RESUMEN
BACKGROUND: The gastrointestinal microbiota is an important line of defense against colonization with antimicrobial resistant (AR) bacteria. In this post hoc analysis of the phase 3 ECOSPOR III trial, we assessed impact of a microbiota-based oral therapeutic (fecal microbiota spores, live; VOWST Oral Spores [VOS], formerly SER-109]; Seres Therapeutics) compared with placebo, on AR gene (ARG) abundance in patients with recurrent Clostridioides difficile infection (rCDI). METHODS: Adults with rCDI were randomized to receive VOS or placebo orally for 3 days following standard-of-care antibiotics. ARG and taxonomic profiles were generated using whole metagenomic sequencing of stool at baseline and weeks 1, 2, 8, and 24 posttreatment. RESULTS: Baseline (n = 151) and serial posttreatment stool samples collected through 24 weeks (total N = 472) from 182 patients (59.9% female; mean age: 65.5 years) in ECOSPOR III as well as 68 stool samples obtained at a single time point from a healthy cohort were analyzed. Baseline ARG abundance was similar between arms and significantly elevated versus the healthy cohort. By week 1, there was a greater decline in ARG abundance in VOS versus placebo (P = .003) in association with marked decline of Proteobacteria and repletion of spore-forming Firmicutes, as compared with baseline. We observed abundance of Proteobacteria and non-spore-forming Firmicutes were associated with ARG abundance, while spore-forming Firmicutes abundance was negatively associated. CONCLUSIONS: This proof-of-concept analysis suggests that microbiome remodeling with Firmicutes spores may be a potential novel approach to reduce ARG colonization in the gastrointestinal tract.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Adulto , Humanos , Femenino , Anciano , Masculino , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Trasplante de Microbiota Fecal , Clostridioides difficile/genética , Farmacorresistencia Bacteriana , Infecciones por Clostridium/microbiología , Bacterias , FirmicutesRESUMEN
The critical role of the gut microbiome in gastrointestinal cancers is becoming increasingly clear. Imbalances in the gut microbial community, referred to as dysbiosis, are linked to increased risks for various forms of gastrointestinal cancers. Pathogens like Fusobacterium and Helicobacter pylori relate to the onset of esophageal and gastric cancers, respectively, while microbes such as Porphyromonas gingivalis and Clostridium species have been associated with a higher risk of pancreatic cancer. In colorectal cancer, bacteria such as Fusobacterium nucleatum are known to stimulate the growth of tumor cells and trigger cancer-promoting pathways. On the other hand, beneficial microbes like Bifidobacteria offer a protective effect, potentially inhibiting the development of gastrointestinal cancers. The potential for therapeutic interventions that manipulate the gut microbiome is substantial, including strategies to engineer anti-tumor metabolites and employ microbiota-based treatments. Despite the progress in understanding the influence of the microbiome on gastrointestinal cancers, significant challenges remain in identifying and understanding the precise contributions of specific microbial species and their metabolic products. This knowledge is essential for leveraging the role of the gut microbiome in the development of precise diagnostics and targeted therapies for gastrointestinal cancers.
Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Neoplasias Gastrointestinales , Humanos , Neoplasias Gastrointestinales/microbiología , Neoplasias Gastrointestinales/diagnóstico , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/terapia , Animales , Medicina de PrecisiónRESUMEN
BACKGROUND: Although comorbidities are risk factors for recurrent Clostridioides difficile infection (rCDI), many clinical trials exclude patients with medical conditions such as malignancy or immunosuppression. In a phase 3, double-blind, placebo-controlled, randomized trial (ECOSPOR III), fecal microbiota spores, live (VOWST, Seres Therapeutics; hereafter "VOS," formerly SER-109), an oral microbiota therapeutic, significantly reduced the risk of rCDI at week 8. We evaluated the efficacy of VOS compared with placebo in patients with comorbidities and other risk factors for rCDI. METHODS: Adults with rCDI were randomized to receive VOS or placebo (4 capsules daily for 3 days) following standard-of-care antibiotics. In this post hoc analysis, the rate of rCDI through week 8 was assessed in VOS-treated participants compared with placebo for subgroups including (i) Charlson comorbidity index (CCI) score category (0, 1-2, 3-4, ≥5); (ii) baseline creatinine clearance (<30, 30-50, >50 to 80, or >80 mL/minute); (iii) number of CDI episodes, inclusive of the qualifying episode (3 and ≥4); (iv) exposure to non-CDI-targeted antibiotics after dosing; and (v) acid-suppressing medication use at baseline. RESULTS: Of 281 participants screened, 182 were randomized (59.9% female; mean age, 65.5 years). Comorbidities were common with a mean overall baseline age-adjusted CCI score of 4.1 (4.1 in the VOS arm and 4.2 in the placebo arm). Across all subgroups analyzed, VOS-treated participants had a lower relative risk of recurrence compared with placebo. CONCLUSIONS: In this post hoc analysis, VOS reduced the risk of rCDI compared with placebo, regardless of baseline characteristics, concomitant medications, or comorbidities.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Adulto , Humanos , Femenino , Anciano , Masculino , Prevalencia , Antibacterianos/uso terapéutico , Infecciones por Clostridium/tratamiento farmacológico , RecurrenciaRESUMEN
Antibiotics have benefitted human health since their introduction nearly a century ago. However, the rise of antibiotic resistance may portend the dawn of the "post-antibiotic age." With the narrow pipeline for novel antimicrobials, we need new approaches to deal with the rise of multidrug resistant organisms. In the last 2 decades, the role of the intestinal microbiota in human health has been acknowledged and studied widely. Of the various activities carried out by the gut microbiota, colonization resistance is a key function that helps maintain homeostasis. Therefore, re-establishing a healthy microbiota is a novel strategy for treating drug resistance organisms. Preliminary studies suggest that this is a viable approach. However, the extent of their success still needs to be examined. Herein, we will review work in this area and suggest where future studies can further investigate this method for dealing with the threat of antibiotic resistance.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbioma Gastrointestinal , Microbiota , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia BacterianaRESUMEN
BACKGROUND & AIMS: Firmicutes bacteria produce metabolites that maintain the intestinal barrier and mucosal immunity. Firmicutes are reduced in the intestinal microbiota of patients with ulcerative colitis (UC). In a phase 1b trial of patients with UC, we evaluated the safety and efficacy of SER-287, an oral formulation of Firmicutes spores, and the effects of vancomycin preconditioning on expansion (engraftment) of SER-287 species in the colon. METHODS: We conducted a double-blind trial of SER-287 in 58 adults with active mild-to-moderate UC (modified Mayo scores 4-10, endoscopic subscores ≥1). Participants received 6 days of preconditioning with oral vancomycin (125 mg, 4 times daily) or placebo followed by 8 weeks of oral SER-287 or placebo. Patients were randomly assigned (2:3:3:3) to groups that received placebo followed by either placebo or SER-287 once weekly, or vancomycin followed by SER-287 once weekly, or SER-287 once daily. Clinical end points included safety and clinical remission (modified Mayo score ≤2; endoscopic subscores 0 or 1). Microbiome end points included SER-287 engraftment (dose species detected in stool after but not before SER-287 administration). Engraftment of SER-287 and changes in microbiome composition and associated metabolites were measured by analyses of stool specimens collected at baseline, after preconditioning, and during and 4 weeks after administration of SER-287 or placebo. RESULTS: Proportions of patients with adverse events did not differ significantly among groups. A higher proportion of patients in the vancomycin/SER-287 daily group (40%) achieved clinical remission at week 8 than patients in the placebo/placebo group (0%), placebo/SER-287 weekly group (13.3%), or vancomycin/SER-287 weekly group (17.7%) (P = .024 for vancomycin/SER-287 daily vs placebo/placebo). By day 7, higher numbers of SER-287 dose species were detected in stool samples from all SER-287 groups compared with the placebo group (P < .05), but this difference was not maintained beyond day 7 in the placebo/SER-287 weekly group. In the vancomycin groups, a greater number of dose species were detected in stool collected on day 10 and all subsequent time points through 4 weeks post dosing compared with the placebo group (P < .05). A higher number of SER-287 dose species were detected in stool samples on days 7 and 10 from subjects who received daily vs weekly SER-287 doses (P < .05). Changes in fecal microbiome composition and metabolites were associated with both vancomycin/SER-287 groups. CONCLUSIONS: In this small phase 1b trial of limited duration, the safety and tolerability of SER-287 were similar to placebo. SER-287 after vancomycin was significantly more effective than placebo for induction of remission in patients with active mild to moderate UC. Engraftment of dose species was facilitated by vancomycin preconditioning and daily dosing of SER-287. ClinicalTrials.gov ID NCT02618187.
Asunto(s)
Colitis Ulcerosa/terapia , Firmicutes , Microbioma Gastrointestinal , Adulto , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , EsporasRESUMEN
Fecal microbiota transplantation (FMT) has been used extensively in the treatment of various gastrointestinal and extraintestinal conditions, despite that there are still a lot of missing gaps in our knowledge in the gut microbiota and its behavior. This article describes the unknowns in microbiota biology (undetected microbes, uncertain colonization, unclear mechanisms of action, uncertain indications, unsure long-term efficacy, or side effects). We discuss how these unknowns may affect the therapeutic uses of FMT, and the potentials and caveats of other related microbiota-based therapies. When used as an experimental therapy or last resort in difficult conditions, caution should be taken against inadvertent complications. Clear documentations of post-treatment events should be made mandatory, classified, and graded as in clinical trials. Further robust scientific experiments and properly designed clinical studies are needed.
Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , HumanosRESUMEN
The transfer of live gut microbes may transform patient care across a range of autoimmune, metabolic, hepatic, and infectious diseases. One early approach, fecal microbiota transplantation, has shown promise in Clostridiodes difficile infection and the potential for improving clinical and public health outcomes for other antibiotic-resistant bacteria. These clinical successes have motivated the development of microbiome drugs, which will need to address challenges in safety, uniformity, and delivery while seeking to preserve the benefits of using whole microbiome communities as novel therapeutics and an innovative platform for drug discovery.
Asunto(s)
Antibacterianos/uso terapéutico , Trasplante de Microbiota Fecal , Microbiota , Antibacterianos/aislamiento & purificación , Clostridioides difficile/efectos de los fármacos , Infecciones por Clostridium/terapia , Desarrollo de Medicamentos , Descubrimiento de Drogas , Farmacorresistencia Bacteriana/efectos de los fármacos , HumanosRESUMEN
The intestinal microbiota is a complex community that consists of an ecosystem with a dynamic interplay between bacteria, fungi, archaea, and viruses. Recent advances in model systems have revealed that the gut microbiome is critical for maintaining homeostasis through metabolic digestive function, immune regulation, and intestinal barrier integrity. Taxonomic shifts in the intestinal microbiota are strongly correlated with a multitude of human diseases, including inflammatory bowel disease (IBD). However, many of these studies have been descriptive, and thus the understanding of the cause and effect relationship often remains unclear. Using non-human experimental model systems such as gnotobiotic mice, probiotic mono-colonization, or prebiotic supplementation, researchers have defined numerous species-level functions of the intestinal microbiota that have produced therapeutic candidates for IBD. Despite these advances, the molecular mechanisms responsible for the function of much of the microbiota and the interplay with host cellular processes remain areas of tremendous research potential. In particular, future research will need to unlock the functional molecular units of the microbiota in order to utilize this untapped resource of bioactive molecules for therapy. This review will highlight the advances and remaining challenges of microbiota-based functional studies and therapeutic discovery, specifically in IBD. One of the limiting factors for reviewing this topic is the nascent development of this area with information on some drug candidates still under early commercial development. We will also highlight the current and evolving strategies, including in the biotech industry, used for the discovery of microbiota-derived bioactive molecules in health and disease.
Asunto(s)
Bacterias/inmunología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/terapia , Probióticos/uso terapéutico , Animales , Bacterias/metabolismo , Humanos , Enfermedades Inflamatorias del Intestino/microbiologíaRESUMEN
OBJECTIVE: Faecal microbiota transplantation (FMT) has proved to be an extremely effective treatment for recurrent Clostridioides difficile infection, and there is interest in its potential application in other gastrointestinal and systemic diseases. However, the recent death and episode of septicaemia following FMT highlights the need for further appraisal and guidelines on donor evaluation, production standards, treatment facilities and acceptable clinical indications. DESIGN: For these consensus statements, a 24-member multidisciplinary working group voted online and then convened in-person, using a modified Delphi approach to formulate and refine a series of recommendations based on best evidence and expert opinion. Invitations to participate were directed to Australian experts, with an international delegate assisting the development. The following issues regarding the use of FMT in clinical practice were addressed: donor selection and screening, clinical indications, requirements of FMT centres and future directions. Evidence was rated using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system. RESULTS: Consensus was reached on 27 statements to provide guidance on best practice in FMT. These include: (1) minimum standards for donor screening with recommended clinical selection criteria, blood and stool testing; (2) accepted routes of administration; (3) clinical indications; (4) minimum standards for FMT production and requirements for treatment facilities acknowledging distinction between single-site centres (eg, hospital-based) and stool banks; and (5) recommendations on future research and product development. CONCLUSIONS: These FMT consensus statements provide comprehensive recommendations around the production and use of FMT in clinical practice with relevance to clinicians, researchers and policy makers.
Asunto(s)
Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal/métodos , Guías de Práctica Clínica como Asunto , Australia , Consenso , Selección de Donante , Femenino , Instituciones de Salud/estadística & datos numéricos , Humanos , Masculino , Resultado del TratamientoRESUMEN
The human gut contains trillions of microbes that play a central role in host biology, including the provision of key nutrients from the diet. Food is a major source of precursors for metabolite production; in fact, diet modulates the gut microbiota (GM) as the nutrients, derived from dietary intake, reach the GM, affecting both the ecosystem and microbial metabolic profile. GM metabolic ability has an impact on human nutritional status from childhood. However, there is a wide variability of dietary patterns that exist among individuals. The study of interactions with the host via GM metabolic pathways is an interesting field of research in medicine, as microbiota members produce myriads of molecules with many bioactive properties. Indeed, much evidence has demonstrated the importance of metabolites produced by the bacterial metabolism from foods at the gut level that dynamically participate in various biochemical mechanisms of a cell as a reaction to environmental stimuli. Hence, the GM modulate homeostasis at the gut level, and the alteration in their composition can concur in disease onset or progression, including immunological, inflammatory, and metabolic disorders, as well as cancer. Understanding the gut microbe-nutrient interactions will increase our knowledge of how diet affects host health and disease, thus enabling personalized therapeutics and nutrition.
Asunto(s)
Dieta , Microbioma Gastrointestinal , Dietoterapia/métodos , Interacciones Huésped-Patógeno , Humanos , Prebióticos/administración & dosificación , Probióticos/uso terapéuticoRESUMEN
BACKGROUND: The causal pathways which drive the development of seropositive rheumatoid arthritis (RA) are incompletely understood, especially in the period of time prior to the first development of signs and symptoms of joint involvement. That asymptomatic period, designated herein as pre-RA, is characterized by the presence of RA-related autoantibodies for many years and is the subject of an increasing number of studies as well as a focus of efforts to prevent the onset of clinically apparent arthritis. OBJECTIVES: To review the potential causal pathways in pre-RA by examining results of studies which evaluate the systemic peripheral blood and mucosal alterations that have been identified in individuals who are genetically at-risk, and/or who elaborate RA-related autoantibodies, and are defined as in a pre-RA period. METHODS: Published studies by the author and his colleagues, as well as publications by other groups, which describe the presence of biomarkers at mucosal sites and in the blood were reviewed. From these studies, a hypothesis related to the presence of pre-RA causal drivers was constructed. RESULTS: The author and his colleagues, as well as other groups, have shown that there are multiple mucosal sites, primarily gut, lung and oral/peridontial, which appear in subsets of individuals in the pre-RA to exhibit inflammation and/or the presence of local production of IgA and IgG RA-related autoantibodies, including anti-citrullinated protein antibodies (ACPA). These findings are reviewed herein. There remain a large number of unanswered questions, though, related to the immune mechanisms that are operative at each site, as well as how these local findings evolve to causal systemic autoimmunity and eventually inflammatory arthritis. AUTHOR'S CONCLUSIONS: Comprehensive natural history studies are required to understand how multiple mucosal sites which appear to be involved in pre-RA are causally involved in the development of arthritis. Questions remain as to whether there are independent, serially involved, or inter-related causal immune pathways originating from these sites. In addition, the microbiota which may be involved in local immune inflammation and autoantibody production should be identified and characterized.
Asunto(s)
Artritis Reumatoide , Humanos , Artritis Reumatoide/diagnóstico , Autoanticuerpos , Inflamación , Anticuerpos Antiproteína Citrulinada , Membrana MucosaRESUMEN
The rising prevalence of metabolic diseases calls for innovative treatments. Peptide-based drugs have transformed the management of conditions such as obesity and type 2 diabetes. Yet, challenges persist in oral delivery of these peptides. This review explores the potential of 'advanced microbiome therapeutics' (AMTs), which involve engineered microbes for delivery of peptides in situ, thereby enhancing their bioavailability. Preclinical work on AMTs has shown promise in treating animal models of metabolic diseases, including obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease. Outstanding challenges toward realizing the potential of AMTs involve improving peptide expression, ensuring predictable colonization control, enhancing stability, and managing safety and biocontainment concerns. Still, AMTs have potential for revolutionizing the treatment of metabolic diseases, potentially offering dynamic and personalized novel therapeutic approaches.
RESUMEN
Parkinson's Disease is the second most prevalent neurological disorder globally, and its cause is still largely unknown. Likewise, there is no cure, and existing treatments do little more than subdue symptoms before becoming ineffective. It is increasingly important to understand the factors contributing to Parkinson's Disease aetiology so that new and more effective pharmacotherapies can be established. In recent years, there has been an emergence of research linking gut dysbiosis to Parkinson's Disease via the gut-brain axis. Advancements in microbial profiling have led to characterisation of a Parkinson's-specific microbial signature, where novel treatments that leverage and correct gut dysbiosis are beginning to emerge for the safe and effective treatment of Parkinson's Disease. Preliminary clinical studies investigating microbiome-targeted therapeutics for Parkinson's Disease have revealed promising outcomes, and as such, the aim of this review is to provide a timely and comprehensive update of the most recent advances in this field. Faecal microbiota transplantation has emerged as a novel and potential frontrunner for microbial-based therapies due to their efficacy in alleviating Parkinson's Disease symptomology through modulation of the gut-brain axis. However, more rigorous clinical investigation, along with technological advancements in diagnostic and in vitro testing tools, are critically required to facilitate the widespread clinical translation of microbiome-targeting Parkinson's Disease therapeutics.
RESUMEN
INTRODUCTION: Recurrent Clostridioides difficile infection (rCDI) often occurs after standard-of-care antibiotics. VOWST oral spores (VOS, previously SER-109), an FDA-approved orally administered microbiome therapeutic, is indicated to prevent rCDI following antibiotics for rCDI. OBJECTIVE, DESIGN, AND PATIENTS: To evaluate safety and efficacy of VOS from two phase 3 trials, (randomized, placebo-controlled [ECOSPOR III: NCT03183128] and open-label, single arm [ECOSPOR IV: NCT03183141]) of 349 adults with rCDI and prevalent comorbidities. METHODS: VOS or placebo [ECOSPOR III only] (4 capsules once daily for 3 days). Integrated analysis of treatment-emergent adverse events (TEAEs) collected through week 8; serious TEAEs and TEAEs of special interest collected through week 24; and rates of rCDI (toxin-positive diarrhea requiring treatment) evaluated through weeks 8 and 24. RESULTS: TEAEs were mostly mild or moderate and gastrointestinal. Most common treatment-related TEAEs were flatulence, abdominal pain and distension, fatigue, and diarrhea. There were 11 deaths (3.2%) and 48 patients (13.8%) with serious TEAEs, none treatment-related. The rCDI rate through week 8 was 9.5% (95% CI 6.6-13.0) and remained low through 24 weeks (15.2%; 95% CI 11.6-19.4). Safety and rCDI rates were consistent across subgroups including age, renal impairment/failure, diabetes, and immunocompromise/immunosuppression. CONCLUSIONS: VOS was well tolerated and rates of rCDI remained low through week 24 including in those with comorbidities. These data support the potential benefit of VOS following antibiotics to prevent recurrence in high-risk patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier, NCT03183128 and NCT03183141.
RESUMEN
Advances in microbiome therapeutics have been motivated by a deeper understanding of the role that the gastrointestinal microbiome plays in human health and disease. The FDA approval of two stool-derived live biotherapeutic products (LBPs), REBYOTA® 150 mL enema (fecal microbiota, live-jslm; formerly RBX2660) and VOWST® oral capsules (fecal microbiota spores, live-brpk; formerly SER-109), for the prevention of recurrent CDI in adults following antibiotic treatment for recurrent CDI provides promise and insights for the development of LBPs for other diseases associated with microbiome dysfunction. Donor-derived products carry risk of disease transmission that must be mitigated through a robust donor screening program and downstream manufacturing controls. Most published recommendations for donor screening practices are prescriptive and do not include a systematic, risk-based approach for donor stool-derived products. A general framework for an end-to-end donor screening program is needed using risk management strategies for donor-derived microbiome therapeutic using a matrixed approach, combining the elements of donor screening with manufacturing controls that are designed to minimize risk to patients. A donor screening paradigm that incorporates medical history, physical examination, laboratory testing, and donor sample inspection are only the first steps in reducing risk of transmission of infectious agents. Manufacturing controls are the cornerstone of risk mitigation when screening unwittingly fails. Failure Mode and Effects Analysis (FMEA) can be used as a tool to assess for residual risk that requires further donor or manufacturing controls. Together, a well-reasoned donor program and manufacturing controls are complementary strategies that must be revisited and reexamined frequently with constant vigilance to mitigate risk to patients. In the spirit of full disclosure and informed consent, physicians should discuss any limitations in the donor screening and manufacturing processes with their patients prior to treatment with microbiome-based therapeutics.
Asunto(s)
Selección de Donante , Trasplante de Microbiota Fecal , Heces , Microbioma Gastrointestinal , Humanos , Selección de Donante/organización & administración , Trasplante de Microbiota Fecal/efectos adversos , Heces/microbiologíaRESUMEN
BACKGROUND: Endometriosis, a poorly studied gynecological condition, is characterized by the presence of ectopic endometrial lesions resulting in pelvic pain, inflammation, and infertility. These associated symptoms contribute to a significant burden, often exacerbated by delayed diagnosis. Current diagnostic methods involve invasive procedures, and existing treatments provide no cure. METHODS: Microbiome-metabolome signatures in stool samples from individuals with and without endometriosis were determined using unbiased metabolomics and 16S bacteria sequencing. Functional studies for selected microbiota-derived metabolites were conducted in vitro using patient-derived cells and in vivo by employing murine and human xenograft pre-clinical disease models. FINDINGS: We discovered a unique bacteria-derived metabolite signature intricately linked to endometriosis. The altered fecal metabolite profile exhibits a strong correlation with that observed in inflammatory bowel disease (IBD), revealing intriguing connections between these two conditions. Notably, we validated 4-hydroxyindole, a gut-bacteria-derived metabolite that is lower in stool samples of endometriosis. Extensive in vivo studies found that 4-hydroxyindole suppressed the initiation and progression of endometriosis-associated inflammation and hyperalgesia in heterologous mouse and in pre-clinical models of the disease. CONCLUSIONS: Our findings are the first to provide a distinct stool metabolite signature in women with endometriosis, which could serve as stool-based non-invasive diagnostics. Further, the gut-microbiota-derived 4-hydroxyindole poses as a therapeutic candidate for ameliorating endometriosis. FUNDING: This work was funded by the NIH/NICHD grants (R01HD102680, R01HD104813) and a Research Scholar Grant from the American Cancer Society to R.K.
RESUMEN
INTRODUCTION: The gut microbiome is implicated in Clostridioides difficile infection (CDI) and recurrent CDI (rCDI). AREAS COVERED: This review covers the mechanisms by which microbiome therapeutics treat rCDI, their efficacy and safety, and clinical trial design considerations for future research. EXPERT OPINION: Altering the chemical environment of the gut and reconstituting colonization resistance is a promising strategy for preventing and treating rCDI. Fecal microbiota transplant (FMT) is safe and effective for the treatment of rCDI. However, limitations of FMT have prompted investigation into alternative microbiome therapeutics. These alternative microbiome therapies require further evaluation, and adaptive trial designs should be strongly considered to more rapidly discern variables including the need for bowel preparation, timing and selection of pre-treatment antibiotics, and dose and duration of microbiome therapeutics. A broad range of adverse events must be prospectively evaluated in these controlled trials, as microbiome therapeutics have the potential for numerous effects. Future studies will lead to a greater understanding of the mechanisms by which microbiome therapies can break the cycle of rCDI, which should ultimately yield a personalized approach to rCDI treatment that restores an individual's specific deficit(s) in colonization resistance to C. difficile.
Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Humanos , Trasplante de Microbiota Fecal/efectos adversos , Infecciones por Clostridium/tratamiento farmacológico , Antibacterianos/efectos adversos , Resultado del Tratamiento , RecurrenciaRESUMEN
The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria. This review presents an update on using probiotics in managing and treating various human diseases, including complications that may emerge during or after a COVID-19 infection.
RESUMEN
The prominent role of gut in regulating the physiology of different organs in a human body is increasingly acknowledged, to which the bidirectional communication between gut and liver is no exception. Liver health is modulated via different key components of gut-liver axis. The gut-derived products mainly generated from dietary components, microbial metabolites, toxins, or other antigens are sensed and transported to the liver through portal vein to which liver responds by secreting bile acids and antibodies. Therefore, maintaining a healthy gut microbiome can promote homeostasis of this gut-liver axis by regulating the intestinal barrier function and reducing the antigenic molecules. Conversely, liver secretions also regulate the gut microbiome composition. Disturbed homeostasis allows luminal antigens to reach liver leading to impaired liver functioning and instigating liver disorders. The perturbations in gut microbiome, permeability, and bile acid pool have been associated with several liver disorders, although precise mechanisms remain largely unresolved. Herein, we discuss functional fingerprints of a healthy gut-liver axis while contemplating mechanistic understanding of pathophysiology of liver diseases and plausible role of gut dysbiosis in different diseased states of liver. Further, novel therapeutic approaches to prevent the severity of liver disorders are discussed in this review.
Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Microbioma Gastrointestinal/fisiología , Hígado , Enfermedad del Hígado Graso no Alcohólico/terapia , Homeostasis , Disbiosis , Ácidos y Sales BiliaresRESUMEN
The success of fecal microbiota transplants (FMT) has provided the necessary proof-of-concept for microbiome therapeutics. Yet, feces-based therapies have many associated risks and uncertainties, and hence defined microbial consortia that modify the microbiome in a targeted manner have emerged as a promising safer alternative to FMT. The development of such live biotherapeutic products has important challenges, including the selection of appropriate strains and the controlled production of the consortia at scale. Here, we report on an ecology- and biotechnology-based approach to microbial consortium construction that overcomes these issues. We selected nine strains that form a consortium to emulate the central metabolic pathways of carbohydrate fermentation in the healthy human gut microbiota. Continuous co-culturing of the bacteria produces a stable and reproducible consortium whose growth and metabolic activity are distinct from an equivalent mix of individually cultured strains. Further, we showed that our function-based consortium is as effective as FMT in counteracting dysbiosis in a dextran sodium sulfate mouse model of acute colitis, while an equivalent mix of strains failed to match FMT. Finally, we showed robustness and general applicability of our approach by designing and producing additional stable consortia of controlled composition. We propose that combining a bottom-up functional design with continuous co-cultivation is a powerful strategy to produce robust functionally designed synthetic consortia for therapeutic use.