Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Funct Integr Genomics ; 24(2): 48, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436805

RESUMEN

Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in various diseases has been verified. However, the underlying mechanism of CDKN2B-AS1 contributes to the development of allergic rhinitis (AR) remains unknown. To evaluate the impact of CDKN2B-AS1 on AR, BALB/c mice were sensitized by intraperitoneal injection of normal saline containing ovalbumin (OVA) and calmogastrin to establish an AR model. Nasal rubbing and sneezing were documented after the final OVA treatment. The concentrations of IgE, IgG1, and inflammatory elements were quantified using ELISA. Hematoxylin and eosin (H&E) staining and immunofluorescence were used to assess histopathological variations and tryptase expression, respectively. StarBase, TargetScan and luciferase reporter assays were applied to predict and confirm the interactions among CDKN2B-AS1, miR-98-5p, and SOCS1. CDKN2B-AS1, miR-98-5p, and SOCS1 levels were assessed by quantitative real-time PCR (qRT-PCR) or western blotting. Our results revealed that CDKN2B-AS1 was obviously over-expressed in the nasal mucosa of AR patients and AR mice. Down-regulation of CDKN2B-AS1 significantly decreased nasal rubbing and sneezing frequencies, IgE and IgG1 concentrations, and cytokine levels. Furthermore, down-regulation of CDKN2B-AS1 also relieved the pathological changes in the nasal mucosa, and the infiltration of eosinophils and mast cells. Importantly, these results were reversed by the miR-98-5p inhibitor, whereas miR-98-5p directly targeted CDKN2B-AS1, and miR-98-5p negatively regulated SOCS1 level. Our findings demonstrate that down-regulation of CDKN2B-AS1 improves allergic inflammation and symptoms in a murine model of AR through the miR-98-5p/SOCS1 axis, which provides new insights into the latent functions of CDKN2B-AS1 in AR treatment.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Rinitis Alérgica , Animales , Humanos , Ratones , Regulación hacia Abajo , Inmunoglobulina E , Inmunoglobulina G , Ratones Endogámicos BALB C , MicroARNs/genética , Rinitis Alérgica/inducido químicamente , Rinitis Alérgica/genética , ARN Largo no Codificante/genética , Estornudo , Proteína 1 Supresora de la Señalización de Citocinas/genética
2.
J Biochem Mol Toxicol ; 38(4): e23686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38549433

RESUMEN

Part of human long noncoding RNAs (lncRNAs) has been elucidated to play an essential role in the carcinogenesis and progression of hepatocellular carcinoma (HCC), a type of malignant tumor with poor outcomes. Tumor-derived exosomes harboring lncRNAs have also been implicated as crucial mediators to orchestrate biological functions among neighbor tumor cells. The recruitment of tumor-associated macrophages (TAMs) exerting M2-like phenotype usually indicates the poor prognosis. Yet, the precise involvement of tumor-derived lncRNAs in cross-talk with environmental macrophages has not been fully identified. In this study, we reported the aberrantly overexpressed HCC upregulated EZH2-associated lncRNA (HEIH) in tumor tissues and cell lines was positively correlated with poor prognosis, as well as enriched exosomal HEIH levels in blood plasma and cell supernatants. Besides, HCC cell-derived exosomes transported HEIH into macrophages for triggering macrophage M2 polarization, thereby in turn promoting the proliferation, migration, and invasion of HCC cells. Mechanistically, HEIH acted as a miRNA sponge for miR-98-5p to up-regulate STAT3, which was then further verified in the tumor xenograft models. Collectively, our study provides the evidence for recognizing tumor-derived exosomal lncRNA HEIH as a novel regulatory function through targeting miR-98-5p/STAT3 axis in environmental macrophages, which may shed light on the complicated tumor microenvironment among tumor and immune cells for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Macrófagos/metabolismo , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
Tohoku J Exp Med ; 263(1): 17-25, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38267060

RESUMEN

MicroRNAs (miRNAs) are related to the regulation of bone metabolism. Delayed fracture healing (DFH) is a common complication after fracture surgery. The study attempted to examine the role of miR-98-5p and bone morphogenetic protein (BMP)-2 with the onset of DFH. A total of 140 patients with femoral neck fracture were recruited, including 80 cases with normal fracture healing (NFH) and 60 cases with DFH. MC3T3-E1 cells were induced cell differentiation for cell function experiments. Real-time quantitative polymerase chain reaction (RT-qPCR) was carried out to test mRNA levels. Cell proliferation and apoptosis were determined via CCK-8 and flow cytometry assay. Luciferase reporter assay was done to verify the targeted regulatory relationship of miR-98-5p with BMP-2. In comparison with NFH cases, DFH patients owned high levels of serum miR-98-5p and low concentration of BMP-2, and the levels of the two indexes are significantly negatively correlated. Both miR-98-5p and BMP-2 had the ability to predict DFH, while their combined diagnostic value is the highest. BMP-2 was demonstrated to be the target gene of miR-98-5p. Overexpression of BMP-2 reversed the role of miR-98-5p in MC3T3-E1 cell proliferation, apoptosis and differentiation. Increased miR-98-5p and decreased BMP-2 serve as potential biomarkers for the diagnosis of DFH. MiR-98-5p overexpression inhibits osteoblast proliferation and differentiation via targeting BMP-2.


