Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mol Cell ; 75(2): 340-356.e10, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31253575

RESUMEN

The microRNAs encoded by the miR-17∼92 polycistron are commonly overexpressed in cancer and orchestrate a wide range of oncogenic functions. Here, we identify a mechanism for miR-17∼92 oncogenic function through the disruption of endogenous microRNA (miRNA) processing. We show that, upon oncogenic overexpression of the miR-17∼92 primary transcript (pri-miR-17∼92), the microprocessor complex remains associated with partially processed intermediates that aberrantly accumulate. These intermediates reflect a series of hierarchical and conserved steps in the early processing of the pri-miR-17∼92 transcript. Encumbrance of the microprocessor by miR-17∼92 intermediates leads to the broad but selective downregulation of co-expressed polycistronic miRNAs, including miRNAs derived from tumor-suppressive miR-34b/c and from the Dlk1-Dio3 polycistrons. We propose that the identified steps of polycistronic miR-17∼92 biogenesis contribute to the oncogenic re-wiring of gene regulation networks. Our results reveal previously unappreciated functional paradigms for polycistronic miRNAs in cancer.


Asunto(s)
Carcinogénesis/genética , MicroARNs/genética , Procesamiento Postranscripcional del ARN/genética , Proteínas de Unión al Calcio/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Yoduro Peroxidasa/genética , Proteínas de la Membrana/genética , MicroARNs/biosíntesis , Conformación de Ácido Nucleico
2.
IUBMB Life ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143849

RESUMEN

The purpose of this study was to analyze the mechanism by which irisin affects ß-cell pyroptosis in type 2 diabetes mellitus (T2DM). The in vivo T2DM model was established by raised with high-fat diet and intraperitoneally injection of streptozocin. Min6 cells were divided into four groups: negative control (NC), high glucose (HG), HG + irisin, and HG + irisin+3-MA. The cell viability was determined by CCK-8 assay. Dual-luciferase gene reporter assay was conducted to confirm the binding between miR-19b-3p and SOCS3. The expression level of FNDC5 and GSDMD was visualized using the immunofluorescence assay. The protein level of FNDC5, Beclin1, LC3II/I, NLRP3, cleaved-caspase-1, GSDMD-N, STAT3, p-STAT3, and SOCS3 was determined by Western blotting. The secretion of irisin, lactate dehydrogenase (LDH), and insulin was checked by ELISA. In vivo results showed that pathological changes in islet tissues with declined number of ß cells, elevated FBG value, decreased FIN and HOMA-ß value, elevated autophagy-associated proteins expressions, and activated NLRP3 signaling in T2DM mice, which were dramatically reversed by FNDC5 overexpression. Furthermore, the declined level of miR-19b-3p and p-STAT3, as well as the upregulation of SOCS3, was greatly rescued by FNDC5 overexpression. The in vitro data confirmed the binding site between SOCS3 and miR-19b-3p. SOCS3 was downregulated and p-STAT3 was upregulated in miR-19b-3p mimic-treated Min6 cells. In HG-stimulated Min6 cells, the elevated cell viability, increased production of insulin, decreased release of LDH, and inactivated NLRP3 signaling induced by irisin were abolished by miR-19b-3p inhibitor and STAT3 inhibitor. The increased level of autophagy-related proteins and activated SOCS3/STAT3 axis induced by irisin in HG-stimulated Min6 cells were abolished by miR-19b-3p inhibitor. The inhibitory effect of irisin against NLRP3 signaling in HG-stimulated Min6 cells was abrogated by 3-MA. In conclusion, irisin alleviated the pyroptosis of ß cells in T2DM by inhibiting NLRP3 signaling through miR-19b-3p/SOCS3/STAT3 axis mediated autophagy.

3.
Mol Cell Biochem ; 479(4): 951-961, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37256444

RESUMEN

Dihydroartemisinin (DHA) inhibits restenosis following balloon angioplasty. However, data on the mechanisms of DHA activity in restenosis remains scant. Here, we investigated the role of circRNAs in mediating the inhibitory activity of DHA in neointimal formation. We used total RNA sequencing data to profile the expression of mRNA, circRNA and small RNA in sham, vascular balloon injury (VBI) and DHA-treated groups. CCK8 and EdU assays were employed to analyze cell proliferation, while qRT-PCR and Western blot were used to analyze the RNA or protein expression. In addition, we used RNA immunoprecipitation and luciferase reporter assay to assess the binding of circHSPA4 with miR-19a-5p. RNA sequencing demonstrated that circHSPA4 was upregulated in VBI. Treatment with DHA effectively suppressed the upregulation of the circHSPA4. In addition, analysis of platelet-derived growth family factor bb (PDGFbb)-induced HA-VSMCs showed upregulation of circHSPA4, which was associated with cell proliferation and differentiation. CircHSPA4 was shown to induce dedifferentiation and proliferation of smooth muscle cells. PDGFBB-induced overexpression of CircHSPA4 in HA-VSMCs led to suppression of miR-19a-5p, a phenomenon that was reversed by DHA, in concentration-dependent fashion. In addition, miR-19a-5p reduced the dedifferentiation and proliferation of the smooth muscle cells. Our data demonstrated that CircHSPA4 regulates proliferation and differentiation of smooth muscle cells. DHA and miR-19a-5p modulates CircHSPA4 and can be used as coated drugs on balloon catheter to improve the success rate of vascular remodeling.


