RESUMEN
The widespread use of antibiotics drives the evolution of antimicrobial-resistant bacteria (ARB), threatening patients and healthcare professionals. Therefore, the development of novel strategies to combat resistance is recognized as a global healthcare priority. The two methods to combat ARB are development of new antibiotics or reduction in existing resistances. Development of novel antibiotics is a laborious and slow-progressing task that is no longer a safe reserve against looming risks. In this research, we suggest a method for reducing resistance to extend the efficacious lifetime of current antibiotics. Antimicrobial photodynamic therapy (aPDT) is used to generate reactive oxygen species (ROS) via the photoactivation of a photosensitizer. ROS then nonspecifically damage cellular components, leading to general impairment and cell death. Here, we test the hypothesis that concurrent treatment of bacteria with antibiotics and aPDT achieves an additive effect in the elimination of ARB. Performing aPDT with the photosensitizer methylene blue in combination with antibiotics chloramphenicol and tetracycline results in significant reductions in resistance for two methicillin-resistant Staphylococcus aureus (MRSA) strains, USA300 and RN4220. Additional resistant S. aureus strain and antibiotic combinations reveal similar results. Taken together, these results suggest that concurrent aPDT consistently decreases S. aureus resistance by improving susceptibility to antibiotic treatment. In turn, this development exhibits an alternative to overcome some of the growing MRSA challenge.
Asunto(s)
Farmacorresistencia Microbiana , Staphylococcus aureus Resistente a Meticilina , Fotoquimioterapia , Antibacterianos/farmacología , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Microbiana/efectos de la radiación , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno/farmacologíaRESUMEN
Tauopathies including Alzheimer's disease, are characterized by progressive cognitive decline, neurodegeneration, and intraneuronal aggregates comprised largely of the axonal protein Tau. It has been unclear whether cognitive deficits are a consequence of aggregate accumulation thought to compromise neuronal health and eventually lead to neurodegeneration. We use the Drosophila tauopathy model and mixed-sex populations to reveal an adult onset pan-neuronal Tau accumulation-dependent decline in learning efficacy and a specific defect in protein synthesis-dependent memory (PSD-M), but not in its protein synthesis-independent variant. We demonstrate that these neuroplasticity defects are reversible on suppression of new transgenic human Tau expression and surprisingly correlate with an increase in Tau aggregates. Inhibition of aggregate formation via acute oral administration of methylene blue results in re-emergence of deficient memory in animals with suppressed human Tau (hTau)0N4R expression. Significantly, aggregate inhibition results in PSD-M deficits in hTau0N3R-expressing animals, which present elevated aggregates and normal memory if untreated with methylene blue. Moreover, methylene blue-dependent hTau0N4R aggregate suppression within adult mushroom body neurons also resulted in emergence of memory deficits. Therefore, deficient PSD-M on human Tau expression in the Drosophila CNS is not a consequence of toxicity and neuronal loss because it is reversible. Furthermore, PSD-M deficits do not result from aggregate accumulation, which appears permissive, if not protective of processes underlying this memory variant.SIGNIFICANCE STATEMENT Intraneuronal Tau aggregate accumulation has been proposed to underlie the cognitive decline and eventual neurotoxicity that characterizes the neurodegenerative dementias known as tauopathies. However, we show in three experimental settings that Tau aggregates in the Drosophila CNS do not impair but rather appear to facilitate processes underlying protein synthesis-dependent memory within affected neurons.
