RESUMEN
Extracellular vesicles (EVs) released from healthy endothelial cells (ECs) have shown potential for promoting angiogenesis, but their therapeutic efficacy remains poorly understood. We have previously shown that transplantation of a human embryonic stem cell-derived endothelial cell product (hESC-ECP), promotes new vessel formation in acute ischemic disease in mice, likely via paracrine mechanism(s). Here, we demonstrated that EVs from hESC-ECPs (hESC-eEVs) significantly increased EC tube formation and wound closure in vitro at ultralow doses, whereas higher doses were ineffective. More important, EVs isolated from the mesodermal stage of the differentiation (hESC-mEVs) had no effect. Small RNA sequencing revealed that hESC-eEVs have a unique transcriptomic profile and are enriched in known proangiogenic microRNAs (miRNAs, miRs). Moreover, an in silico analysis identified three novel hESC-eEV-miRNAs with potential proangiogenic function. Differential expression analysis suggested that two of those, miR-4496 and miR-4691-5p, are highly enriched in hESC-eEVs. Overexpression of miR-4496 or miR-4691-5p resulted in increased EC tube formation and wound closure in vitro, validating the novel proangiogenic function of these miRNAs. In summary, we demonstrated that hESC-eEVs are potent inducers of EC angiogenic response at ultralow doses and contain a unique EV-associated miRNA repertoire, including miR-4496 and miR-4691-5p, with novel proangiogenic function.
Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Diferenciación Celular/genética , Células Madre/metabolismoRESUMEN
Despite advances in the diagnosis and treatment of the central nervous system malignancy glioma, overall survival remains poor. Cytoskeleton-associated protein 2-like (CKAP2L), which plays key roles in neural progenitor cell division, has also been linked to poor prognosis in lung cancer. In the present study, we investigated the role of CKAP2L in glioma. From bioinformatics analyses of datasets from The Cancer Gene Atlas and the Chinese Glioma Genome Atlas, we found that CKAP2L expression correlates with tumor grade and overall survival. Gene set enrichment analysis (GSEA) showed that MITOTIC_SPINDLE, G2M_CHECKPOINT, and E2F_TARGETS are crucially enriched phenotypes associated with high CKAP2L expression. Using U87MG, U118MG, and LNZ308 human glioma cells, we confirmed that CKAP2L knockdown with siCKAP2L inhibits glioma cell proliferation, migration, invasion, and epithelial-mesenchymal transition. Interestingly, CKAP2L knockdown also induced cell cycle arrest at G2/M phase, which is consistent with the GSEA finding. Finally, we observed that CKAP2L knockdown led to significant increases in miR-4496. Treating cells with exogenous miR-4496 mimicked the effect of CKAP2L knockdown, and the effects of CKAP2L knockdown could be suppressed by miR-4496 inhibition. These findings suggest that CKAP2L is a vital regulator of miR-4496 activity and that CKAP2L is a potentially useful prognostic marker in glioma.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Proliferación Celular/genética , Proteínas del Citoesqueleto/metabolismo , Transición Epitelial-Mesenquimal/genética , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/metabolismo , MicroARNs/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/mortalidad , Neoplasias del Sistema Nervioso Central/patología , Proteínas del Citoesqueleto/genética , Bases de Datos Genéticas , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioma/genética , Glioma/metabolismo , Glioma/mortalidad , Glioma/patología , Humanos , Inmunohistoquímica , Masculino , MicroARNs/genética , Persona de Mediana Edad , Clasificación del Tumor , Invasividad Neoplásica/genética , Pronóstico , Análisis de Matrices TisularesRESUMEN
Infection with Helicobacter pylori is closely linked to an increased risk of gastric cancer. Although cytotoxin-associated gene A (CagA), a major virulence factor of H. pylori, is known to be a causal factor for gastric carcinogenesis, the molecular link between CagA and gastric cancer-initiating cell (CIC)-like properties remains elusive. Here, we demonstrate that CagA is required for increased expression of ß-catenin and its target CIC markers via downregulation of microRNA (miR)-320a and miR-4496. CagA promoted gastric CIC properties and was responsible for chemoresistance. miR-320a and miR-4496 attenuated the in vitro self-renewal and tumour-initiating capacity of CagA-expressing CICs by targeting ß-catenin. Moreover, miR-320a and miR-4496 decreased CagA-induced chemoresistance by targeting ATP-binding cassette, subfamily G, member 2 (ABCG2) at the transcriptional and post-transcriptional levels, respectively. Combination therapy with 5-fluorouracil and miR-320a/miR-4496 suppressed gastric tumourigenesis and metastatic potential in an orthotopic mouse model, probably via suppression of CagA-induced CIC properties and chemoresistance. Our results provide novel evidence that CIC properties, chemoresistance and tumourigenesis associated with H. pylori are linked to CagA-induced upregulation of ß-catenin and ABCG2. These data provide novel insights into the molecular mechanisms of CagA-induced carcinogenisis and the therapeutic potential of of miR-320a and miR-4496. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.