Asunto(s)
Angioplastia de Balón , Artemisininas , MicroARNs , Lesiones del Sistema Vascular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Músculo Liso Vascular/metabolismo , Células Cultivadas , Becaplermina/metabolismo , Becaplermina/farmacología , Proliferación Celular/genética , Miocitos del Músculo Liso/metabolismo , Lesiones del Sistema Vascular/metabolismo , Movimiento Celular/genética
4.
Future Oncol ; 20(21): 1479-1493, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38861304

RESUMEN

Aim: The present study aimed to figure out the potential role of exosomal microRNAs, and their targeted genes in HNC detection/diagnosis.Methods: In the present study, exosomes were extracted from the serum samples of 400 HNC patients and 400 healthy controls. Exosomes were characterized using TEM, NTA, TEM-immunogold labeling and ELISA. Quantitative PCR was used to measure the expression level of exosomal miRNA-19a, miRNA-19b and targeted genes SMAD2 and SMAD4 in HNC patients and controls.Results: The deregulation of miR-19a (p < 0.01), miR-19b (p < 0.03), SMAD2 (p < 0.04) and SMAD4 (p < 0.04) was observed in HNC patients vs controls.Conclusion: ROC curve and Kaplan-Meier analysis showed the good diagnostic/prognostic value of selected exosomal microRNAs and related genes in HNC patients.


[Box: see text].


Asunto(s)
Biomarcadores de Tumor , Exosomas , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello , MicroARNs , Humanos , Exosomas/genética , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/sangre , Femenino , Masculino , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/sangre , Neoplasias de Cabeza y Cuello/diagnóstico , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Pronóstico , Proteína Smad4/genética , Adulto , Estudios de Casos y Controles , Proteína Smad2/genética , Anciano , Estimación de Kaplan-Meier , Curva ROC
5.
Cancer Cell Int ; 23(1): 58, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013587

RESUMEN

The incidence of lung cancer (LC) in chronic obstructive pulmonary disease (COPD) patients is dozens of times higher than that in patients without COPD. Elevated activity of nuclear factor-k-gene binding (NF-κB) was found in lung tissue of patients with COPD, and the continuous activation of NF-κB is observed in both malignant transformation and tumor progression of LC, suggesting that NF-κB and its regulators may play a key role in the progression of LC in COPD patients. Here, we report for the first time that a key long non-coding RNA (lncRNA)-ICL involved in the regulation of NF-κB activity in LC tissues of COPD patients. The analyses showed that the expression of ICL significantly decreased in LC tissues of LC patients with COPD than that in LC tissues of LC patients without COPD. Functional experiments in vitro showed that exogenous ICL only significantly inhibited the proliferation, invasion and migration in primary tumor cells of LC patients with COPD compared to LC patients without COPD. Mechanism studies have shown that ICL could suppress the activation of NF-κB by blocking the hsa-miR19-3p/NKRF/NF-κB pathway as a microRNA sponge. Furthermore, In vivo experiments showed that exogenous ICL effectively inhibited the growth of patient-derived subcutaneous tumor xenografts (PDX) of LC patients with COPD and significantly prolonged the survival time of tumor-bearing mice. In a word, our study shows that the decrease of ICL is associated with an increased risk of LC in patients with COPD, ICL is not only expected to be a new therapeutic target for LC in COPD patients, but also has great potential to be used as a new marker for evaluating the occurrence, severity stratification and prognosis of LC in patients with COPD.

