RESUMEN
Climate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars). Warming increased the concentration of total amino acids and of total sugars by 15% and 21%, respectively, but not organic acids. We found that soil warming and sampling date, along with their interaction, directly influenced the primary metabolite profiles. Specifically, in warming plots, concentrations of arginine, glycine, lysine, threonine, tryptophan, mannose, ribose, fructose, glucose and oxaloacetic acid increased by 51.4%, 19.9%, 21.5%, 19.3%, 22.1%, 23.0%, 38.0%, 40.7%, 19.8% and 16.7%, respectively. Rather than being driven by single compounds, changes in metabolite profiles reflected a general up- or downregulation of most metabolic pathway network. This emphasises the importance of metabolomics approaches in investigating root metabolic pathways and understanding the effects of climate change on tree root metabolism.
Asunto(s)
Bosques , Picea , Raíces de Plantas , Suelo , Picea/metabolismo , Raíces de Plantas/metabolismo , Suelo/química , Cambio Climático , Metaboloma , Metabolómica , Árboles/metabolismo , Aminoácidos/metabolismoRESUMEN
Yeast assimilable nitrogen (YAN) is one of the important factors affecting yeast growth and metabolism. However, the nitrogen requirement of indigenous commercial S. cerevisiae NX11424 is unclear. In this study, metabolomics was used to analyze the metabolite profiles of the yeast strain NX11424 under high (433 mg/L) and low (55 mg/L) YAN concentrations. It was found that yeast biomass exhibited different trends under different YAN conditions and was generally positively correlated with the initial YAN concentration, while changes of key biomarkers of yeast strain NX11424 at different stages of fermentation showed a similar trend under high and low YAN concentrations. The YAN concentration affected the metabolite levels of the yeast strain NX11424, which resulted in the significant difference in the levels of pyruvic acid, α-oxoglutarate, palmitoleic acid, proline, butane-2,3-diol, citrulline, ornithine, galactinol, citramalic acid, tryptophan, alanine, phosphate and phenylethanol, mainly involving pathways such as central carbon metabolism, amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. Yeast strain NX11424 could utilize proline to produce protein under a low YAN level. The intracellular level of citrulline and ornithine under high YAN concentration was higher than that under low YAN level. Yeast strain NX11424 is more suitable for fermentation at lower YAN level. The results obtained here will help to rational utilize of YAN by S. cerevisiae NX11424, and is conducive to precise control of the alcohol fermentation and improve wine quality.
Asunto(s)
Fermentación , Metabolómica , Nitrógeno , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Nitrógeno/metabolismo , Vino/análisis , Vino/microbiología , Biomasa , Aminoácidos/metabolismoRESUMEN
Chuanwang Xiaoyan (CWXY) capsule is primarily used to treat a variety of acute and chronic inflammations, including acute and chronic pharyngitis and tonsillitis. However, a systematic study of its chemical constituents is still not available. This study evaluated the chemical constituents in vitro and metabolite profiles in vivo of CWXY using ultra-high-performance liquid chromatography (UHPLC) coupled with Q-Exactive Orbitrap mass spectrometry, and the pharmacokinetic behaviors of the nine main components in rats were detected using ultra-high-performance liquid chromatography-triple quadrupole-mass spectrometry (UPLC-QQQ-MS/MS). A total of 92 chemical constituents in CWXY were preliminarily identified in vitro. After oral administration to rats, 56 prototype components and 128 metabolites of CWXY were detected in the biological samples of rat plasma, urine, bile, and feces. Of these prototype components and metabolites, seven new compounds, namely M15, M16, M25, M30, M31, M71, and M128, were detected for the first time. The quantitation method of nine components in rat plasma was developed using a pharmacokinetic study. To the best of our knowledge, this study was the first to investigate the pharmacokinetic behavior of triumbelletin.
Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/administración & dosificación , Espectrometría de Masas en Tándem/métodos , Ratas , Masculino , Reproducibilidad de los Resultados , Modelos Lineales , Límite de DetecciónRESUMEN
BACKGROUND: Functional constipation (FC) in children affects their growth, development and quality of life. L-pipecolic acid (L-PA) was decreased in FC children based on gut microbiome and serum metabolomic. In this study, loperamide-induced constipation in mice was used to evaluate the effects of L-PA on constipated mice. METHOD: 26 FC and 28 healthy children were recruited. Stool samples and serum samples were subjected to 16S rDNA sequencing and ultra-performance liquid chromatography/quadrupole time of flight (UPLC-Q/TOF-MS) approach, respectively. A loperamide-induced mouse constipation model was developed, and all mice were randomly divided into control (Con), loperamide (Lop) and L-PA (Lop + L-PA) treatment groups (6 mice per group). The mice in the Lop + L-PA group were given L-PA (250 mg/kg, once a day) and loperamide; the Lop group was given loperamide for 1 week, and the Con group was given saline. The fecal parameters and intestinal motility of mice in each group were detected. serum 5-HT levels and colon 5-HT expression were detected by ELISA and immunohistochemistry, respectively; qRT-PCR was used to detect the expression of AQP3 and 5-HT4R mRNA in each group. RESULTS: 45 differential metabolites and 18 significantly different microbiota were found in FC children. The α and ß diversity of gut microbiota in FC children was significantly reduced. Importantly, serum L-PA was significantly reduced in FC children. The KEGG pathway enrichment were mainly enriched in fatty acid biosynthesis, lysine degradation, and choline metabolism. L-PA was negatively associated with Ochrobactrum, and N6, N6, N6-trimethyl-l-lysine was positively associated with Phascolarcrobacterium. In addition, L-PA improved the fecal water content, intestinal transit rate, and increased the serum 5-HT levels in constipated mice. Moreover, L-PA increased the expression of 5-HT4R, reduced AQP3, and regulated constipation-associated genes. CONCLUSIONS: Gut microbiota and serum metabolites were significantly altered in children with FC. The abundance of Phascolarctobacterium and Ochrobactrum and serum L-PA content were decreased in FC children. L-PA was found to alleviate the fecal water content, increase intestinal transit rate and the first black stool defecation time. L-PA improved constipation by increasing 5-HT and 5-HT4R expression while down-regulating AQP3 expression.
Asunto(s)
Microbioma Gastrointestinal , Loperamida , Ratones , Animales , Loperamida/efectos adversos , Serotonina , Calidad de Vida , Ratones Endogámicos C57BL , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Estreñimiento/genética , Agua/análisisRESUMEN
The established efficacy of electronic volatile organic compound (VOC) detection technologies as diagnostic tools for noninvasive early detection of COVID-19 and related coronaviruses has been demonstrated from multiple studies using a variety of experimental and commercial electronic devices capable of detecting precise mixtures of VOC emissions in human breath. The activities of numerous global research teams, developing novel electronic-nose (e-nose) devices and diagnostic methods, have generated empirical laboratory and clinical trial test results based on the detection of different types of host VOC-biomarker metabolites from specific chemical classes. COVID-19-specific volatile biomarkers are derived from disease-induced changes in host metabolic pathways by SARS-CoV-2 viral pathogenesis. The unique mechanisms proposed from recent researchers to explain how COVID-19 causes damage to multiple organ systems throughout the body are associated with unique symptom combinations, cytokine storms and physiological cascades that disrupt normal biochemical processes through gene dysregulation to generate disease-specific VOC metabolites targeted for e-nose detection. This paper reviewed recent methods and applications of e-nose and related VOC-detection devices for early, noninvasive diagnosis of SARS-CoV-2 infections. In addition, metabolomic (quantitative) COVID-19 disease-specific chemical biomarkers, consisting of host-derived VOCs identified from exhaled breath of patients, were summarized as possible sources of volatile metabolic biomarkers useful for confirming and supporting e-nose diagnoses.
Asunto(s)
COVID-19 , Compuestos Orgánicos Volátiles , Humanos , Nariz Electrónica , COVID-19/diagnóstico , SARS-CoV-2 , Biomarcadores , Pruebas Respiratorias/métodosRESUMEN
The growing interest in the use of zinc oxide nanoparticles (ZnO NPs) in agriculture creates a risk of soil contamination with ZnO NPs, which can lead to phytotoxic effects on germinating seeds and seedlings. In the present study, the susceptibility of germinating seeds/seedlings of pea and wheat to ZnO NPs of various sizes (≤50 and ≤100 nm) applied at concentrations in the range of 100-1000 mg/L was compared. Changes in metabolic profiles in seedlings were analyzed by GC and GC-MS methods. The size-dependent harmful effect of ZnO NPs on the seedling's growth was revealed. The more toxic ZnO NPs (50 nm) at the lowest concentration (100 mg/L) caused a 2-fold decrease in the length of the wheat roots. In peas, the root elongation was slowed down by 20-30% only at 1000 mg/L ZnO NPs. The metabolic response to ZnO NPs, common for all tested cultivars of pea and wheat, was a significant increase in sucrose (in roots and shoots) and GABA (in roots). In pea seedlings, an increased content of metabolites involved in the aspartate-glutamate pathway and the TCA cycle (citrate, malate) was found, while in wheat, the content of total amino acids (in all tissues) and malate (in roots) decreased. Moreover, a decrease in products of starch hydrolysis (maltose and glucose) in wheat endosperm indicates the disturbances in starch mobilization.
Asunto(s)
Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Plantones , Pisum sativum/metabolismo , Triticum/metabolismo , Malatos/metabolismo , Nanopartículas/química , Almidón/metabolismo , Raíces de Plantas/metabolismoRESUMEN
AIM: This trial (NCT04013048) investigated the metabolite profiles, mass balance and pharmacokinetics of fuzuloparib, a novel poly (ADP-ribose) polymerase inhibitor, in subjects with advanced solid cancers. METHODS: A single dose of 150 mg [14 C]fuzuloparib was administered to five subjects with advanced solid cancers. Blood, urine and faecal samples were collected, analysed for radioactivity and unchanged fuzuloparib, and profiled for metabolites. The safety of the medicine was assessed during the study. RESULTS: The maximum concentrations (Cmax ) of the total radioactivity (TRA) and unchanged fuzuloparib in plasma were 5.39 µg eq./mL and 4.19 µg/mL, respectively, at approximately 4 hours post dose. The exposure (AUC0-t ) of fuzuloparib accounted for 70.7% of the TRA in plasma, and no single metabolite was observed accounting for more than 10% of the plasma TRA. The recovery of TRA in excreta was 103.3 ± 3.8% in 288 hours, including 59.1 ± 9.9% in urine and 44.2 ± 10.8% in faeces. Sixteen metabolites of fuzuloparib were identified, including mono-oxidation (M1), hydrogenation (M2), di-oxidation (M3), trioxidation (M4), glucuronidation (M5, M7, M8) and de-ethylation (M6) products, and there was no specific binding between these metabolites and blood cells. Aliphatic hydroxylated fuzuloparib (M1-1) was the primary metabolite in the excreta, accounting for more than 40% of the dose for subjects. There were no serious adverse events observed in the study. CONCLUSION: Fuzuloparib was widely metabolized and excreted completely through urine and faeces in subjects with advanced solid cancer. Unchanged fuzuloparib was indicated to be the primary drug-related compound in circulation. [14 C]fuzuloparib was well-tolerated at the study dose.
Asunto(s)
Antineoplásicos , Neoplasias , Adenosina Difosfato/análisis , Administración Oral , Antineoplásicos/efectos adversos , Heces/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/análisis , Ribosa/análisisRESUMEN
In F. graminearum, the transcription factor TRI6 positively regulates the trichothecene biosynthetic gene cluster (BGC) leading to the production of the secondary metabolite 15-acetyl deoxynivalenol. Secondary metabolites are not essential for survival, instead, they enable the pathogen to successfully infect its host. F. graminearum has the potential to produce a diverse array of secondary metabolites (SMs). However, given high functional specificity and energetic cost, most of these clusters remain silent, unless the organism is subjected to an environment conducive to SM production. Alternatively, secondary metabolite gene clusters (SMCs) can be activated by genetically manipulating their activators or repressors. In this study, a combination of transcriptomic and metabolomics analyses with a deletion and overexpressor mutants of TRI6 was used to establish the role of TRI6 in the regulation of several BGCs in F. graminearum. Evidence for direct and indirect regulation of BGCs by TRI6 was obtained by chromatin immunoprecipitation and yeast two-hybrid experiments. The results showed that the trichothecene genes are under direct control, while the gramillin gene cluster is indirectly controlled by TRI6 through its interaction with the pathway-specific transcription factor GRA2.
Asunto(s)
Proteínas Fúngicas/metabolismo , Fusarium/genética , Factores de Transcripción/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Fusarium/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Familia de Multigenes/genética , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Transcripción Genética/genética , Transcriptoma/genética , Tricotecenos/metabolismoRESUMEN
INTRODUCTION: Intestinal microbiota and metabolites play important roles for further improvement of animal production. Metabolomics of shrimp intestine to understand roles and their relationship to the host is hampered by the lack of metabolome profiling method. OBJECTIVES: This study aims to develop extraction and analytical methods to allow accurate metabolic analysis in shrimp intestine. METHODS: Conditions for extraction and LC-HRMS/MS analysis were optimized. RESULTS: Extraction with ethyl acetate:acetone (15:2 v/v) acidified with 0.5% acetic acid, elution with acetonitrile:water acidified with 0.01% acetic acid for 25 min, and mass fragmentation at 15% HCD were the optimal conditions, yielding the highest signal intensity and numbers of putative metabolites. CONCLUSION: Our method enabled in-depth study for shrimp-microbial interaction at metabolite level.
Asunto(s)
Decápodos/metabolismo , Intestinos , Metaboloma , Metabolómica , Animales , Cromatografía Liquida , Decápodos/microbiología , Metabolómica/métodos , Espectrometría de Masas en TándemRESUMEN
Ligustri Lucidi Fructus is a dried and mature fruit of Ligustrum lucidum Ait., which has the effects of nourishing liver and kidney. Herein, an accurate and sensitive method was established for the separation and identification of the absorbed constituents and metabolites of Ligustri Lucidi Fructus in rat plasma based on ultra-high-performance liquid chromatography-Q-Exactive Orbitrap tandem mass spectrometry. A total of 73 prototype constituents and 148 metabolites were identified or characterized in administered plasma, and the possible metabolic pathways of constituents mainly involved hydroxylation, sulfation, demethylation, and glucuronidation. Besides, the network pharmacology was further investigated to illuminate its potential mechanism of treatment for liver injury by the biological targets regulating related pathways. Network pharmacological analysis showed that target components through 399 targets regulate 220 pathways. The docking results showed that 36 key target components were closely related to liver injury. Overall, the study clearly presented the metabolic processes of Ligustri Lucidi Fructus and gave a comprehensive metabolic profile of Ligustri Lucidi Fructus in vivo first. Combining with network pharmacology and molecular docking discovered potential drug targets and disclose the biological processes of Ligustri Lucidi Fructus, which will be a viable step toward uncovering the secret mask of study for traditional Chinese medicine.
Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ligustrum/química , Farmacología en Red , Extractos Vegetales/sangre , Espectrometría de Masas en Tándem/métodos , Animales , Masculino , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Ratas , Ratas Sprague-DawleyRESUMEN
Environmental stresses such as drought, heat, and salinity limit plant development and agricultural productivity. While individual stresses have been studied extensively, much less is known about the molecular interaction of responses to multiple stresses. To address this problem, we investigated molecular responses of Arabidopsis to single, double, and triple combinations of salt, osmotic, and heat stresses. A metabolite profiling analysis indicated the production of specific compatible solutes depending on the nature of the stress applied. We found that in combination with other stresses, heat has a dominant effect on global gene expression and metabolite level patterns. Treatments that include heat stress lead to strongly reduced transcription of genes coding for abundant photosynthetic proteins and proteins regulating the cell life cycle, while genes involved in protein degradation are up-regulated. Under combined stress conditions, the plants shifted their metabolism to a survival state characterized by low productivity. Our work provides molecular evidence for the dangers for plant productivity and future world food security posed by heat waves resulting from global warming. We highlight candidate genes, many of which are functionally uncharacterized, for engineering plant abiotic stress tolerance.
Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salinidad , Estrés FisiológicoRESUMEN
High temperature damage impairs the growth of tall fescue by inhibiting secondary metabolites. Little is known about the regulation pattern of the fatty acids and carbohydrate metabolism at the whole-transcriptome level in tall fescue under high temperature stress. Here, two tall fescue genotypes, heat tolerant PI578718 and heat sensitive PI234881 were subjected to high temperature stress for 36 h. PI 578718 showed higher SPAD chloroplast value, lower EL and leaf injury than PI 234881 during the first 36 h high-temperature stress. Furthermore, by transcriptomic analysis, 121 genes were found to be induced during the second energy production phase in tall fescue exposed to high-temperature conditions, indicating that there may be one energy-sensing system in cool-season turfgrass to adapt high-temperature conditions. PI 578718 showed higher differentially expressed unigenes involved in fatty acids and carbohydrate metabolism compared with PI 234881 for 36 h heat stress. Interestingly, a metabolomic analysis using GC-MS uncovered that the sugars and sugar alcohol accounted for more than 65.06% of the total 41 metabolites content and high-temperature elevated the rate to 82.89-91.16% in PI 578718. High-temperature damage decreased the rate of fatty acid in the total 41 metabolites content and PI 578718 showed lower content than in PI 234881, which might be attributed to the down-regulated genes in fatty acid biosynthesis pathway in tall fescue. The integration of deep transcriptome and metabolome analyses provides systems-wide datasets to facilitate the identification of crucial regulation factors in cool-season turfgrass in response to high-temperature damage.
Asunto(s)
Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Ácidos Grasos/metabolismo , Festuca , Respuesta al Choque Térmico , Calor , Metabolismo de los Hidratos de Carbono/genética , Ácidos Grasos/genética , Festuca/genética , Festuca/crecimiento & desarrollo , Festuca/metabolismo , Perfilación de la Expresión Génica , Respuesta al Choque Térmico/genética , Metabolómica , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismoRESUMEN
Ultraviolet B (UV-B) light, as a physical elicitor, can promote the secondary metabolites biosynthesis in plants. We investigated effects of different energy levels of UV-B radiation on growth and bioactive compounds of Crepidiastrum denticulatum. Three-week-old seedlings were grown in a plant factory for 5 weeks. Plants were subjected to different levels of UV-B (0, 0.1, 0.25, 0.5, 1.0, and 1.25 W m-2), 6 h a day for 6 days. All UV-B treatments had no negative effect on the shoot dry weight; however, relatively high energy treatments (1.0 and 1.25 W m-2) inhibited the shoot fresh weight. UV-B light of 0.1, 0.25, and 0.5 W m-2 did not affect total chlorophyll and H2O2 contents; however, they increased total carotenoid content. On 4 days, 0.25 W m-2 treatment increased antioxidant capacity, total hydroxycinnamic acids (HCAs) content, and several sesquiterpenes. Treatments with 1.0 and 1.25 W m-2 increased total carotenoid, total HCAs, and H2O2 contents, and destroyed chlorophyll pigments, reducing maximum quantum yield of photosystem II and causing visible damage to leaves. Partial least squares discrimination analysis (PLS-DA) showed that secondary metabolites were distinguishably changed according to energy levels of UV-B. The potential of 0.25 W m-2 UV-B for the efficient production of bioactive compounds without growth inhibition in C. denticulatum was identified.
Asunto(s)
Asteraceae/metabolismo , Plantones/metabolismo , Rayos Ultravioleta , Antioxidantes/metabolismo , Clorofila/metabolismo , Ácidos Cumáricos/metabolismo , Relación Dosis-Respuesta en la Radiación , Peróxido de Hidrógeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismoRESUMEN
Western flower thrips (WFT) are a major pest on many crops, including tomato. Thrips cause yield losses, not only through feeding damage, but also by the transmission of viruses of which the Tomato Spotted Wilt Virus is the most important one. In cultivated tomato, genetic diversity is extremely low, and all commercial lines are susceptible to WFT. Several wild relatives are WFT resistant and these resistances are based on glandular trichome-derived traits. Introgression of these traits in cultivated lines did not lead to WFT resistant commercial varieties so far. In this study, we investigated WFT resistance in cultivated tomato using a F2 population derived from a cross between a WFT susceptible and a WFT resistant cultivated tomato line. We discovered that this WFT resistance is independent of glandular trichome density or trichome-derived volatile profiles and is associated with three QTLs on chromosomes 4, 5 and 10. Foliar metabolic profiles of F3 families with low and high WFT feeding damage were clearly different. We identified α-tomatine and a phenolic compound as potential defensive compounds. Their causality and interaction need further investigation. Because this study is based on cultivated tomato lines, our findings can directly be used in nowadays breeding programs.
Asunto(s)
Flores/metabolismo , Flores/parasitología , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitología , Thysanoptera/patogenicidad , Tricomas/metabolismo , Animales , Flores/genética , Solanum lycopersicum/genética , Sitios de Carácter Cuantitativo/genética , Tricomas/genéticaRESUMEN
MAIN CONCLUSIONS: Arabidopsis and Eutrema show similar stomatal sensitivity to drying soil. In Arabidopsis, larger metabolic adjustments than in Eutrema occurred, with considerable differences in the phytohormonal responses of the two species. Although plants respond to soil drying via a series of concurrent physiological and molecular events, drought tolerance differs greatly within the plant kingdom. While Eutrema salsugineum (formerly Thellungiella salsuginea) is regarded as more stress tolerant than its close relative Arabidopsis thaliana, their responses to soil water deficit have not previously been directly compared. To ensure a similar rate of soil drying for the two species, daily soil water depletion was controlled to 5-10% of the soil water content. While partial stomatal closure occurred earlier in Arabidopsis (Day 4) than Eutrema (from Day 6 onwards), thereafter both species showed similar stomatal sensitivity to drying soil. However, both targeted and untargeted metabolite analysis revealed greater response to drought in Arabidopsis than Eutrema. Early peaks in foliar phytohormone concentrations and different sugar profiles between species were accompanied by opposing patterns in the bioactive cytokinin profiles. Untargeted analysis showed greater metabolic adjustment in Arabidopsis with more statistically significant changes in both early and severe drought stress. The distinct metabolic responses of each species during early drought, which occurred prior to leaf water status declining, seemed independent of later stomatal closure in response to drought. The two species also showed distinct water usage, with earlier reduction in water consumption in Eutrema (Day 3) than Arabidopsis (Day 6), likely reflecting temporal differences in growth responses. We propose Arabidopsis as a promising model to evaluate the mechanisms responsible for stress-induced growth inhibition under the mild/moderate soil drying that crop plants are typically exposed to.
Asunto(s)
Arabidopsis/metabolismo , Brassicaceae/metabolismo , Sequías , Proteínas de Plantas/metabolismo , Arabidopsis/fisiología , Brassicaceae/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Análisis Multivariante , Oxidación-Reducción , Proteínas de Plantas/genética , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiologíaRESUMEN
Low atmospheric CO2 in recent geological time led to the evolution of carbon-concentrating mechanisms (CCMs) such as C4 photosynthesis in >65 terrestrial plant lineages. We know little about the impact of low CO2 on the Calvin-Benson cycle (CBC) in C3 species that did not evolve CCMs, representing >90% of terrestrial plant species. Metabolite profiling provides a top-down strategy to investigate the operational balance in a pathway. We profiled CBC intermediates in a panel of C4 (Zea mays, Setaria viridis, Flaveria bidentis, and F. trinervia) and C3 species (Oryza sativa, Triticium aestivum, Arabidopsis thaliana, Nicotiana tabacum, and Manihot esculenta). Principal component analysis revealed differences between C4 and C3 species that were driven by many metabolites, including lower ribulose 1,5-bisphosphate in C4 species. Strikingly, there was also considerable variation between C3 species. This was partly due to different chlorophyll and protein contents, but mainly to differences in relative levels of metabolites. Correlation analysis indicated that one contributory factor was the balance between fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, and Rubisco. Our results point to the CBC having experienced different evolutionary trajectories in C3 species since the ancestors of modern plant lineages diverged. They underline the need to understand CBC operation in a wide range of species.
Asunto(s)
Ciclo del Carbono , Magnoliopsida/metabolismo , Fotosíntesis , Especificidad de la EspecieRESUMEN
BACKGROUND AND AIMS: The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response. METHODS: A greenhouse drought stress study was conducted on Populus deltoides 'WV94' and the resulting metabolite profiles of leaves were determined by gas chromatography-mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (-0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (-1.26 MPa) drought in contrast to well-watered controls (-0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d. KEY RESULTS: The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin). CONCLUSIONS: The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.
Asunto(s)
Sequías , Populus , Deshidratación , Humanos , Hojas de la Planta , AguaRESUMEN
PURPOSE: Differences in resting energy expenditure (REE) between men and women mainly result from sex-related differences in lean body mass (LBM). So far, a little is known about whether REE and LBM are reflected by a distinct human metabolite profile. Therefore, we aimed to identify plasma and urine metabolite patterns that are associated with REE and LBM of healthy subjects. METHODS: We investigated 301 healthy male and female subjects (18-80 years) under standardized conditions in the cross-sectional KarMeN (Karlsruhe Metabolomics and Nutrition) study. REE was determined by indirect calorimetry and LBM by dual X-ray absorptiometry. Fasting blood and 24 h urine samples were analyzed by targeted and non-targeted metabolomics methods using GC × GC-MS, GC-MS, LC-MS, and NMR. Data were evaluated by predictive modeling of combined data using different machine learning algorithms, namely SVM, glmnet, and PLS. RESULTS: When evaluating data of men and women combined, we were able to predict REE and LBM with high accuracy (> 90%). This, however, was a clear effect of sex, which is supported by the high degree of overlap in identified important metabolites for LBM, REE, and sex, respectively. The applied machine learning algorithms did not reveal a metabolite pattern predictive of REE or LBM, when analyzing data for men and women, separately. CONCLUSIONS: We could not identify a sex independent predictive metabolite pattern for REE or LBM. REE and LBM have no impact on plasma and urine metabolite profiles in the KarMeN Study participants. Studies applying metabolomics in healthy humans need to consider sex specific data evaluation.
Asunto(s)
Metabolismo Basal/fisiología , Composición Corporal/fisiología , Metaboloma/fisiología , Absorciometría de Fotón , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia , Factores Sexuales , Adulto JovenRESUMEN
Unabsorbed copper accumulates in the hindgut of pigs that consume high levels of dietary copper, which enhances the coselection of antibiotic-resistant bacteria and is considered detrimental to the environment and to porcine health. In our study, a combination of 16S rRNA pyrosequencing and nontargeted metabolomics was used to investigate the microbiome-metabolome responses to dietary copper levels in the hindgut of suckling piglets. The results showed that the dietary copper level affected the abundance of several Clostridia genera and that the relative abundance of butyrate-producing bacteria, such as Coprococcus, Roseburia, and Acidaminococcus, was reduced in the 300 mg kg-1 (high) Cu group. Metabolomic analysis revealed that dietary copper levels affected protein and carbohydrate metabolites, protein biosynthesis, the urea cycle, galactose metabolism, gluconeogenesis, and amino acid metabolism (including the metabolism of arginine, proline, ß-alanine, phenylalanine, tyrosine, and methionine). Furthermore, Pearson's correlation analysis showed that the abundance levels of Coprococcus (family Lachnospiraceae) and operational taxonomic unit (OTU) 18 (family Ruminococcaceae) were positively correlated with energy metabolism pathways (gluconeogenesis, glycolysis, and the pentose phosphate pathway). The abundance of Streptococcus was negatively correlated with amino acid metabolism pathways (protein biosynthesis, glycine, serine, threonine, methionine, phenylalanine, and tyrosine metabolism), and OTU583 and OTU1067 (family Rikenellaceae) were positively correlated with amino acid metabolism pathways. These results suggest that the copper levels consumed by LC (low-copper group) versus HC (high-copper group) animals alter the composition of the gut microbiota and modulate microbial metabolic pathways, which may further affect the health of suckling piglets.
Asunto(s)
Cobre/administración & dosificación , Dieta/métodos , Microbioma Gastrointestinal/efectos de los fármacos , Metaboloma/efectos de los fármacos , Oligoelementos/administración & dosificación , Animales , Animales Recién Nacidos , Análisis Químico de la Sangre , Heces/química , Cromatografía de Gases y Espectrometría de Masas , Secuenciación de Nucleótidos de Alto Rendimiento , Metabolómica , Metagenómica , ARN Ribosómico 16S/genética , PorcinosRESUMEN
Conventional methods utilized for clinical diagnosis of gastrointestinal (GI) diseases have employed invasive medical procedures that cause stress, anxiety and pain to patients. These methods are often expensive, time-consuming, and require sophisticated chemical-analysis instruments and advanced modeling procedures to achieve diagnostic interpretations. This paper reviews recent applications of simpler, electronic-nose (e-nose) devices for the noninvasive early diagnosis of a wide range of GI diseases by collective analysis of headspace volatile organic compound (VOC)-metabolites from clinical samples to produce disease-specific aroma signatures (VOC profiles). A different "metabolomics" approach to GI disease diagnostics, involving identifications and quantifications of disease VOC-metabolites, are compared to the electronic-nose approach based on diagnostic costs, accuracy, advantages and disadvantages. The importance of changes in gut microbiome composition that result from disease are discussed relative to effects on disease detection. A new diagnostic approach, which combines the use of e-nose instruments for early rapid prophylactic disease-screenings with targeted identification of known disease biomarkers, is proposed to yield cheaper, quicker and more dependable diagnostic results. Some priority future research needs and coordination for bringing e-nose instruments into routine clinical practice are summarized.