Asunto(s)
Drosophila , Tauopatías , Animales , Humanos , Drosophila/metabolismo , Azul de Metileno , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Animales Modificados Genéticamente , Trastornos de la Memoria , Modelos Animales de EnfermedadRESUMEN
Methylene blue (MB) has been shown to reduce mortality and morbidity in vasoplegic patients after cardiac surgery. Though MB is considered to be safe, extravasation of MB leading to cutaneous toxicity has been reported. In this study, we sought to characterize MB-induced cutaneous toxicity and investigate the underlying mechanisms. To induce MB-induced cutaneous toxicity, we injected 64 adult male Sprague-Dawley rates with 200 µL saline (vehicle) or 1%, 0.1%, or 0.01% MB in the plantar hind paws. Paw swelling, skin histologic changes, and heat and mechanical hyperalgesia were measured. Injection of 1%, but not 0.1% or 0.01% MB, produced significant paw swelling compared to saline. Injection of 1% MB produced heat hyperalgesia but not mechanical hyperalgesia. Pain behaviors were unchanged following injections of 0.1% or 0.01% MB. Global transcriptomic analysis by RNAseq identified 117 differentially expressed genes (111 upregulated, 6 downregulated). Ingenuity Pathway Analysis showed an increased quantity of leukocytes, increased lipids, and decreased apoptosis of myeloid cells and phagocytes with activation of IL-1ß and Fos as the two major regulatory hubs. qPCR showed a 16-fold increase in IL-6 mRNA. Thus, using a novel rat model of MB-induced cutaneous toxicity, we show that infiltration of 1% MB into cutaneous tissue causes a dose-dependent pro-inflammatory response, highlighting potential roles of IL-6, IL-1ß, and Fos. Thus, anesthesiologists should administer dilute MB intravenously through peripheral venous catheters. Higher concentrations of MB (1%) should be administered through a central venous catheter to minimize the risk of cutaneous toxicity.
Asunto(s)
Modelos Animales de Enfermedad , Hiperalgesia , Inflamación , Azul de Metileno , Ratas Sprague-Dawley , Piel , Animales , Masculino , Azul de Metileno/farmacología , Azul de Metileno/administración & dosificación , Hiperalgesia/patología , Hiperalgesia/inducido químicamente , Inflamación/patología , Inflamación/inducido químicamente , Piel/efectos de los fármacos , Piel/patología , Relación Dosis-Respuesta a Droga , Calor , Ratas , Interleucina-1beta/metabolismo , Interleucina-1beta/genéticaRESUMEN
Malaria tropica, caused by the parasite Plasmodium falciparum (P. falciparum), remains one of the greatest public health burdens for humankind. Due to its pivotal role in parasite survival, the energy metabolism of P. falciparum is an interesting target for drug design. To this end, analysis of the central metabolite adenosine triphosphate (ATP) is of great interest. So far, only cell-disruptive or intensiometric ATP assays have been available in this system, with various drawbacks for mechanistic interpretation and partly inconsistent results. To address this, we have established fluorescent probes, based on Förster resonance energy transfer (FRET) and known as ATeam, for use in blood-stage parasites. ATeams are capable of measuring MgATP2- levels in a ratiometric manner, thereby facilitating in cellulo measurements of ATP dynamics in real-time using fluorescence microscopy and plate reader detection and overcoming many of the obstacles of established ATP analysis methods. Additionally, we established a superfolder variant of the ratiometric pH sensor pHluorin (sfpHluorin) in P. falciparum to monitor pH homeostasis and control for pH fluctuations, which may affect ATeam measurements. We characterized recombinant ATeam and sfpHluorin protein in vitro and stably integrated the sensors into the genome of the P. falciparum NF54attB cell line. Using these new tools, we found distinct sensor response patterns caused by several different drug classes. Arylamino alcohols increased and redox cyclers decreased ATP; doxycycline caused first-cycle cytosol alkalization; and 4-aminoquinolines caused aberrant proteolysis. Our results open up a completely new perspective on drugs' mode of action, with possible implications for target identification and drug development.
Asunto(s)
Adenosina Trifosfato , Antimaláricos , Transferencia Resonante de Energía de Fluorescencia , Plasmodium falciparum , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Adenosina Trifosfato/metabolismo , Antimaláricos/farmacología , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Humanos , Quinina/farmacología , Doxiciclina/farmacología , Artemisininas/farmacología , Cloroquina/farmacología , Concentración de Iones de HidrógenoRESUMEN
Peroxydisulfate (PDS), a popular molecule that is able to oxidize organic compounds, is garnering attention across various disciplines of chemistry, materials, pharmaceuticals, environmental remediation, and sustainability. Methylene blue (MB) is a model pollutant that can be readily oxidized by PDS-derived radicals. Unlike the conventional degradation process, here a reversible "dissolution-precipitation" phenomenon is discovered, triggered by a simple mixing of PDS and MB, revealing a novel application of PDS in fabricating self-assembled ultra-long nanowires with MB. This phenomenon is unique to PDS and MB, different from the traditional salting out or self-aggregation of dyes. Formation of nanowires facilitated by electrostatic interaction between S+ and O- moieties and π-π stacking is reversible, controlled by temperature and the solvent polarity. MB1-PDS-MB2 configuration (MB: PDS = 2:1) is theoretically predicted by density functional theory (DFT) calculations and further validated by stoichiometric ratios of carbon, sulfur, and nitrogen in the obtained precipitates (MBO). This untapped feature of PDS enables the development of colorimetric quantitative detection of PDS and sustainable dye recycling. Far more than those demonstrated cases, the potentialities of MBO as a nanomaterial merit further exploration.
RESUMEN
The use of light as abundant, renewable, and clean energy source to boost lytic polysaccharide monooxygenase (LPMO) reactions represents an exciting and yet under-explored opportunity. Herein we demonstrated that photosensitizers, commonly used in photodynamic therapy, which act through the photocatalytic Type I mechanism can drive the oxidation of PASC by LPMOs, whereas Type II photosensitizers are not capable of promoting the LPMO activity. We analyzed Type I and Type II photosensitizers (methylene blue and tetraiodide salt of meso-tetrakis-(4-N-methylpyridyl) porphyrin, respectively) and demonstrated that, even without an addition of external reductant, Type I was capable of boosting Thermothelomyces thermophila MtLPMO9A activity in the presence of light. We also evaluated the photobiosystem in the presence and/or absence of molecular oxygen (O2) and hydrogen peroxide (H2O2), and investigated the role of superoxide radical in the methylene blue fueled reactions. Furthermore, we demonstrated that sodium bisulfite (NaHSO3), a chemical scavenger of H2O2, acts by safeguarding the enzyme from oxidative damage caused by accumulation of H2O2 early in photosensitizer-driven LPMO reactions. Finally, the results of the present work demonstrated that light-driven LPMO reactions mediated photodynamic therapy (PDT) Type I photosensitizers, which also includes molecules such as curcumin and riboflavin, is a general phenomenon.
RESUMEN
In this review, we compare different refractory anaphylaxis (RA) management guidelines focusing on cardiovascular involvement and best practice recommendations, discuss postulated pathogenic mechanisms underlining RA and highlight knowledge gaps and research priorities. There is a paucity of data supporting existing management guidelines. Therapeutic recommendations include the need for the timely administration of appropriate doses of aggressive fluid resuscitation and intravenous (IV) adrenaline in RA. The preferred second-line vasopressor (noradrenaline, vasopressin, metaraminol and dopamine) is unknown. Most guidelines recommend IV glucagon for patients on beta-blockers, despite a lack of evidence. The use of methylene blue or extracorporeal life support (ECLS) is also suggested as rescue therapy. Despite recent advances in understanding the pathogenesis of anaphylaxis, the factors that lead to a lack of response to the initial adrenaline and thus RA are unclear. Genetic factors, such as deficiency in platelet activating factor-acetyl hydrolase or hereditary alpha-tryptasaemia, mastocytosis may modulate reaction severity or response to treatment. Further research into the underlying pathophysiology of RA may help define potential new therapeutic approaches and reduce the morbidity and mortality of anaphylaxis.
Asunto(s)
Anafilaxia , Guías de Práctica Clínica como Asunto , Humanos , Anafilaxia/terapia , Anafilaxia/diagnóstico , Anafilaxia/tratamiento farmacológico , Anafilaxia/etiología , Manejo de la Enfermedad , Epinefrina/uso terapéutico , Vasoconstrictores/uso terapéuticoRESUMEN
High-contrast photoacoustic sensing imaging (PASI) was greatly determined by optical absorption changes of the absorbers usually enabled by activatable probes via controllably converting the absorbed electromagnetic energy to ultrasound waves. However, most of current photoacoustic probes still suffer from limited imaging contrast towards specific species because of their small absorption spectral changes in the near infrared (NIR) region. Herein, we developed a methylene blue-based photoacoustic probe with its NIR optical absorption totally caged, which could afford dramatical "OFF-to-ON" absorption transition for high-contrast photoacoustic imaging towards the localized cysteine. The rationally designed methylene blue-based probe for cysteine (MB-Cys) would keep in off state with almost no absorption in NIR region, while upon activated by cysteine through cyclization reaction with acrylates, it would reconstruct the π-conjugation system to release the free methylene blue with strong absorption centered at 665â nm (>130-fold enhancement). The unique responsive behavior could enable the PASI for photoacoustic mapping the cysteine in orthotopic breast cancer in a high-contrast manner. Therefore, this work established an up-to-date strategy to originally eliminate the background photoacoustic signal for PASI to accurately monitor cysteine inâ vivo.
Asunto(s)
Neoplasias , Técnicas Fotoacústicas , Azul de Metileno , Cisteína , Técnicas Fotoacústicas/métodos , Diagnóstico por Imagen , Imagen ÓpticaRESUMEN
Cardiovascular diseases represent the major cause of morbidity mainly due to chronic heart failure. Epicardial (EAT) and perivascular adipose tissues (PVAT) are considered major contributors to the pathogenesis of cardiometabolic pathologies. Monoamine oxidases (MAOs) are mitochondrial enzymes recognized as sources of reactive oxygen species (ROS) in cardiometabolic pathologies. Methylene blue (MB) is one of the oldest protective agents, yet no data are available about its effects on adipose tissue. The present pilot study was aimed at assessing the effects of MB: (i) on MAO expression and (ii) oxidative stress in EAT and PVAT harvested from patients with heart failure subjected to cardiac surgery (n = 25). Adipose tissue samples were incubated with MB (0.1 µM/24 h) and used for the assessment of MAO gene and protein expression (qPCS and immune fluorescence) and ROS production (confocal microscopy and spectrophotometry). The human cardiovascular adipose tissues contain both MAO isoforms, predominantly MAO-A. Incubation with MB reduced MAOs expression and oxidative stress; co-incubation with serotonin, the MAO-A substrate, further augmented ROS generation, an effect partially reversed by MB. In conclusion, MAO-A is the major isoform expressed in EAT and PVAT and contribute to local oxidative stress; both effects can be mitigated by methylene blue.
RESUMEN
INTRODUCTION: For patients with catecholamine-resistant vasoplegic syndrome (VS) during liver transplantation (LT), treatment with methylene blue (MB) and/or hydroxocobalamin (B12) has been an acceptable therapy. However, data on the effectiveness of B12 is limited to case reports and case series. METHODS: We retrospectively reviewed records of patients undergoing LT from January 2016 through March 2022. We identified patients with VS treated with vasopressors and MB, and abstracted hemodynamic parameters, vasopressor requirements, and B12 administration from the records. The primary aim was to describe the treatment efficacy of B12 for VS refractory to vasopressors and MB, measured as no vasopressor requirement at the conclusion of the surgery. RESULTS: One hundred one patients received intraoperative VS treatment. For the 35 (34.7%) patients with successful VS treatment, 14 received MB only and 21 received both MB and B12. Of the 21 patients with VS resolution after receiving both MB and B12, 17 (89.5%) showed immediate, but transient, hemodynamic improvements at the time of MB administration and later showed sustained response to B12. CONCLUSION: Immediate but transient hemodynamic response to MB in VS patients during LT supports the diagnosis of VS and should prompt B12 administration for sustained treatment response.
Asunto(s)
Trasplante de Hígado , Vasoplejía , Humanos , Azul de Metileno/uso terapéutico , Hidroxocobalamina/uso terapéutico , Vasoplejía/tratamiento farmacológico , Vasoplejía/etiología , Estudios Retrospectivos , Trasplante de Hígado/efectos adversos , VasoconstrictoresRESUMEN
The fashion industry's reliance on dyes contributes significantly to environmental pollution, which disturbs the ecological balance. To address this issue, we used ZnO/Mg combined with activated carbon (AC) at various concentrations (0.1 g, 0.5 g, and 1 g), which were synthesized via sol-gel and mechanical alloying processes. The analysis of X-ray diffraction shows reduced crystallite size, with d-spacing change ( â d â ) for ZnO/Mg/AC (0.5 g) and ( â d â ) for ZnO/Mg/AC (1 g), respectively. The results of the IR spectrum indicated the main vibrations is MgO and Zn-O bonds at wave numbers 673 cm-1 and 467 cm-1. It was found that ZnO/Mg/AC (1 g) shows high degradation performance D % : 86.15% as a consequence of reduced crystallite size: 22.67 nm, decreased skin depth: 0.002 cm, widening of optical phonon vibration ( Δ ( LO - TO ) ): 252 cm-1 and increased E g : 4.6 eV as a function AC variation. Moreover, the finding of high photocatalytic performance ≥ 80% for 0.25 mL MB dissolved in 250 mL distilled water is obtained from all composites. Based on these results, ZnO/Mg/AC shows potential as a photocatalyst to solve the MB waste problem.
RESUMEN
Removal of organic dyes like methylene blue (MB) from industrial effluents serves as potential source of potable water. Photocatalytic degradation using sustainable catalyst is deemed to be an affordable solution. In this work, Nd2O3/MgO nanocomposite with different compositions (1, 3, and 5wt% Nd2O3 with MgO) have been achieved using hydrothermal synthesis and characterized extensively. Interestingly, increasing Nd2O3 proportion (1-5%) enhances light absorption, and decreases band gap and electron-hole recombination. The efficacy of the photocatalysts is tested with the degradation of MB dye, through optimizing Nd2O3/MgO proportion, contact time, catalyst dose, and pH. Interestingly, control experiments reveal that 5wt% Nd2O3/MgO achieve 99.6% degradation of MB in 90 min at pH 7, compared to 88.8% with bare MgO under same condition. Kinetic data show that 5wt% Nd2O3/MgO exhibits ca. 3 times higher degradation rate compared to MgO. For the first time, our work enable MgO-based sustainable photocatalyst development with minimum (5 wt%) rare-earth combination to achieve excellent photocatalytic degradation performance.
RESUMEN
Personal protective equipment (PPE) reuse, first recommended in the context of the SARS-CoV-2 pandemic, can mitigate shortages in crisis situations and can greatly reduce the environmental impact of typically single-use PPE. Prior to safe reuse, PPE must be sanitized and contaminating pathogens-in current circumstances viruses in particular-must be inactivated. However, many established decontamination procedures are not equitable and remain unavailable in low-resource settings. In mid-2020, an interdisciplinary consortium of researchers first studied the potential of implementing cheap and easy-to-use antimicrobial photodynamic inactivation (aPDI) using methylene blue as photosensitizer to decontaminate face masks and filtering facepiece respirators. In this perspective piece, we describe the development of this novel method, discuss recent advances, and offer insights into how equitable PPE decontamination via methylene blue-based aPDI may be integrated into circular economy policies in the healthcare sector.
Asunto(s)
Antiinfecciosos , COVID-19 , Dispositivos de Protección Respiratoria , Humanos , COVID-19/prevención & control , Azul de Metileno , Descontaminación/métodos , Equipo de Protección Personal , Atención a la SaludRESUMEN
This research aims to develop relatively new membranes from starch biopolymer incorporated with different concentrations (0, 5, 10, 15, 20% w/w of solid starch) of chitosan nanoparticles (CNP) that can be used for water treatment. The membranes were fabricated using the solvent casting method while the CNP was produced using the ionic gelation method. The membranes were characterized in terms of morphology, porosity, water vapor permeability (WVP), and water contact angle. The application of the membranes to treat water was demonstrated on methylene blue solution because methylene blue is a commonly used dye in many industries. It was found that the starch/10% CNP membrane was the optimum membrane for methylene blue dye treatment because the membrane exhibits a smooth surface, high WVP (1.67 × 10-10g Pa-1h-1m-1), high porosity (59.92%), low water contact angle value (44.8°), and resulted in the highest percentage removal of methylene blue (94.0%) after the filtration. After filtration, the starch/10% CNP membrane was still in good condition without breakage. In conclusion, the starch/CNP membranes produced in this study are promising for sustainable and environmentally friendly water treatment, especially for water containing methylene blue dye. This research aligns with current thematic trends in bionanohybrid composite materials utilization, offering innovative solutions for addressing water pollution challenges.
RESUMEN
The increasing use of nanomaterials in consumer products is expected to lead to environmental contamination sometime soon. As water pollution is a pressing issue that threatens human survival and impedes the promotion of human health, the search for adsorbents for removing newly identified contaminants from water has become a topic of intensive research. The challenges in the recyclability of contaminated water continue to campaign the development of highly reusable catalysts. Although exfoliated 2D MXene sheets have demonstrated the capability towards water purification, a significant challenge for removing some toxic organic molecules remains a challenge due to a need for metal-based catalytic properties owing to their rapid response. In the present study, we demonstrate the formation of hybrid structure AuNPs@MXene (Mo2CTx) during the sensitive detection of Au nanoparticle through MXene sheets without any surface modification, and subsequently its applications as an efficient catalyst for the degradation of 4-nitrophenol (4-NP), methyl orange (MO), and methylene blue (MB). The hybrid structure (AuNPs@MXene) reveals remarkable reusability for up to eight consecutive cycles, with minimal reduction in catalytic efficiency and comparable apparent reaction rate constant (Kapp) values for 4-NP, MB, and MO, compared to other catalysts reported in the literature.
RESUMEN
INTRODUCTION: Discussions about the optimal lymph node (LN) count and its therapeutic consequences have persisted over time. The final LN count in colorectal tissues is affected by a variety of variables (patient, tumor, operation, pathologist, immune response). Methylene blue (MB) intra-arterial injection is a simple and inexpensive procedure that can be used to enhance lymph node count. AIM: Analyze whether there is a statistically significant difference between intra-arterial methylene blue injection and conventional dissection for the quantification of lymph nodes and determine if there is a variation in the quality of lymph node acquisition. METHODS AND RESULTS: Between 2015 and 2022, we conducted a retrospective analysis of colon cancer specimens. Data on the tumor's features, the number of lymph nodes, the number of lymph nodes that were positive, and other factors had been collected. The number of identified lymph nodes was highly significantly improved in the study group (P < 0.05). There is not a significant statistical difference between groups regarding the metastatic lymph node harvest. The group with injection of intra-arterial methylene blue shows a significantly decreased (P < 0.05) of the of cases with less than 12 lymph nodes recovered comparing with the control group. CONCLUSION: Colon cancer specimens can be easily evaluated concerning lymph nodes using the methylene blue method. Therefore, we strongly advise this approach as a standard procedure in the histological evaluation of colon cancer specimens in order to maximize the identification of lymph nodes. However, the detection of metastatic lymph nodes was unaffected significantly.
Asunto(s)
Neoplasias del Colon , Azul de Metileno , Humanos , Azul de Metileno/administración & dosificación , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Ganglios Linfáticos/patología , Metástasis Linfática , Anciano de 80 o más Años , AdultoRESUMEN
Septic shock typically requires the administration of vasopressors. Adrenergic agents remain the first choice, namely norepinephrine. However, their use to counteract life-threatening hypotension comes with potential adverse effects, so that non-adrenergic vasopressors may also be considered. The use of agents that act through different mechanisms may also provide an advantage. Nitric oxide (NO) is the main driver of the vasodilation that leads to hypotension in septic shock, so several agents have been tested to counteract its effects. The use of non-selective NO synthase inhibitors has been of questionable benefit. Methylene blue, an inhibitor of soluble guanylate cyclase, an important enzyme involved in the NO signaling pathway in the vascular smooth muscle cell, has also been proposed. However, more than 25 years since the first clinical evaluation of MB administration in septic shock, the safety and benefits of its use are still not fully established, and it should not be used routinely in clinical practice until further evidence of its efficacy is available.
Asunto(s)
Hipotensión , Choque Séptico , Humanos , Azul de Metileno/efectos adversos , Choque Séptico/tratamiento farmacológico , Choque Séptico/metabolismo , Hipotensión/tratamiento farmacológico , Guanilil Ciclasa Soluble , Norepinefrina , Vasoconstrictores/efectos adversosRESUMEN
Green synthesis of iron oxide nanoparticles using plant extracts is of tremendous interest owing to its cost effectiveness, ecofriendly and high efficiency compared to physical and chemical approaches. In the current study, we describe a green approach for producing iron oxide nanoparticles utilizing Polyalthia korintii aqueous leaf extract (PINPs). The prepared PINPs were assessed of their biological and dye degradation potentials. The physico-chemical characterization of PINPs using UV-Visible spectrophotometer, Fourier Transform Infrared Spectroscopy, X-Ray Diffraction studies, Field emission Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy analysis confirmed the synthesized sample comprised of iron oxide entity, predominantly spherical with the size range of 40-60 nm. Total Phenolic Content of PINPs is 59.36 ± 1.64 µg GAE/mg. The PINPs exhibited 89.78 ± 0.07% DPPH free radical scavenging and 28.7 ± 0.21% ABTS cation scavenging activities. The antibacterial activities were tested against different gram-positive and gram-negative bacteria and PINPs were more effective against Enterococcus faecalis and Klebsiella pneumoniae. Cytotoxicity of PINPs against K562 and HCT116 were measured and IC50 values were found to be 84.99 ± 4.3 µg/ml and 79.70 ± 6.2 µg/ml for 48 h respectively. The selective toxicity of PINPs was demonstrated by their lowest activity on lymphocytes, HEK293 cells, and erythrocytes. The toxicity (LC 50 values) against first, second, third and fourth instar larvae of Culex quinquefasciatus was 40 ± 1.5 mg/mL, 45 ± 0.8 mg/mL, 99 ± 2.1 mg/mL and 120 ± 3.5 mg/mL respectively. Finally, PINPs were utilized to as a catalyst for removal of textile dyes like Methylene blue and methyl orange in a fenton-like reaction. The results showed 100% dye degradation efficiency in a fenton like reaction within 35 min. Thus, the green synthesized PINPs exhibit antioxidant, antibacterial, antiproliferative, larvicidal and dye degradation potentials, indicating their suitability for biological and environmental applications.
Asunto(s)
Antibacterianos , Compuestos Férricos , Extractos Vegetales , Hojas de la Planta , Polyalthia , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Humanos , Polyalthia/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antibacterianos/aislamiento & purificación , Animales , Compuestos Férricos/química , Compuestos Férricos/farmacología , Pruebas de Sensibilidad Microbiana , Colorantes/química , Colorantes/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología , Nanopartículas/químicaRESUMEN
This study addresses the urgent need for practical solutions to industrial water contamination. Utilizing Algerian Bentonite as an adsorbent due to its regional prevalence, we focused on the efficiency of the Bentonite/Sodium dodecylbenzene sulfonate (SDBS) matrix in Methylene Blue (MB) removal. The zero-charge point and IR spectroscopy characterized the adsorbent. Acidic pH facilitated SDBS adsorption on Bentonite, achieving equilibrium in 30 min with a pseudo-second-order model. The UPAC and Freundlich model indicated a qmax of 25.97 mg/g. SDBS adsorption was exothermic at elevated temperatures. The loaded Bentonite exhibited excellent MB adsorption (pH 3-9) with PSOM kinetics. Maximum adsorption capacity using IUPAC and GILES-recommended isotherms was qmax = 23.54 mg/g. The loaded Bentonite's specific surface area was 70.01 m2/g, and the Sips model correlated well with experimental data (R2 = 0.98). This study highlights adsorption, mainly Bentonite/SDBS matrices, as a promising approach for remediating polluted areas by efficiently capturing and removing surfactants and dyes, contributing valuable insights to address industrial water contamination challenges.
Asunto(s)
Bentonita , Contaminantes Químicos del Agua , Bentonita/química , Azul de Metileno , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Adsorción , Cinética , AguaRESUMEN
Graphene-based materials are gaining increasing attention towards their use in manufacturing and environmental applications. In this context, multi-layer graphene (MG) has been recently applied for the adsorption of contaminants from water resulting in promising results. However, the extreme lightness of this material often makes it difficult to handle due to its potential dispersion in the surrounding environment as well as to its transport and loss with the effluent. In this study, a novel granular material was synthesized by embedding MG into an alginate matrix, resulting in the so-called granular MG (GMG). This material was tested for the adsorption of methylene blue (MB) from water, which is a typical dye used in textile industries and must be removed from the effluent. GMG materials with different MG contents (5 and 20 %) were compared with MG and a commercial adsorbent to assess their adsorption capacity and the most performing material was selected for in-depth physical and chemical characterization. The structural, surface, kinetic, isotherm, and thermodynamic properties, the pH and temperature dependence, as well as the regeneration and reuse of GMG 5% were investigated through batch adsorption tests under different operating conditions. The study reveals that GMG 5% has a superior adsorption capacity compared to the tested materials and can be considered as a promising alternative to commercial carbon-based materials according to techno-economic considerations.