6.
Neurochem Res ; 48(3): 874-884, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36369428

RESUMEN

Hypoxic-ischemic encephalopathy (HIE) is a detrimental factor in infant death and chronic disease. The specific pathogenesis is not entirely clear. Therefore, exploring the pathogenesis of HIE is critical. The expression of miR-19b-3p and SOX6 in umbilical blood of HIE patients was detected by qRT-PCR assay. HT22 cells were triggered with oxygen-glucose deprivation/reoxygenation (OGD/R) to construct the HIE cell model. Cell Counting Kit-8 (CCK-8) assay was used to estimate viability. SOD and MDA levels were detected by enzyme linked immunosorbent assay. Flow cytometry was implemented to ascertain neurocyte apoptosis. Cellular ß-catenin immunofluorescence staining was used to detect the expression and distribution of ß-catenin protein. Wnt signaling pathway activation was detected by TOPFlash/FOPFlash luciferase reporter assay. The targeting correlation of SOX6 and miR-19b-3p was corroborated by dual-luciferase reporter gene assay and RNA pull-down assay. MiR-19b-3p expression was once down-regulated, whilst SOX6 expression was up-regulated in HIE patients. MiR-19b-3p overexpression promoted cell proliferation, repressed cell apoptosis, oxidative stress response, and Wnt/ß-catenin pathway activation in OGD/R-triggered HT22 cells. MiR-19b-3p negatively regulated SOX6 expression. SOX6 knockdown improved OGD/R-triggered HT22 cells injury via Wnt/ß-catenin pathway activation. MiR-19b-3p overexpression suppressed OGD/R-triggered HT22 cell injury via inhibiting SOX6 expression via activating Wnt/ß-catenin pathway.


Asunto(s)
Hipoxia-Isquemia Encefálica , MicroARNs , Humanos , Vía de Señalización Wnt , beta Catenina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Luciferasas/genética , Luciferasas/metabolismo , Isquemia , Apoptosis/genética , Factores de Transcripción SOXD/metabolismo
7.
Future Oncol ; 19(22): 1563-1576, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37577782

RESUMEN

Aim: The current study was designed to evaluate the diagnostic significance of the exosomal miRNAs miR-19a and miR-19b and the PTEN gene in brain tumor patients versus controls. Methods: Exosomes were extracted from the serum samples of 400 brain tumor patients and 400 healthy controls. The exosomes were characterized by scanning electron microscopy, dynamic light scattering and ELISA. Quantitative PCR was used to analyze selected exosome miRNAs and gene expression levels. Results: Analysis showed significant deregulated expression of miR-19a (p < 0.0001), miR-19b (p < 0.0001) and PTEN (p < 0.001) in patients versus controls. Spearman correlation showed a significant correlation among the selected exosomal miRNAs and the PTEN gene. Conclusion: Receiver operating characteristic curve analysis showed the good diagnostic value of exosomal miRNAs and the PTEN gene in brain tumor patients.


Asunto(s)
Neoplasias Encefálicas , Exosomas , MicroARNs , Humanos , MicroARNs/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Exosomas/genética , Exosomas/metabolismo , Fosfohidrolasa PTEN/genética
8.
J Nanobiotechnology ; 21(1): 459, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037135

RESUMEN

OBJECTIVE: This study aims to investigate the mechanism by which biomimetic composite hydrogels loaded with bone marrow mesenchymal stem cells (BMSCs) derived microRNA-19b-3p/WWP1 axis through extracellular vesicles (EVs) affect the new bone formation in rat bone defects. METHODS: First, synthesize the bionic composite hydrogel Gel-OCS/MBGN. Characterize it through field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and FTIR. Then, conduct performance tests such as rheology, dynamic mechanical analysis, in vitro mineralization, and degradation. Rat BMSCs were selected for in vitro cell experiments, and EVs derived from BMSCs were obtained by differential centrifugation. The EVs were loaded onto Gel-OCS/MBGN to obtain Gel-OCS/MBGN@EVs hydrogel. Cell viability and proliferation were detected by live/dead cell staining and CCK-8 assay, respectively. ALP and ARS staining was used to evaluate the osteogenic differentiation of BMSCs. Differential gene expression analysis of osteogenic differentiation was performed using high-throughput sequencing. TargetScan database predicted the binding site between miR-19b-3p and WWP1, and a dual-luciferase reporter assay was performed to confirm the targeting binding site. A rat bone defect model was established, and new bone formation was evaluated by Micro-CT, H&E staining, and Masson's trichrome staining. Immunofluorescence staining and immunohistochemistry were used to detect the expression levels of osteogenic-related factors in rat BMSCs. RT-qPCR and Western blot were used to detect the expression levels of genes and proteins in tissues and cells. RESULT: Gel-OCS/MBGN was successfully constructed and loaded with EVs, resulting in Gel-OCS/MBGN@EVs. The in vitro drug release experiment results show that Gel-OCS/MBGN could sustainably release EVs. Further experiments have shown that Gel-OCS/MBGN@EVs could significantly promote the differentiation of BMSCs into osteoblasts. Experiments have shown that WWP1 is a key factor in osteogenic differentiation and is regulated by miR-19b-3p. EVs promote osteogenic differentiation by suppressing WWP1 expression through the transmission of miR-19b-3p. In vivo animal experiments have demonstrated that Gel-OCS/MBGN@EVs significantly promote bone repair in rats with bone defects by regulating the miR-19b-3p/WWP1 signaling axis. CONCLUSION: Functional Gel-OCS/MBGN@EVs were obtained by constructing Gel-OCS/MBGN and loading EVs onto it. EVs could deliver miR-19b-3p to BMSCs, inhibit the expression of WWP1, and promote the osteogenic differentiation of BMSCs, ultimately promoting bone regeneration in rats with bone defects.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Ratas , Animales , Osteogénesis , Hidrogeles , Biomimética , MicroARNs/metabolismo , Diferenciación Celular , Vesículas Extracelulares/metabolismo , Células Cultivadas
9.
BMC Womens Health ; 23(1): 508, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37735639

RESUMEN

BACKGROUND: MicroRNA-19b (miR-19b) has been reported to be downregulated in polycystic ovary syndrome (PCOS), while its upstream regulators are unclear. We speculated that miR-19b could potentially form a binding relationship with BBOX1 antisense RNA 1 (BBOX1-AS1), a long non-coding RNA recognized for its critical role in ovarian cancer. Subsequently, we investigated into their interaction in PCOS. METHODS: The expression of miR-19b and BBOX1-AS1 in follicular fluid from both control women (n = 80) and women with PCOS (n = 80) was detected by RT-qPCR. Correlations were analyzed with Pearson' correlation coefficient. The binding of miR-19b to the wild-type (-wt) ad mutant (-mut) BBOX1-AS1 was determined by RNA-RNA pulldown assay. Their interactions were detected by overexpression assay. Bromodeoxyuridine (BrdU) assay was applied for proliferation analysis. RESULTS: BBOX1-AS1 was highly upregulated, while miR-19b was downregulated in PCOS. There was no close correlation across PCOS and the control samples. Consistently, they did not regulate the expression of each other in granulosa cells. However, BBOX1-AS1-wt, but not BBOX1-AS1-mut, could directly interact with miR-19b. BBOX1-AS1 suppressed the role of miR-19b in inhibiting granulosa cell proliferation. CONCLUSION: BBOX1-AS1 is highly upregulated in PCOS, and it may serve as an endogenous competing RNA for miR-19b to suppress its role in inhibiting granulosa cell proliferation. Our study suggested the role of BBOX1-AS1 as a potential target to treat PCOS.


Asunto(s)
MicroARNs , Síndrome del Ovario Poliquístico , ARN Largo no Codificante , Femenino , Humanos , Proliferación Celular , Células de la Granulosa , MicroARNs/genética , Síndrome del Ovario Poliquístico/genética , ARN Largo no Codificante/genética
10.
Gynecol Obstet Invest ; 88(1): 16-29, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36574754

RESUMEN

OBJECTIVES: Long intergenic nonprotein coding RNA 1857 (LINC01857) has been identified to play an oncogenic role in different cancers. Nevertheless, its expression and biological role in endometrial carcinoma (EC) are not clear. DESIGN: This study was a basic research on cell biology. MATERIALS, SETTING, METHODS: EC cell lines were used in this study. RNA expressions in EC cells were examined through RT-qPCR. The impacts of LINC01857 silence on EC cell proliferation, apoptosis, migration, and invasion were evaluated through functional assays, and the underlying regulatory mechanism at a molecular level was analyzed via mechanism assays. RESULTS: LINC01857 expression was aberrantly high in EC cells. LINC01857 silence inhibited EC cell proliferation, migration, and invasion and promoted EC cell apoptosis. Mechanically, LINC01857 acted as a sponge of miR-19b-3p. Upregulation of miR-19b-3p hampered EC cell malignant behaviors. MYCN proto-oncogene, bHLH transcription factor (MYCN) was the target gene of miR-19b-3p, and MYCN depletion repressed the malignant behaviors of EC cells. Further, LINC01857 was verified to recruit ELAV-like RNA-binding protein 1 (ELAVL1) to stabilize MYCN mRNA. LIMITATIONS: The function of LINC01857 in EC remains to be further investigated with clinical samples and more cell lines involved. CONCLUSIONS: LINC01857 exacerbated EC cell malignant behaviors via the miR-19b-3p/ELAVL1/MYCN axis.


Asunto(s)
Neoplasias Endometriales , MicroARNs , Femenino , Humanos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteína 1 Similar a ELAV/genética , Neoplasias Endometriales/genética , Neoplasias Endometriales/patología , MicroARNs/genética , MicroARNs/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , ARN Largo no Codificante/genética
11.
Folia Biol (Praha) ; 69(5-6): 163-172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38583177

RESUMEN

Aerobic glycolysis is a prominent feature of cancer. Here, we reported that miR-19a-3p promotes aerobic glycolysis in ovarian cancer cells SKVO3 and ES-2 by increased production of ATP, lactic acid, extracellular acidification (ECAR), and increased expression of PKM2, LDHA, GLUT1 and GLUT3. Further study showed that over-expression of IGFBP3, the target of miR-19a-3p, decreases aerobic glycolysis in ovarian cancer cells, while knockdown of IGFBP3 expression increases aerobic glycolysis. The rescue assay suggested that miR-19a-3p promotes aerobic glycolysis in ovarian cancer cells through targeting IGFBP3. Moreover, over-expression of miR-19a-3p or silencing of IGFBP3 expression promoted activation of AKT, which is important for aerobic glycolysis in cancer cells, indicating that miR-19a-3p promotes aerobic glycolysis in ovarian cancer cells through the IGFBP3/PI3K/AKT pathway. This suggests that miR-19a-3p and IGFBP3 may serve as potential treatment targets of ovarian cancer.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Femenino , Humanos , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glucólisis/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Ováricas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
Chin J Physiol ; 66(6): 546-557, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149567

RESUMEN

Colorectal cancer (CRC) is a malignant tumor of the gastrointestinal tract that significantly impacts the health of patients and lacks promising methods of diagnosis. Tumor-associated macrophages (TAMs) are involved in CRC progression, and their function is regulated by long non-coding RNAs (lncRNAs). The lncRNA NBR2 was recently reported as an oncogene, whose function in CRC remains uncertain. The present study aimed to investigate the biological function of lncRNA NBR2 in the progression of CRC and its underlying molecular mechanisms. Ten pairs of clinical CRC and para-carcinoma tissues were collected to determine the expression levels of lncRNA NBR2 and miR-19a, and the polarization state of TAMs. Quantitative reverse transcriptase-polymerase chain reaction was used to evaluate the expression of miR-19a, and western blotting was used to determine the expression levels of tumor necrosis factor-α, human leukocyte antigen-DR, arginase-1, CD163, CD206, interleukin-4, AMP-activated protein kinase (AMPK), p-AMPK, hypoxia-inducible factor-1α (HIF-1α), protein kinase B (AKT), p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR in TAMs. The proliferative ability of HCT-116 cells was detected using the CCK8 assay, and the migratory ability of HCT-116 cells was evaluated using the Transwell assay. The interaction between lncRNA NBR2 and miR-19a was determined using the luciferase assay. The lncRNA NBR2 was downregulated and miR-19a was highly expressed in CRC cells, accompanied by a high M2 polarization. Downregulated miR-19a promoted M1 polarization, activated AMPK, suppressed HIF-1α and AKT/mTOR signaling pathways, and promoted antitumor properties in NBR2-overexpressed TAMs, which were all reversed by the introduction of the miR-19a mimic. LncRNA NBR2 was verified to target miR-19a in macrophages according to the results of the luciferase assay. Collectively, lncRNA NBR2 may suppress the progression of CRC by downregulating miR-19a to regulate M2 macrophage polarization.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Luciferasas/metabolismo , Macrófagos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
13.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37175484

RESUMEN

MicroRNA (miR)-19b is deregulated in colorectal cancer (CRC) and locally advanced rectal cancer (LARC), predicting worse outcome and disease progression in CRC patients, and acting as a promising prognostic marker of patient recurrence and pathological response to 5-fluorouracil (5-FU)-based neoadjuvant chemoradiotherapy in LARC. Moreover, there is a strong inverse correlation between miR-19b and PPP2R5E in LARC, and both predict the response to neoadjuvant therapy in LARC patients. However, the functional role of the miR-19b/PPP2R5E axis in CRC cells remains to be experimentally evaluated. Here, we confirm with luciferase assays that miR-19b is a direct negative regulator of PPP2R5E in CRC, which is concordant with the observed decreased PP2A activity levels after miR-19b overexpression. Furthermore, PPP2R5E downregulation plays a key role mediating miR-19b-induced oncogenic effects, increasing cell viability, colonosphere formation ability, and the migration of CRC cells. Lastly, we also confirm the role of miR-19b mediating 5-FU sensitivity of CRC cells through negative PPP2R5E regulation. Altogether, our findings demonstrate the functional relevance of the miR-19b/PPP2R5E signaling pathway in disease progression, and its potential therapeutic value determining the 5-FU response of CRC cells.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Humanos , Neoplasias Colorrectales/patología , MicroARNs/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Línea Celular Tumoral , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo
14.
Physiol Genomics ; 54(9): 337-349, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35759451

RESUMEN

The interplay between N6-methyladenosine (m6A) modification and microRNAs (miRs) participates in cancer progression. This study is conducted to explore the role of miR-19a-3p in nasopharyngeal carcinoma (NPC) cell proliferation and invasion. Reverse transcription quantitative polymerase chain reaction and Western blot showed that miR-19a-3p was upregulated in NPC tissues and cells and related to poor prognosis, methyltransferase-like 3 (METTL3) was highly expressed, whereas BMP and activin membrane-bound inhibitor (BAMBI) was weakly expressed in NPC tissues and cells. miR-19a-3p downregulation inhibited cell proliferation and invasion, whereas miR-19a-3p overexpression played the opposite role. m6A quantification and m6A RNA immunoprecipitation assays showed that METTL3-mediated m6A modification promoted the processing and maturation of pri-miR-19a via DiGeorge syndrome critical region gene 8 (DGCR8). Dual-luciferase assay showed that BAMBI was a target of miR-19a-3p. The rescue experiments showed that BAMBI downregulation reversed the role of miR-19a-3p inhibition in NPC cells. A xenograft tumor model showed that METTL3 downregulation inhibited tumor growth via the miR-19a-3p/BAMBI in vivo. Overall, our findings elicited that METTL3-mediated m6A modification facilitated the processing and maturation of pri-miR-19a via DGCR8 to upregulate miR-19a-3p, and miR-19a-3p inhibited BAMBI expression to promote NPC cell proliferation and invasion, thus driving NPC progression.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
15.
Mol Cancer ; 21(1): 224, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536414

RESUMEN

BACKGROUND: Recent studies have identified that circular RNAs (circRNAs) have an important role in cancer via their well-recognized sponge effect on miRNAs, which regulates a large variety of cancer-related genes. However, only a few circRNAs have been well-studied in renal cell carcinoma (RCC) and their regulatory function remains largely elusive. METHODS: Bioinformatics approaches were used to characterize the differentially expressed circRNAs in our own circRNA-sequencing dataset, as well as two public circRNA microarray datasets. CircNTNG1 (hsa_circ_0002286) was identified as a potential tumor-suppressing circRNA. Transwell assay and CCK-8 assay were used to assess phenotypic changes. RNA pull-down, luciferase reporter assays and FISH experiment were used to confirm the interactions among circNTNG1, miR-19b-3p, and HOXA5 mRNA. GSEA was performed to explore the downstream pathway regulated by HOXA5. Immunoblotting, chromatin immunoprecipitation, and methylated DNA immunoprecipitation were used to study the mechanism of HOXA5. RESULTS: In all three circRNA datasets, circNTNG1, which was frequently deleted in RCC, showed significantly low expression in the tumor group. The basic properties of circNTNG1 were characterized, and phenotype studies also demonstrated the inhibitory effect of circNTNG1 on RCC cell aggressiveness. Clinically, circNTNG1 expression was associated with RCC stage and Fuhrman grade, and it also served as an independent predictive factor for both OS and RFS of RCC patients. Next, the sponge effect of circNTNG1 on miR-19b-3p and the inhibition of HOXA5 by miR-19b-3p were validated. GSEA analysis indicated that HOXA5 could inactivate the epithelial-mesenchymal transition (EMT) process, and this inactivation was mediated by HOXA5-induced SNAI2 (Slug) downregulation. Finally, it was confirmed that the Slug downregulation was caused by HOXA5, along with the DNA methyltransferase DNMT3A, binding to its promoter region and increasing the methylation level. CONCLUSIONS: Based on the experimental data, in RCC, circNTNG1/miR-19b-3p/HOXA5 axis can regulate the epigenetic silencing of Slug, thus interfering EMT and metastasis of RCC. Together, our findings provide potential biomarkers and novel therapeutic targets for future study in RCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , MicroARNs , Humanos , Biomarcadores , Carcinoma de Células Renales/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Neoplasias Renales/genética , MicroARNs/genética , ARN Circular/genética , Silenciador del Gen , Epigénesis Genética
16.
Mol Med ; 28(1): 123, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224531

RESUMEN

BACKGROUND: Our previous data demonstrated that miR-19b expression was increased in human lung microvascular endothelial cells in-vitro-, in-vivo and in patients with hemorrhagic shock, leading to a decrease in syndecan-1 mRNA and protein and resulting in loss of endothelial barrier function. However, the mechanism underlying increased miR-19b expression remains unclear. The objective of the current study was to determine if c-Jun mediates the early responsive microRNA, miR-19b, to cause endothelial barrier dysfunction. METHOD: Human lung microvascular endothelial cells (HLMEC) or HEK293T cells were transfected with c-Jun overexpressing vector, c-Jun siRNA, miR-19b promoter vector, miR-19b mutated promoter vector, miR-19b oligo inhibitor, then subjected to hypoxia/reoxygenation as in-vitro model of hemorrhagic shock. Levels of protein, miRNA, and luciferase activity were measured. Transwell permeability of endothelial monolayers were also determined. Plasma levels of c-Jun were measured in injured patients with hemorrhagic shock. RESULT: Hypoxia/reoxygenation induced primary (pri-)miR-19b, mature miR-19b, and c-Jun expression over time in a comparable timeframe. c-Jun silencing by transfection with its specific siRNA reduced both pri-miR-19b and mature miR-19b levels. Conversely, c-Jun overexpression enhanced H/R-induced pri-miR-19b. Studies using a luciferase reporter assay revealed that in cells transfected with vectors containing the wild-type miR-19b promoter and luciferase reporter, c-Jun overexpression or hypoxia/ reoxygenation significantly increased luciferase activity. c-Jun knockdown reduced the luciferase activity in these cells, suggesting that the miR-19b promoter is directly activated by c-Jun. Further, chromatin immunoprecipitation assay confirmed that c-Jun directly bound to the promoter DNA of miR-19b and hypoxia/reoxygenation significantly increased this interaction. Additionally, c-Jun silencing prevented cell surface syndecan-1 loss and endothelial barrier dysfunction in HLMECs after hypoxia/reoxygenation. Lastly, c-Jun was significantly elevated in patients with hemorrhagic shock compared to healthy controls. CONCLUSION: Transcription factor c-Jun is inducible by hypoxia/reoxygenation, binds to and activates the miR-19b promoter. Using an in-vitro model of hemorrhagic shock, our findings identified a novel cellular mechanism whereby hypoxia/ reoxygenation increases miR-19b transcription by inducing c-Jun and leads to syndecan-1 decrease and endothelial cell barrier dysfunction. This finding supports that miR-19b could be a potential therapeutic target for hemorrhage shock.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas c-jun/metabolismo , Choque Hemorrágico , Células Endoteliales/metabolismo , Células HEK293 , Humanos , Hipoxia/metabolismo , MicroARNs/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Choque Hemorrágico/genética , Choque Hemorrágico/metabolismo , Sindecano-1/metabolismo , Factores de Transcripción/metabolismo
17.
Development ; 146(20)2019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31578189

RESUMEN

The functions of the hippocampus are conserved between birds and mammals; however, it is not known whether similar mechanisms are responsible for its development in these two classes. In mammals, hippocampus development is known to be regulated by the hem organizer. Here, we have identified that, in birds, Wnt7b secreted from the hem is sufficient for inducing the expression of hippocampal markers. Furthermore, we have demonstrated that a microRNA, miR-19b, which is selectively excluded from the hem region, is necessary and sufficient for restricting the expression of Wnt7b to the hem. This study suggests that the role of the Wnt signal emanating from the hem is conserved between birds and mammals, and that a microRNA-based mechanism is crucial for determining the position of the hippocampus.


Asunto(s)
Corteza Cerebral/metabolismo , Hipocampo/metabolismo , MicroARNs/metabolismo , Proteínas Wnt/metabolismo , Animales , Corteza Cerebral/citología , Embrión de Pollo , Células HEK293 , Hipocampo/citología , Humanos , Hibridación in Situ , MicroARNs/genética , Neurogénesis/genética , Neurogénesis/fisiología , Prosencéfalo/citología , Prosencéfalo/metabolismo , Proteínas Wnt/genética
18.
BMC Cancer ; 22(1): 1284, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36476239

RESUMEN

BACKGROUND: Circular RNAs (circRNAs) are enriched in exosomes and are extremely stable. Exosome-mediated intercellular transfer of specific biologically active circRNA molecules can drive the transformation of the tumor microenvironment and accelerate or inhibit the local spread and multifocal growth of hepatocellular carcinoma (HCC). In this study, we explored in depth about the biological roles of HCC cell-derived exosomes and exosome-transported circRNAs on HCC in vivo and in vitro. METHODS: Exosomes extracted from HCC cells (Huh7 and HA22T) were characterized using transmission electron microscopy, nanoparticle size tracer analysis, and western blotting. Exosomes were observed for endocytosis using fluorescent labeling. The effects of HCC cell-derived exosomes and the circ_002136 they carried on cell growth, metastasis and apoptosis were determined by CCK-8 assay, transwell assay, flow cytometry analysis and TUNEL staining, respectively. The expressions of circ_002136, miR-19a-3p and RAB1A were detected by quantitative RT-PCR (qRT-PCR). Targeted binding between miR-19a-3p and circ_002136 or RAB1A was predicted and verified by bioinformatics analysis, dual-luciferase reporter and RNA pull-down experiments. The in vivo effect of circ_002136 was determined by constructing a xenograft tumor model. RESULTS: The findings revealed that Huh7 and HA22T exosomes conferred enhanced viability as well as invasive ability to recipient HCC cells. Circ_002136 was shown for the first time to be differentially upregulated in HCC tissues and cells and transferred by HCC cell-derived exosomes. More importantly, selective silencing of circ_002136 depleted the malignant biological behaviors of HCC exosome-activated Huh7 and HA22T cells. Depletion of circ_002136 in vivo effectively retarded the growth of HCC xenograft tumors. Furthermore, a well-established circ_002136 ceRNA regulatory network was constructed, namely circ_002136 blocked miR-19a-3p expression, elevated RAB1A expression activity and stimulated HCC development. Finally, high levels of circ_002136 or RAB1A, as well as low levels of miR-19a-3p, negatively affected HCC patient survival. CONCLUSION: The study on circ_002136 provides good data to support our insight into the mechanism of to-be-silenced circRNA as a therapeutic agent in the progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Exosomas , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Exosomas/genética , ARN Circular/genética , MicroARNs/genética , Microambiente Tumoral
19.
Cell Biol Toxicol ; 38(2): 273-289, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33811578

RESUMEN

Interleukin-17A (IL-17A) is an essential inflammatory cytokine in the progress of carcinogenesis. Tobacco smoke (TS) is a major risk factor of lung cancer that influences epithelial-mesenchymal transition (EMT) process. However, the potential mechanism by which IL-17A mediates the progression of lung cancer in TS-induced EMT remains elusive. In the present study, it was revealed that the IL-17A level was elevated in lung cancer tissues, especially in tumor tissues of cases with experience of smoking, and a higher IL-17A level was correlated with induction of EMT in those specimens. Moreover, the expression of ΔNp63α was increased in IL-17A-stimulated lung cancer cells. ΔNp63α functioned as a key oncogene that bound to the miR-17-92 cluster promoter and transcriptionally increased the expression of miR-19 in lung cancer cells. Overexpression of miR-19 promoted EMT in lung cancer with downregulation of E-cadherin and upregulation of N-cadherin, while its inhibition suppressed EMT. Finally, the upregulated levels of IL-17A, ΔNp63α, and miR-19 along with the alteration of EMT-associated biomarkers were found in lung tissues of TS-exposed mice. Taken together, the abovementioned results suggest that IL-17A increases ΔNp63α expression, transcriptionally elevates miR-19 expression, and promotes TS-induced EMT in lung cancer. These findings may provide a new insight for the identification of therapeutic targets for lung cancer.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Contaminación por Humo de Tabaco , Animales , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Interleucina-17/genética , Interleucina-17/metabolismo , Neoplasias Pulmonares/patología , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Humo , Nicotiana/metabolismo
20.
Mol Biol Rep ; 49(7): 6803-6815, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34839449

RESUMEN

BACKGROUND: Prostate cancer antigen 3 (PCA3) is the most promising diagnostic biomarker for the differential diagnosis of prostate cancer identified to date. As a dominant-negative oncogene, PCA3 negatively regulates the expression of tumor suppressor PRUNE2 (a human homolog of the Drosophila prune gene) gene. Although interaction between PCA3-PRUNE2 was clearly reported, the precise mechanism how PCA3 is upregulated in prostate cancer remained highly elusive. Accordingly, here we aimed demonstrate the role of microRNAs in PCA3 upregulation and interplay between these miRNAs and PCA3-PRUNE2 axis. METHODS AND RESULTS: We evaluated expression of PCA3, PRUNE2 and miRNAs by quantitative reverse transcription polymerase chain reaction. Overexpression and silencing of miRNAs were achieved by synthetic miRNA mimics and inhibitors, respectively. Colony formation, migration, apoptosis, and cell cycle assays were performed to reveal the effects of miRNA modulation. We identified that PCA3 expression was significantly downregulated in both prostate cancer tissues and cells and inversely correlated with the expressions of miR-19a and miR-421. Restoring the functions of miR-19a and miR-421 by miRNA mimics significantly downregulated the expression of PCA3 and promoted apoptosis and cell cycle blockade and interfered with the proliferation and migration in prostate cancer cells. Conversely, silencing the expressions of these miRNAs yielded the opposite effect. CONCLUSIONS: Collectively, our results uncover a previously unrecognized novel mechanism on PCA3 upregulation in prostate cancer and proved that miR-19a and miR-421 might be responsible for the increased expression of PCA3, indicating that both miRNAs might be novel candidates for prostate cancer diagnosis and therapy.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , ARN Largo no Codificante , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , ARN Largo no Codificante/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA