cortical samples also showed low levels of mGluR5 dimers. Together, these findings suggest that prions trigger an early Arc response, followed by an increase in phosphorylated GluA1 and a reduction in mGluR5 receptors.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Priones , Péptidos beta-Amiloides/metabolismo , Animales , Síndrome de Creutzfeldt-Jakob/metabolismo , Hipocampo/metabolismo , Estudios Longitudinales , Masculino , Ratones , Priones/metabolismo
16.
Eur J Neurosci ; 56(6): 4930-4947, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35895439

RESUMEN

Repetitive transcranial magnetic stimulation (rTMS) could effectively relieve the pain and depression in neuropathic pain (NP) patients. However, the specific treatment parameters and exact mechanism are still unclear. Our purpose is to observe the effects of rTMS on pain and despair-like behaviour in chronic constriction injury (CCI) rats and explore its possible mechanism. Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into four groups: sham operation group (S, n = 8), CCI group (n = 8), 1 Hz-rTMS group (n = 8) and 10 Hz-rTMS group (n = 8). The rTMS was applied to the left dorsal anterior agranular insular (AId) 1 week after the operation, once a day, 5 days/week for 4 consecutive weeks. Mechanical hyperalgesia, despair-like behaviours and sciatic nerve function were used to evaluate the effects of rTMS. Besides, glucose metabolism, the metabotropic glutamate receptors 5 (mGluR5), N-Methyl-D-Aspartic acid receptor type 2B (NMDAR2B), tumour necrosis factor-α (TNF-α), interleukin-6 (Ll-6) and interleukin-1ß (Ll-1ß) in AId were tested to explore the possible mechanism. Compared with 1 Hz-rTMS, the rats of 10 Hz-rTMS had higher the mechanical hyperalgesia, higher sugar preference and shorter swimming immobility time. Besides, the expressions of mGluR5, NMDAR2B, TNF-α, Ll-1ß and Ll-6 both in 1 Hz-rTMS and 10 Hz-rTMS groups were reduced compared with the CCI group; the 10 Hz-rTMS group had a more decrease than that of 1 Hz-rTMS. Furthermore, the [18]F-FDG uptake was lower than that in the 1 Hz-rTMS group. Compared with 1 Hz-rTMS, 10 Hz-rTMS could more effectively relieve mechanical hyperalgesia and reverse despair-like behaviour in rats. The mechanism could be related to regulating mGluR5/NMDAR2B-related inflammatory signalling pathways in the AId.


Asunto(s)
Hiperalgesia , Neuralgia , Animales , Constricción , Hiperalgesia/metabolismo , Masculino , Neuralgia/metabolismo , Enfermedades Neuroinflamatorias , Ratas , Ratas Sprague-Dawley , Estimulación Magnética Transcraneal , Factor de Necrosis Tumoral alfa/metabolismo
17.
Hum Brain Mapp ; 43(7): 2148-2163, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35076125

RESUMEN

The glutamate and γ-aminobutyric acid neuroreceptor subtypes mGluR5 and GABAA are hypothesized to be involved in the development of a variety of psychiatric diseases. However, detailed information relating to their in vivo distribution is generally unavailable. Maps of such distributions could potentially aid clinical studies by providing a reference for the normal distribution of neuroreceptors and may also be useful as covariates in advanced functional magnetic resonance imaging (MR) studies. In this study, we propose a comprehensive processing pipeline for the construction of standard space, in vivo distributions of non-displaceable binding potential (BPND ), and total distribution volume (VT ) based on simultaneously acquired bolus-infusion positron emission tomography (PET) and MR data. The pipeline was applied to [11 C]ABP688-PET/MR (13 healthy male non-smokers, 26.6 ± 7.0 years) and [11 C]Flumazenil-PET/MR (10 healthy males, 25.8 ± 3.0 years) data. Activity concentration templates, as well as VT and BPND atlases of mGluR5 and GABAA , were generated from these data. The maps were validated by assessing the percent error δ from warped space to native space in a selection of brain regions. We verified that the average δABP  = 3.0 ± 1.0% and δFMZ  = 3.8 ± 1.4% were lower than the expected variabilities σ of the tracers (σABP  = 4.0%-16.0%, σFMZ  = 3.9%-9.5%). An evaluation of PET-to-PET registrations based on the new maps showed higher registration accuracy compared to registrations based on the commonly used [15 O]H2 O-template distributed with SPM12. Thus, we conclude that the resulting maps can be used for further research and the proposed pipeline is a viable tool for the construction of standardized PET data distributions.


Asunto(s)
Tomografía de Emisión de Positrones , Receptores de GABA-A , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones/métodos , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo
18.
Proc Natl Acad Sci U S A ; 116(23): 11490-11495, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31085640

RESUMEN

Recent evidence implicates dysregulation of metabotropic glutamatergic receptor 5 (mGluR5) in pathophysiology of PTSD and suicidality. Using positron emission tomography and [18F]FPEB, we quantified mGluR5 availability in vivo in individuals with PTSD (n = 29) and MDD (n = 29) as a function of suicidal ideation (SI) to compare with that of healthy comparison controls (HC; n = 29). Volume of distribution was computed using a venous input function in the five key frontal and limbic brain regions. We observed significantly higher mGluR5 availability in PTSD compared with HC individuals in all regions of interest (P's = 0.001-0.01) and compared with MDD individuals in three regions (P's = 0.007). mGluR5 availability was not significantly different between MDD and HC individuals (P = 0.17). Importantly, we observed an up-regulation in mGluR5 availability in the PTSD-SI group (P's = 0.001-0.007) compared with PTSD individuals without SI. Findings point to the potential role for mGluR5 as a target for intervention and, potentially, suicide risk management in PTSD.


Asunto(s)
Biomarcadores/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Prevención del Suicidio , Adulto , Encéfalo/metabolismo , Trastorno Depresivo Mayor/metabolismo , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos , Radiofármacos/metabolismo , Ideación Suicida
19.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887290

RESUMEN

Although osteosarcoma is the most common primary malignant bone tumor, chemotherapeutic drugs and treatment have failed to increase the five-year survival rate over the last three decades. We previously demonstrated that type 5 metabotropic glutamate receptor, mGluR5, is required to proliferate metastatic osteosarcoma cells. In this work, we delivered mGluR5 siRNAs in vitro using superparamagnetic iron oxide nanocages (IO-nanocages) as delivery vehicles and applied alternating magnetic fields (AMFs) to improve mGluR5 siRNAs release. We observed functional outcomes when mGluR5 expression is silenced in human and mouse osteosarcoma cell lines. The results elucidated that the mGluR5 siRNAs were successfully delivered by IO-nanocages and their release was enhanced by AMFs, leading to mGluR5 silencing. Moreover, we observed that the proliferation of both human and mouse osteosarcoma cells decreased significantly when mGluR5 expression was silenced in the cells. This novel magnetic siRNA delivery methodology was capable of silencing mGluR5 expression significantly in osteosarcoma cell lines under the AMFs, and our data suggested that this method can be further used in future clinical applications in cancer therapy.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Línea Celular Tumoral , Proliferación Celular , Compuestos Férricos , Humanos , Campos Magnéticos , Ratones , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/terapia , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/uso terapéutico
20.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362204

RESUMEN

Tamalin is a post-synaptic scaffolding protein that interacts with group 1 metabotropic glutamate receptors (mGluRs) and several other proteins involved in protein trafficking and cytoskeletal events, including neuronal growth and actin reorganization. It plays an important role in synaptic plasticity in vitro by controlling the ligand-dependent trafficking of group 1 mGluRs. Abnormal regulation of mGluRs in the central nervous system (CNS) is associated with glutamate-mediated neurodegenerative disorders. However, the pathological consequences of tamalin deficiency in the CNS are unclear. In this study, tamalin knockout (KO) zebrafish and mice exhibited neurodegeneration along with oligodendrocyte degeneration in the post-embryonic CNS to adulthood without any developmental defects, thus suggesting the function of tamalin is more important in the postnatal stage to adulthood than that in CNS development. Interestingly, hypomyelination was independent of axonal defects in the CNS of tamalin knockout zebrafish and mice. In addition, the loss of Arf6, a downstream signal of tamalin scaffolding protein, synergistically induced neurodegeneration in tamalin KO zebrafish even in the developing CNS. Furthermore, tamalin KO zebrafish displayed increased mGluR5 expression. Taken together, tamalin played an important role in neuronal and oligodendrocyte survival and myelination through the regulation of mGluR5 in the CNS.


Asunto(s)
Proteínas Portadoras , Pez Cebra , Animales , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Oligodendroglía/metabolismo , Sistema Nervioso Central/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA