RESUMEN
Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover Curiosity to estimate the atmospheric partial pressure of CO2 (PCO2) coinciding with a long-lived lake system in Gale Crater at â¼3.5 Ga. A reaction-transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric PCO2 levels in the 10s mbar range. At such low PCO2 levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO2 in inferred warmer conditions and valley network formation of the late Noachian.
RESUMEN
In experimental chambers for simulating the atmospheric near-surface conditions of Mars, or in situ measurements on Mars, the measurement of the humidity in carbon dioxide gas at low temperature and under low pressure is needed. For this purpose, polymer-based capacitive humidity sensors are used; however, these sensors are designed for measuring the humidity in the air on the Earth. The manufacturers provide only the generic calibration equation for standard environmental conditions in air, and temperature corrections of humidity signal. Because of the lack of freely available information regarding the behavior of the sensors in CO2, the range of reliable results is limited. For these reasons, capacitive humidity sensors (Sensirion SHT75) were tested at the German Aerospace Center (DLR) in its Martian Simulation Facility (MSF). The sensors were investigated in cells with a continuously humidified carbon dioxide flow, for temperatures between -70 °C and 10 °C, and pressures between 10 hPa and 1000 hPa. For 28 temperatureâ»pressure combinations, the sensor calibration equations were calculated together with temperatureâ»dependent formulas for the coefficients of the equations. The characteristic curves obtained from the tests in CO2 and in air were compared for selected temperatureâ»pressure combinations. The results document a strong cross-sensitivity of the sensors to CO2 and, compared with air, a strong pressure sensitivity as well. The reason could be an interaction of the molecules of CO2 with the adsorption sites on the thin polymeric sensing layer. In these circumstances, an individual calibration for each pressure with respect to temperature is required. The performed experiments have shown that this kind of sensor can be a suitable, lightweight, and relatively inexpensive choice for applications in harsh environments such as on Mars.
RESUMEN
A major unknown in the field of planetary protection is the degree to which natural atmospheric processes remove terrestrial microorganisms from robotic and crewed spacecraft that could potentially contaminate Mars (i.e., forward contamination). We present experiments in which we measured the removal rate of Bacillus subtilis HA101 spores from aluminum surfaces under the bombardment of naturally rounded sand grains. To simulate grain impacts, we constructed a pneumatic sand-feed system and gun to accelerate grains to a desired speed, with independent control of impacting grain mass, flux, and angle. Spore counts of the resulting bombarded surfaces when using scanning electron microscopy indicate that although spores directly impacted by sand grains would likely be killed, those immediately adjacent to grain impacts might be released into the environment intact. The experiments demonstrate a linear relationship between the fractional dislodgement rate of spores and grain impact speed, which can be used to estimate input to microbial transport models (e.g., using numerical models of saltation). Even the slowest grain impacts (â¼2.7 m/s) dislodged spores. Such slow events may be common and widespread on Mars, which suggests that microbial dislodgement by slow saltation near the surface is largely unavoidable.
RESUMEN
Rechargeable lithium-CO2 (Li-CO2 ) batteries are an attractive energy storage technology that can reduce fossil fuel usage and limit the adverse environmental impact of CO2 emissions. However, the high charge overpotential, unstable cycling, and incomplete understanding of the electrochemical process limit its advancement for practical applications. Herein, we develop a Li-CO2 battery by designing a bimetallic ruthenium-nickel catalyst onto multi-walled carbon nanotubes (RuNi/MWCNTs) catalyst as cathode by solvothermal method, which exhibits a lower overpotential of 1.15â V and a discharge capacity of 15,165â mAh g-1 with outstanding coulombic efficiency of 97.4 %. The battery can also operate at high rates and have a stable cycle of more than 80 cycles at a current density of 200â mA g-1 with a fixed 500â mAh g-1 capacity. Furthermore, Mars exploration is made feasible with the Li-CO2 Mars battery composed of the RuNi/MWCNTs as cathode catalyst, which performs very similarly to that of pure CO2 atmosphere. This approach may simplify the process of developing high-performance Li-CO2 batteries to achieve carbon negativity on Earth and for future interplanetary Mars missions.
RESUMEN
Enhancing the positional information acquisition during Mars entry blackout improves the Mars landing mission reliability. A positioning method based on the high-penetration of X-rays was developed to solve the problem. The X-ray signal attenuation was estimated. The positioning performance and the influence of X-ray signal transmission system were also evaluated. Results indicated that the X-ray signal attenuation is extremely low, and the X-ray-based method is expected to be a potential application for obtaining high-precision positional information during Mars entry blackout.
RESUMEN
Whether extant life exists in the martian subsurface is an open question. High concentrations of photochemically produced CO and H2 in the otherwise oxidizing martian atmosphere represent untapped sources of biologically useful free energy. These out-of-equilibrium species diffuse into the regolith, so subsurface microbes could use them as a source of energy and carbon. Indeed, CO oxidation and methanogenesis are relatively simple and evolutionarily ancient metabolisms on Earth. Consequently, assuming CO- or H2-consuming metabolisms would evolve on Mars, the persistence of CO and H2 in the martian atmosphere sets limits on subsurface metabolic activity. In this study, we constrain such maximum subsurface metabolic activity on Mars using a one-dimensional photochemical model with a hypothetical global biological sink on atmospheric CO and H2. We increase the biological sink until the modeled atmospheric composition diverges from observed abundances. We find maximum biological downward subsurface sinks of 1.5 × 108 molecules/(cm2·s) for CO and 1.9 × 108 molecules/(cm2·s1) for H2. These convert to a maximum metabolizing biomass of â²1027 cells or ≤2 × 1011 kg, equivalent to ≤10-4-10-5 of Earth's biomass, depending on the terrestrial estimate. Diffusion calculations suggest that this upper biomass limit applies to the top few kilometers of the martian crust in communication with the atmosphere at low to mid-latitudes. This biomass limit is more robust than previous estimates because we test multiple possible chemoautotrophic ecosystems over a broad parameter space of tunable model variables using an updated photochemical model with precise atmospheric concentrations and uncertainties from Curiosity. Our results of sparse or absent life in the martian subsurface also demonstrate how the atmospheric redox pairs of CO-O2 and H2-O2 may constitute antibiosignatures, which may be relevant to excluding life on exoplanets.
Asunto(s)
Atmósfera/química , Biomasa , Medio Ambiente Extraterrestre/química , Sedimentos Geológicos/microbiología , Marte , Atmósfera/análisis , Monóxido de Carbono/análisis , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Sedimentos Geológicos/química , Hidrógeno/análisis , Hidrógeno/química , Hidrógeno/metabolismo , Modelos Químicos , Oxidación-Reducción , Procesos FotoquímicosRESUMEN
The Curiosity rover has documented lacustrine sediments at Gale Crater, but how liquid water became physically stable on the early Martian surface is a matter of significant debate. To constrain the composition of the early Martian atmosphere during sediment deposition, we experimentally investigated the nucleation and growth kinetics of authigenic Fe-minerals in Gale Crater mudstones. Experiments show that pH variations within anoxic basaltic waters trigger a series of mineral transformations that rapidly generate magnetite and H2(aq). Magnetite continues to form through this mechanism despite high PCO2 and supersaturation with respect to Fe-carbonate minerals. Reactive transport simulations that incorporate these experimental data show that groundwater infiltration into a lake equilibrated with a CO2-rich atmosphere can trigger the production of both magnetite and H2(aq) in the mudstones. H2(aq), generated at concentrations that would readily exsolve from solution, is capable of increasing annual mean surface temperatures above freezing in CO2-dominated atmospheres. We therefore suggest that magnetite authigenesis could have provided a short-term feedback for stabilizing liquid water, as well as a principal feedstock for biologically relevant chemical reactions, at the early Martian surface.
RESUMEN
Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.