Asunto(s)
Apoptosis , Proteína Morfogenética Ósea 2 , Proliferación Celular , Curación de Fractura , MicroARNs , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Apoptosis/genética , Secuencia de Bases , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 2/genética , Diferenciación Celular/genética , Línea Celular , Fracturas del Cuello Femoral/metabolismo , Fracturas del Cuello Femoral/genética , Curación de Fractura/genética , MicroARNs/genética , MicroARNs/metabolismo
4.
FASEB J ; 35(6): e21658, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34010470

RESUMEN

Alzheimer's disease (AD) is a complicated neurodegenerative disease and therefore addressing multiple targets simultaneously has been believed as a promising therapeutic strategy against AD. α7 nicotinic acetylcholine receptor (nAChR), which plays an important role in improving cognitive function and alleviating neuroinflammation in central nervous system (CNS), has been regarded as a potential target in the treatment of AD. However, the regulation of α7 nAChR at post-transcriptional level in mammalian brain remains largely speculated. Herein, we uncovered a novel post-transcriptional regulatory mechanism of α7 nAChR expression in AD and further demonstrated that miR-98-5p suppressed α7 nAChR expression through directly binding to the 3'UTR of mRNA. Knockdown of miR-98-5p activated Ca2+ signaling pathway and consequently reversed cognitive deficits and Aß burden in APP/PS1 mice. Furthermore, miR-98-5p downregulation increased α7 nAChR expression, and ameliorated neuroinflammation via inhibiting NF-κB pathway and upregulating Nrf2 target genes. Our findings illustrate a prominent regulatory role of miR-98-5p in targeting inflammation and cognition, and provide an insight into the potential of miR-98-5p/α7 nAChR axis as a novel therapeutic strategy for AD.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/patología , MicroARNs/genética , Enfermedades Neurodegenerativas/patología , Procesamiento Postranscripcional del ARN , Receptor Nicotínico de Acetilcolina alfa 7/genética , Precursor de Proteína beta-Amiloide/fisiología , Animales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Presenilina-1/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
5.
J Gastroenterol Hepatol ; 37(1): 144-153, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34370878

RESUMEN

BACKGROUND AND AIM: Colorectal cancer, as a common malignant carcinoma in the gastrointestinal tract, has a high mortality globally. However, the specific molecular mechanisms of long non-coding RNA (lncRNA) thymopoietin antisense transcript 1 (TMPO-AS1) in colorectal cancer were unclear. METHODS: We tested the expression level of TMPO-AS1 via qRT-PCR in colorectal cancer cells, while the protein levels of branched chain amino acid transaminase 1 (BCAT1) and the stemness-related proteins were evaluated by western blot analysis. Colony formation, EdU staining, TUNEL, flow cytometry, and sphere formation assays were to assess the biological behaviors of colorectal cancer cells. Then, luciferase reporter, RIP, and RNA pull down assay were applied for confirming the combination between microRNA-98-5p (miR-98-5p) and TMPO-AS1/BCAT1. RESULTS: TMPO-AS1 was aberrantly expressed at high levels in colorectal cancer cells. Silenced TMPO-AS1 restrained cell proliferation and stemness and promoted apoptosis oppositely, while overexpressing TMPO-AS1 exerted the adverse effects. Furthermore, miR-98-5p was proven to a target of TMPO-AS1 inhibit cell progression in colorectal cancer. Additionally, BCAT1 was proved to enhance cell progression as the target of miR-98-5p, and it offset the effect of silenced TMPO-AS1 on colorectal cancer cells. CONCLUSION: TMPO-AS1 promotes the progression of colorectal cancer cells via sponging miR-98-5p to upregulate BCAT1 expression.


Asunto(s)
Neoplasias Colorrectales , Proteínas Nucleares , ARN Largo no Codificante , Timopoyetinas , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Timopoyetinas/genética , Timopoyetinas/metabolismo , Transaminasas/metabolismo
6.
Metab Brain Dis ; 37(6): 2005-2016, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35678981

RESUMEN

BACKGROUND: The deregulation of long non-coding RNA (lncRNA) is associated with diverse human disorders, including cerebral ischemia/reperfusion injury (CI/RI). LncRNA SNHG14 was reported to function in CI/RI. Whereas, molecular mechanisms regulated by SNHG14 are not fully unveiled. METHODS: Mice subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) were used as CI/RI animal models. Neuro-2a (N2A) cells subjected to oxygen glucose deprivation/reoxygenation (OGD/R) were used as CI/RI cell models. The expression of SNHG14, miR-98-5p and BCL2 like 13 (BCL2L13) was examined using quantitative real-time PCR (qPCR) or western blot. Apoptosis was monitored by flow cytometry assay. Apoptosis-related markers and endoplasmic reticulum (ER) stress-related markers were quantified by western blot. Inflammatory factors and oxidative stress were detected using matched commercial kits. The predicted relationship between miR-98-5p and SNHG14 or BCL2L13 was validated by dual-luciferase reporter assay, RIP assay and pull-down assay. RESULTS: The high expression of SNHG14 was monitored in MCAO/R-treated mice and OGD/R-treated N2A cells. OGD/R-induced N2A cell apoptosis, ER stress, inflammation and oxidative stress were attenuated by SNHG14 knockdown. SNHG14 targeted miR-98-5p to positively regulate BCL2L13 expression. Inhibition of miR-98-5p recovered cell apoptosis, ER stress, inflammation and oxidative stress that were repressed by SNHG14 knockdown. Overexpression of BCL2L13 enhanced cell apoptosis, ER stress, inflammation and oxidative stress that were repressed by miR-98-5p enrichment. CONCLUSIONS: SNHG14 knockdown alleviated OGD/induced N2A cell apoptosis, ER stress, inflammation and oxidative stress by depleting BCL2L13 via increasing miR-98-5p.


Asunto(s)
Isquemia Encefálica , Hipoxia , MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Animales , Apoptosis/fisiología , Isquemia Encefálica/genética , Glucosa/metabolismo , Humanos , Hipoxia/metabolismo , Infarto de la Arteria Cerebral Media/genética , Inflamación , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Regulación hacia Arriba
7.
Microcirculation ; 28(1): e12657, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32892409

RESUMEN

OBJECTIVE: This study examined the correlation between serum miR-98-5p levels and indices of microvascular reperfusion in patients undergoing primary percutaneous coronary intervention (pPCI) after ST-segment elevation myocardial infarction (STEMI). Additionally, we evaluated the mechanisms by which miR-98-5p promoted ischemia/reperfusion (I/R)-induced injury in both cultured cell lines and an animal model. METHODS: Circulating miR-98-5p levels were measured and compared from 171 STEMI patients undergoing pPCI, who were divided into two groups: no-reflow and reflow. The levels of miR-98-5p, nerve growth factor (NGF), and transient receptor potential vanilloid 1 (TRPV1) were analyzed in cultured human coronary endothelial cells (HCECs) exposed to hypoxia/reoxygenation (H/R). The effects of antagomir-98-5p on myocardial I/R-induced microvascular dysfunction in vivo were evaluated. Target gene expression and activity were assessed. RESULTS: Higher miR-98-5p levels were associated with compromised indices of microvascular reperfusion. In vitro experiments on HCECs showed that exposure to H/R significantly increased miR-98-5p levels. We identified NGF as a novel target of miR-98-5p. Further, antagomir-98-5p relieved microvascular dysfunction and enhanced the expression of NGF and TRPV1 in the rat myocardial I/R model. CONCLUSIONS: MiR-98-5p promotes microvascular dysfunction by targeting the NGF-TRPV1 axis. Serum miR-98-5p serves as a potential biomarker for microvascular reperfusion.


Asunto(s)
Vasos Coronarios/metabolismo , MicroARNs/sangre , Microvasos/metabolismo , Daño por Reperfusión Miocárdica/sangre , Factor de Crecimiento Nervioso/sangre , Anciano , Biomarcadores/sangre , Células Cultivadas , Vasos Coronarios/patología , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Femenino , Estudios de Seguimiento , Regulación de la Expresión Génica , Humanos , Masculino , Microvasos/patología , Persona de Mediana Edad , Daño por Reperfusión Miocárdica/patología
8.
IUBMB Life ; 73(1): 177-187, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33249762

RESUMEN

Circular RNAs (circRNAs) are a group of RNAs featured by a covalently closed continuous loop structure. This study aimed to uncover the function and mechanism of circ-ubiquitin specific peptidase 36 (USP36) in endothelial cells treated with oxidized low-density lipoprotein (ox-LDL). The levels of circ-USP36, microRNA-98-5p (miR-98-5p) and vascular cell adhesion molecule 1 (VCAM1) were examined by a quantitative real-time polymerase chain reaction (qRT-PCR). The viability, apoptosis and inflammation were detected by (4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. Western blot assay was performed to detect the expression of apoptosis and proliferation-related markers and VCAM1 protein level. The targets of circ-USP36 and miR-98-5p were searched using starBase website, and dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were applied to validate the above predictions. Ox-LDL exposure induced the upregulation of circ-USP36 in HUVEC cells. Circ-USP36 accelerated ox-LDL-induced apoptosis, inflammatory and viability inhibition of HUVEC cells. MiR-98-5p was a direct downstream gene of circ-USP36. Circ-USP36 promoted the injury of ox-LDL-induced HUVEC cells through targeting miR-98-5p. VCAM1 could bind to miR-98-5p, and the protective effects of miR-98-5p accumulation on ox-LDL-induced HUVEC cells were reversed by the transfection of VCAM1. VCAM1 was regulated by circ-USP36/miR-98-5p signaling in HUVEC cells. Ox-LDL promoted the apoptosis and inflammation but suppressed the viability of HUVEC cells through upregulating circ-USP36, thus elevating the expression of VCAM1 via miR-98-5p.


Asunto(s)
Endotelio Vascular/patología , Inflamación/patología , Lipoproteínas LDL/efectos adversos , MicroARNs/genética , ARN Circular/genética , Ubiquitina Tiolesterasa/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Apoptosis , Proliferación Celular , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/lesiones , Endotelio Vascular/metabolismo , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular/genética
9.
Cytokine ; 148: 155656, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34388475

RESUMEN

BACKGROUND: Gastric cancer (GC) was a type of malignant tumor with a very high fatality rate. Oleanolic acid (OA) was a class of pentacyclic triterpenes which was proved to have anti-cancer activity. While the specific molecular mechanism of OA's role in inhibiting GC was not fully understood. This study aimed to explore how OA played an anti-cancer role in GC. METHODS: Expression of miR-98-5p was examined using qPCR, and expression levels of Treg/Th17-related factors were evaluated using qPCR and western blot. Flow cytometry was conducted to assess the proportion of Treg cells and Th17 cells. Besides, dual luciferase reporter assay was performed to verify that IL-6 was a target of miR-98-5p. RESULTS: Downregulation of miR-98-5p and upregulation of Treg/Th17-related factors were observed in GC tissues. What's more, the Treg/Th17 imbalance was found in PBMCs of GC patients. Overexpression of miR-98-5p promoted balance of Treg/Th17 cells via directly targeting IL-6 to downregulate expression of IL-6. Finally, OA could promote balance of Treg/Th17 cells by upregulating expression of miR-98-5p. DISCUSSION: All our results proved that OA could promote balance of Treg/Th17 cells in GC by targeting IL-6 with miR-98-5p, indicating a potential drug for treatment of GC.


Asunto(s)
Interleucina-6/metabolismo , MicroARNs/metabolismo , Ácido Oleanólico/farmacología , Neoplasias Gástricas/inmunología , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Secuencia de Bases , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , MicroARNs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Linfocitos T Reguladores/efectos de los fármacos , Células Th17/efectos de los fármacos
10.
Mol Cell Biochem ; 476(1): 81-92, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32888161

RESUMEN

Acute myocardial infarction (AMI) can lead to myocardial injury, and long non-coding RNA (lncRNA) has been found to play an important regulatory role in the process of myocardial injury. However, the role and potential mechanisms of lncRNA testis-specific transcript Y-linked 15 (TTTY15) in AMI-induced myocardial injury has not been fully elucidated. Hydrogen peroxide (H2O2)-induced AMI cell model was built and AMI mice model were constructed. Relative expression levels of TTTY15, miR-98-5p and C-reactive protein (CRP) were determined by quantitative real-time PCR (qRT-PCR). Cell counting kit 8 (CCK8) assay, flow cytometry and enzyme-linked immunosorbent assay (ELISA) were employed to assess cell viability, apoptosis, inflammatory response and oxidative stress. Western blot (WB) analysis was used to assess the protein expression levels. The mechanism of TTTY15 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Our results revealed that TTTY15 was upregulated and miR-98-5p was downregulated in AMI patients and H2O2-stimulated myocardial cells. Knockdown of TTTY15 could alleviate H2O2-stimulated myocardial cell injury in vitro and AMI progression in vivo. Bioinformatics analysis and the rescue experiments confirmed that TTTY15 positively regulated H2O2-induced myocardial cell injury via regulating CRP by sponging miR-98-5p. Our research proposed that lncRNA TTTY15 promoted myocardial cell injury by regulating the miR-98-5p/CRP axis, suggesting that TTTY15 might be a potential target for alleviating AMI-caused myocardial cell injury.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Peróxido de Hidrógeno , MicroARNs/metabolismo , ARN Largo no Codificante , Proteínas de Plasma Seminal/metabolismo , Animales , Apoptosis , Proteína C-Reactiva/metabolismo , Supervivencia Celular , Biología Computacional , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , Peróxido de Hidrógeno/farmacología , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
11.
Mol Cell Biochem ; 476(1): 443-455, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32990894

RESUMEN

Cerebrovascular diseases have a high mortality and disability rate in developed countries. Endothelial cell injury is the main cause of atherosclerosis and cerebrovascular disease. Long non-coding RNA (lncRNA) has been proved to participate in the progression of endothelial cell. Our study aimed to develop the function of lncRNA opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell injury. The expression of OIP5-AS1, miR-98-5p and High-mobility group protein box-1 (HMGB1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry were used to detect the cell proliferation and apoptosis. The levels of cyclinD1, Bcl-2 Associated X Protein (Bax), Cleaved-caspase-3, Toll like receptors 4 (TLR4), phosphorylation of p65 (p-P65), phosphorylation of nuclear factor-kappa B inhibitor α (p-IκB-α) and HMGB1 were measured by Western blot. The concentrations of Interleukin-6 (IL-6), Interleukin-1ß (IL-1ß) and Tumor necrosis factor-α (TNF-α) were detected by Enzyme-linked immunosorbent assay (ELISA). The production of Reactive oxygen species (ROS), Superoxide Dismutase (SOD) and malondialdehyde (MDA) was detected by the corresponding kit. The targets of OIP5-AS and miR-98-5p were predicted by starBase 3.0 and TargetScan and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The expression of OIP5-AS1 was upregulated, while miR-98-5p was downregulated in ox-LDL-induced human umbilical vein endothelial cells (HUVECs). Functionally, knockdown of OIP5-AS1 induced proliferation and inhibited apoptosis, inflammatory injury and oxidative stress injury in ox-LDL-induced HUVEC cells. Interestingly, miR-98-5p was a target of OIP5-AS1 and miR-98-5p inhibition abolished the effects of OIP5-AS1 downregulation on ox-LDL-induced HUVECs injury. More importantly, miR-98-5p directly targeted HMGB1, and OIP5-AS1 regulated the expression of HMGB1 by sponging miR-98-5p. Finally, OIP5-AS1 regulated the TLR4/nuclear factor-kappa B (NF-κB) signaling pathway through miR-98-5p/HMGB1 axis. LncRNA OIP5-AS1 accelerates ox-LDL-induced endothelial cell injury through regulating HMGB1 mediated by miR-98-5p via the TLR4/NF-κB signaling pathway.


Asunto(s)
Células Endoteliales/metabolismo , Proteína HMGB1/metabolismo , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Apoptosis , Proliferación Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Lipoproteínas LDL/metabolismo , Estrés Oxidativo , Fosforilación , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
12.
J Biochem Mol Toxicol ; 35(12): e22927, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34687491

RESUMEN

Although long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) was reported to be associated with acute lung injury (ALI), its specific mechanism has not been well studied. Mouse and cell ALI models were constructed by lipopolysaccharide (LPS). Cell viability was evaluated by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide assay. Cell death was evaluated by lactate dehydrogenase release (LDH) detection kit and flow cytometry. The levels of cytokines in lung tissues lysates were detected by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). The expression of apoptosis-related markers was detected by Western blot. The relationship between NEAT1, miR-98-5p, and toll-like receptor 4 (TLR4) was determined by bioinformatics prediction, luciferase reporter assay, and RNA immunoprecipitation (RIP) assay. Rescue experiments were performed to determine the role of NEAT1/miR-98-5p/TLR4 in ALI. NEAT1 was significantly upregulated during ALI both in vitro and in vivo. NEAT1 knockdown efficiently attenuated LPS-induced ALI and reduced LPS-induced elevation of cytokines both in vitro and in vivo. NEAT1 negatively regulated miR-98-5p by directly sponging it, and TLR4 was a target of miR-98-5p. MiR-98-5p inhibition or TLR4 overexpression could obviously attenuate the protective effects of NEAT1 knockdown in LPS-treated A549 cells. Our study demonstrated that NEAT1 knockdown alleviated LPS-induced ALI by targeting the miR-98-5p/TLR4 axis.


Asunto(s)
Lesión Pulmonar Aguda/inducido químicamente , Lipopolisacáridos/toxicidad , MicroARNs/metabolismo , ARN Largo no Codificante/fisiología , Receptor Toll-Like 4/metabolismo , Células A549 , Lesión Pulmonar Aguda/metabolismo , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
J Cell Biochem ; 120(3): 2836-2846, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29095526

RESUMEN

Long noncoding RNAs (lncRNAs) or microRNAs belong to the two most important noncoding RNAs and they are involved in a lot of cancers, including non-small-cell lung cancer (NSCLC). Therefore, currently, we focused on the biological and clinical significance of lncRNA nuclear enriched abundant transcript 1 (NEAT1) and hsa-mir-98-5p in NSCLC. It was observed that NEAT1 was upregulated while hsa-mir-98-5p was downregulated respectively in NSCLC cell lines compared to human normal lung epithelial BES-2B cells. Inhibition of NEAT1 can suppress the progression of NSCLC cells and hsa-mir-98-5p can reverse this phenomenon. Bioinformatics search was used to elucidate the correlation between NEAT1 and hsa-mir-98-5p. Additionally, a novel messenger RNA target of hsa-mir-98-5p, mitogen-activated protein kinase 6 (MAPK6), was predicted. Overexpression and knockdown studies were conducted to verify whether NEAT1 exhibits its biological functions through regulating hsa-mir-98-5p and MAPK6 in vitro. NEAT1 was able to increase MAPK6 expression and hsa-mir-98-5p mimics can inhibit MAPK6 via downregulating NEAT1 levels. We speculated that NEAT1 may act as a competing endogenous lncRNA to upregulate MAPK6 by attaching hsa-mir-98-5p in lung cancers. Taken these together, NEAT1/hsa-mir-98-5p/MAPK6 is involved in the development and progress in NSCLC. NEAT1 could be recommended as a prognostic biomarker and therapeutic indicator in NSCLC diagnosis and treatment.


Asunto(s)
Carcinogénesis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , ARN Largo no Codificante/metabolismo , Transducción de Señal , Secuencia de Bases , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , Invasividad Neoplásica , ARN Largo no Codificante/genética , Transducción de Señal/genética
14.
Biochem Cell Biol ; 97(6): 767-776, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31220419

RESUMEN

Long noncoding RNA small nucleolar RNA host gene 4 (SNHG4) is usually up-regulated in cancer and regulates the malignant behavior of cancer cells. However, its role in lung cancer remains elusive. In this study, we silenced the expression of SNHG4 in NCI-H1437 and SK-MES-1, two representative non-small-cell lung cancer cell lines, by transfecting them with siRNA (small interfering RNA) that specifically targets SNHG4. We observed significantly inhibited cell proliferation in vitro and reduced tumor growth in vivo after SNHG4 silencing. SNHG4 knockdown also led to cell cycle arrest at the G1 phase, accompanied with down-regulation of cyclin-dependent kinases CDK4 and CDK6. The migration and invasiveness of these two cell lines were remarkably inhibited after SNHG4 silencing. Moreover, our study revealed that the epithelial-mesenchymal transition (EMT) of lung cancer cells was suppressed by SNHG4 silencing, as evidenced by up-regulated E-cadherin and down-regulated SALL4, Twist, and vimentin. In addition, we found that SNHG4 silencing induced up-regulation of miR-98-5p. MiR-98-5p inhibition abrogated the effect of SNHG4 silencing on proliferation and invasion of lung cancer cells. In conclusion, our findings demonstrate that SNHG4 is required by lung cancer cells to maintain malignant phenotype. SNHG4 probably exerts its pro-survival and pro-metastatic effects by sponging anti-tumor miR-98-5p.


Asunto(s)
Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , MicroARNs/genética , ARN Largo no Codificante/genética , Proliferación Celular/genética , Humanos , Neoplasias Pulmonares/metabolismo , MicroARNs/metabolismo , Células Tumorales Cultivadas
15.
Biochem Biophys Res Commun ; 507(1-4): 114-121, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30449595

RESUMEN

MicroRNA-98-5p (miR-98-5p) is a stress-related microRNA (miRNA) that plays an important role in regulating cell survival, apoptosis, and oxidative stress in multiple cell types and diseases. However, little is known about the role of miR-98-5p in cerebral ischemia/reperfusion injury. In this study, we investigated the role and mechanism of miR-98-5p in regulating neuronal injury induced by oxygen-glucose deprivation/reoxygenation (OGD/R), an in vitro model of cerebral ischemia/reperfusion injury. We found that miR-98 expression was significantly altered in neurons in response to OGD/R treatment. Functional experiments showed that overexpression of miR-98-5p inhibited OGD/R-induced apoptosis and reactive oxygen species (ROS) production in neurons, whereas inhibition of miR-98-5p showed the opposite effect. Interestingly, bioinformatics analysis predicted that BTB and CNC homology 1 (Bach1) was a potential target gene of miR-98-5p, that was verified by dual-luciferase reporter assay. Moreover, overexpression of miR-98-5p inhibited Bach1 expression while suppression of miR-98-5p promoted Bach1 expression in neurons. Notably, miR-98-5p was shown to regulate the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the activity of the antioxidant response element (ARE). However, overexpression of Bach1 or silencing of Nrf2 significantly abolished the miR-98-5p-mediated neuroprotective effect. Overall, these results demonstrate that miR-98-5p ameliorates OGD/R-induced neuronal injury in vitro through targeting to promote activation of Nrf2/ARE signaling. Our study suggests that miR-98-5p may play a potential role in cerebral ischemia/reperfusion injury and represents a potential therapeutic target for neuroprotection.


Asunto(s)
Elementos de Respuesta Antioxidante/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glucosa/deficiencia , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/metabolismo , Neuronas/patología , Oxígeno/efectos adversos , Animales , Línea Celular , Regulación de la Expresión Génica , Silenciador del Gen , Ratones , MicroARNs/genética , Modelos Biológicos , Neuroprotección , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
16.
J Orthop Surg Res ; 19(1): 239, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615043

RESUMEN

BACKGROUND: This study aims to explore how miR-98-5p affects osteoarthritis, focusing on its role in chondrocyte inflammation, apoptosis, and extracellular matrix (ECM) degradation. METHODS: Quantitative real-time PCR was used to measure miR-98-5p and CASP3 mRNA levels in OA cartilage tissues and IL-1ß-treated CHON-001 cells. We predicted miR-98-5p and CASP3 binding sites using TargetScan and confirmed them via luciferase reporter assays. Chondrocyte viability was analyzed using CCK-8 assays, while pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) were quantified via ELISA. Caspase-3 activity was examined to assess apoptosis, and Western blotting was conducted for protein marker quantification. RESULTS: Our results showed lower miR-98-5p levels in both OA cartilage and IL-1ß-stimulated cells. Increasing miR-98-5p resulted in reduced pro-inflammatory cytokines, decreased caspase-3 activity, and improved cell viability. Furthermore, miR-98-5p overexpression hindered IL-1ß-induced ECM degradation, evident from the decline in MMP-13 and ß-catenin levels, and an increase in COL2A1 expression. MiR-98-5p's impact on CASP3 mRNA directly influenced its expression. Mimicking miR-98-5p's effects, CASP3 knockdown also inhibited IL-1ß-induced inflammation, apoptosis, and ECM degradation. In contrast, CASP3 overexpression negated the suppressive effects of miR-98-5p. CONCLUSIONS: In conclusion, our data collectively suggest that miR-98-5p plays a protective role against IL-1ß-induced damage in chondrocytes by targeting CASP3, highlighting its potential as a therapeutic target for OA.


Asunto(s)
Caspasa 3 , MicroARNs , Osteoartritis , Humanos , Caspasa 3/genética , Caspasa 3/metabolismo , Condrocitos , Citocinas , Inflamación , Interleucina-1beta/farmacología , MicroARNs/genética , Osteoartritis/genética , Osteoartritis/metabolismo , Osteoartritis/patología , ARN Mensajero
17.
Toxicol Res (Camb) ; 13(2): tfae040, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38500512

RESUMEN

Objectives: Gastric cancer (GC) is the leading digestive malignancy with high incidence and mortality rate. microRNAs (miRs) play an important role in GC progresssion. This study aimed to investigate the effect of miR-98-5p on proliferation, migration, and invasion of GC cells. Methods: The expression levels of miR-98-5p, ubiquitin specific peptidase 44 (USP44), and CCCTCbinding factor-like (CTCFL) in GC tissues and cells were identified using reversetranscription quantitative polymerase chain reaction and Western blot assay. The relationship between miR-98-5p expression/USP44 and the clinicopathological features in GC patients was analyzed. GC cell proliferation, invasion, and migration were evaluated by cell counting kit-8 and clone formation assays and Transwell assays. The bindings of miR-98-5p to USP44 and USP44 to CTCFL were examined using dualluciferase assay and co-immunoprecipitation. GC cells were treated with MG132 and the ubiquitination level of CTCFL was examined using ubiquitination assay. Rescue experiments were performed to verify the roles of USP44 and CTCFL in GC cells. Results: miR-98-5p was downregulated in GC. miR-98-5p overexpression inhibited the proliferation, migration, and invasion of GC cells. miR-98-5p inhibited USP44 expression. USP44 bound to CTCFL and limited ubiquitination degradation of CTCFL. Overexpression of USP44 and CTCFL attenuated the inhibitory effects of miR-98-5p overexpression on GC cell progression. Conclusion: miR-98-5p overexpression limited USP44-mediated CTCFL deubiquitination, and suppressed CTCFL expression, mitigating GC cell proliferation, migration, and invasion.

18.
J Genet Eng Biotechnol ; 21(1): 79, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37466730

RESUMEN

BACKGROUND: Colorectal Cancer (CRC) is the third most common cancer type and the second leading cause of cancer-related deaths worldwide. However, the existing treatment, as well as prognosis strategies for CRC patients, need to be improved in order to increase the chance of survival. Targeted therapies of CRC, as opposed to ordinary therapies, target key biological features and pathways of cancerous cells hence minimizing the subsequent damage to normal cells. MicroRNAs have been reported to play a crucial role in inhibiting and/or suppressing major pathways in various cancer types by targeting transcripts of key genes in such pathways. METHODS: The purpose of this study was to analyze in silico the differentially expressed genes from five microarray datasets of patients with CRC. Furthermore, miRNAs were investigated to inhibit cancer cell proliferation and metastasis by targeting a key gene-frizzled receptor 3 (FZD3) in the Wnt signaling pathway. RESULTS: The Wnt pathway receptor FZD3 is upregulated in CRC along with other pathway genes, which play a critical role in tumorigenesis. In contrast, miR-98-5p inhibits the activity of FZD3 by binding directly to the 3'UTR of its mRNA, therefore exerting a suppressor effect on colorectal tumors. CONCLUSION: The study reveals miR-98-5p as a novel target of FZD3 and an inhibitor of the Wnt signaling pathway hence being a potential candidate for developing targeted therapies against CRC.

19.
Neuropsychiatr Dis Treat ; 19: 2319-2329, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928166

RESUMEN

Purpose: Epilepsy is a serious mental disease, for which oxidative stress and hippocampal neuron death after seizure is crucial. Numerous miRNAs are involved in epilepsy. However, the function of miR-98-5p in oxidative stress and hippocampal neuron death after seizure is unclear, which is the purpose of current study. Methods: Magnesium ion (Mg2+)-free solution was used to establish the in vitro epilepsy model in hippocampal neurons. Oxidative stress was exhibited by measuring malondialdehyde (MDA) level and superoxide Dismutase (SOD) activity using enzyme-linked immune sorbent assay (ELISA) kits. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were applied for the examination of neuron viability and apoptosis, respectively. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot were used to evaluate the mRNA and protein levels of miR-98-5p and signal transducer and activator of transcription (STAT3), respectively. The relationship between miR-98-5p and STAT3 was predicted by TargetScan 7.2, and identified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results: miR-98-5p was decreased in the in vitro epileptic model of hippocampal neurons induced by Mg2+-free solution, whose overexpression rescued oxidative stress and neuron apoptosis in epileptic model. Moreover, overexpression of STAT3, one downstream target of miR-98-5p, partially eliminated the effects of miR-98-5p mimic. Conclusion: We shed lights on a pivotal mechanism of miR-98-5p in regulating neuron oxidative stress and apoptosis after seizures, providing potential biomarkers for the diagnosis of epilepsy and therapeutic targets for the treatment of epilepsy.

20.
Mol Biotechnol ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758970

RESUMEN

Spinal cord injury (SCI) is a common disease of the central nervous system. circRNAs play a crucial role in neurological disease. The purpose of this study was to investigate the role of circ-KATNAL1 in SCI and its regulatory mechanism. T9-L10 spinal segment of Sprague Dawley rats was compressed or contused after T10 laminectomy to establish the SCI rat model. Then, rats were divided into SCI group, si-NC group, si-circ-KATNAL1 group, si-circ-KATNAL1 + antagomir NC group, si-circ-KATNAL1 + miR-98-5p antagomir group, si-circ-KATNAL1 + oe-NC group, and si-circ-KATNAL1 + oe-PRDM5 group, with 6 rats in each group. There was another sham operation group that received no treatment. Basso, Beattie, and Bresnahan (BBB) scores were used to evaluate the neural function of rats. In addition to that, the pathological changes of spinal cord tissue, neuronal apoptosis, and inflammatory responses were correspondingly observed and analyzed. Quantitative measurements of circ-KATNAL1, miR-98-5p, and PRDM5 levels were conducted, as well as analyses of their interrelationship. Circ-KATNAL1 was up-regulated in the spinal cord tissue of SCI rats, and circ-KATNAL1 knockdown could improve neural function, alleviate pathological changes of spinal cord tissue, and inhibit neuronal apoptosis and inflammatory responses in SCI rats. For miR-98-5p, circ-KATNAL1 was an upstream factor, while PRDM5 was a downstream actor. miR-98-5p deficiency or PRDM5 restoration impaired the remission effect of circ-KATNAL1 knockdown on SCI. Circ-KATNAL1 knockdown reduces neuronal apoptosis and alleviates SCI through miR-98-5p/PRDM5 regulatory axis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA