RESUMEN
The COVID-19 pandemic has highlighted the need for vaccines capable of providing rapid and robust protection. One way to improve vaccine efficacy is delivery via microarray patches, such as the Vaxxas high-density microarray patch (HD-MAP). We have previously demonstrated that delivery of a SARS-CoV-2 protein vaccine candidate, HexaPro, via the HD-MAP induces potent humoral immune responses. Here, we investigate the cellular responses induced by HexaPro HD-MAP vaccination. We found that delivery via the HD-MAP induces a type one biassed cellular response of much greater magnitude as compared to standard intramuscular immunization.
Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Ratones , Humanos , Glicoproteína de la Espiga del Coronavirus/genética , Pandemias , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Inmunidad Celular , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Inmunidad Humoral , Anticuerpos NeutralizantesRESUMEN
The treatment of chronic wounds still presents great challenges due to being infected by biofilms and the damaged healing process. The current treatments do not address the needs of chronic wounds. In this study, a highly effective dressing (Dox-DFO@MN Hy) for the treatment of chronic wounds is described. This dressing combines the advantages of microneedles (MNs) and hydrogels in the treatment of chronic wounds. MNs is employed to debride the biofilms and break down the wound barrier, providing rapid access to therapeutic drugs from hydrogel backing layer. Importantly, to kill the pathogenic bacteria in the biofilms specifically, Doxycycline hydrochloride (Dox) is wrapped into the polycaprolactone (PCL) microspheres that have lipase-responsive properties and loaded into the tips of MNs. At the same time, hydrogel backing layer is used to seal the wound and accelerate wound healing. Benefiting from the combination of two advantages of MNs and hydrogel, the dressing significantly reduces the bacteria in the biofilms and effectively promotes angiogenesis and cell migration in vitro. Overall, Dox-DFO@MN Hy can effectively treat chronic wounds infected with biofilms, providing a new idea for the treatment of chronic wounds.
Asunto(s)
Vendajes , Hidrogeles , Bacterias , Biopelículas , Movimiento Celular , Antibacterianos/farmacología , Antibacterianos/uso terapéuticoRESUMEN
Oxidative stress, chronic inflammation, and immune senescence are important pathologic factors in diabetic wound nonhealing. This study loads taurine (Tau) into cerium dioxide (CeO2) to develop CeO2@Tau nanoparticles with excellent antioxidant, anti-inflammatory, and anti-aging properties. To enhance the drug penetration efficiency in wounds, CeO2@Tau is encapsulated in gelatin methacryloyl (GelMA) hydrogel to prepare CeO2@Tau@Hydrogel@Microneedle (CTH@MN) patch system. Microneedle technology achieves precise and efficient delivery of CeO2@Tau, ensuring their deep penetration into the wound tissue for optimal efficacy. Rigorous in vitro and in vivo tests have confirmed the satisfactory therapeutic effect of CTH@MN patch on diabetic wound healing. Mechanistically, CTH@MN attenuates oxidative damage and inflammatory responses in macrophages by inhibiting the ROS/NF-κB signaling pathway. Meanwhile, CTH@MN activated autophagy-mediated anti-aging activity, creating a favorable immune microenvironment for tissue repair. Notably, in a diabetic mouse wound model, the multifunctional CTH@MN patch significantly promotes wound healing by systematically regulating the oxidation-inflammation-aging (oxi-inflamm-aging) pathological axis. In conclusion, the in-depth exploration of the CTH@MN system in this study provides new strategies and perspectives for treating diabetic non-healing wounds.
RESUMEN
Methotrexate is successfully used as the gold standard for managing moderate-to-severe psoriasis. However, the low bioavailability and short half-life of the oral pills and the invasiveness of the parenteral injections make these suboptimal therapeutic options. Microneedles, bridging the advantages of the former forms, are successfully used to deliver methotrexate for different therapeutic purposes. However, the utilized dissolving microneedles demand frequent administration, potentially compromising patients' compliance. Additionally, the high toxicity of methotrexate prompts a quest for safer alternatives. Phloretin, a natural compound with confirmed antipsoriatic potential, emerges as a promising candidate. Herein, microneedle patches with separable, slow-degrading tips are developed for the sustained delivery of methotrexate and phloretin, as a comprehensive solution for long-term psoriasis management. Both compounds are individually loaded at varying doses and display sustained-release profiles. The developed microneedle patches demonstrate high mechanical strength, favorable drug delivery efficiency, and remarkable antipsoriatic potential both in vitro in keratinocytes and in vivo in a psoriasis mouse model. Comparative analysis with two subcutaneous injections reveals a similar antipsoriatic efficacy with a single patch of either compound, with prominent phloretin safety. Therefore, the developed patches present a superior alternative to methotrexate's current marketed forms and provide a viable alternative (phloretin) with comparable antipsoriatic efficacy and higher safety.
RESUMEN
Microneedles (MNs) have maintained their popularity in therapeutic and diagnostic medical applications throughout the past decade. MNs are originally designed to gently puncture the stratum corneum layer of the skin and have lately evolved into intelligent devices with functions including bodily fluid extraction, biosensing, and drug administration. MNs offer limited invasiveness, ease of application, and minimal discomfort. Initially manufactured solely from metals, MNs are now available in polymer-based varieties. MNs can be used to create systems that deliver drugs and chemicals uniformly, collect bodily fluids, and are stimulus-sensitive. Although these advancements are favorable in terms of biocompatibility and production costs, they are insufficient for the therapeutic use of MNs. This is the first comprehensive review that discusses individual MN functions toward the evolution and development of smart and multifunctional MNs for a variety of novel and impactful future applications. The study examines fabrication techniques, application purposes, and experimental details of MN constructs that perform multiple functions concurrently, including sensing, drug-molecule release, sampling, and remote communication capabilities. It is highly likely that in the near future, MN-based smart devices will be a useful and important component of standard medical practice for different applications.
Asunto(s)
Agujas , Humanos , Sistemas de Liberación de Medicamentos , Animales , Nanomedicina Teranóstica , Microinyecciones/instrumentación , Microinyecciones/métodosRESUMEN
Keratitis, an inflammation of the cornea caused by bacterial or fungal infections, is one of the leading causes of severe visual disability and blindness. Keratitis treatment requires both the prevention of infection and the reduction of inflammation. However, owing to their limited therapeutic functions, in addition to the ocular barrier, existing conventional medications are characterized by poor efficacy and low bioavailability, requiring high dosages or frequent topical treatment, which represents a burden on patients and increases the risk of side effects. In this study, manganese oxide nanocluster-decorated graphdiyne nanosheets (MnOx/GDY) are developed as multienzyme-like nanozymes for the treatment of infectious keratitis and loaded into hyaluronic acid and polymethyl methacrylate-based ocular microneedles (MGMN). MGMN not only exhibits antimicrobial and anti-inflammatory effects owing to its multienzyme-like activities, including oxidase, peroxidase, catalase, and superoxide dismutase mimics but also crosses the ocular barrier and shows increased bioavailability via the microneedle system. Moreover, MGMN is demonstrated to eliminate pathogens, prevent biofilm formation, reduce inflammation, alleviate ocular hypoxia, and promote the repair of corneal epithelial damage in in vitro, ex vivo, and in vivo experiments, thus providing a better therapeutic effect than commercial ophthalmic voriconazole, with no obvious microbial resistance or cytotoxicity.
Asunto(s)
Queratitis , Agujas , Queratitis/tratamiento farmacológico , Animales , Ratones , Enzimas/metabolismo , Biopelículas/efectos de los fármacos , Humanos , Óxidos , Compuestos de ManganesoRESUMEN
Several natural Chinese herbal medicines have demonstrated considerable potential in facilitating wound healing, while the primary concern remains centered around optimizing formulation and structure to maximize their efficacy. To address this, a natural microneedles drug delivery system is proposed that harnesses gelatinized starch and key Chinese herbal ingredients-aloe vera and berberine. After gelatinized and aged in a well-designed mold, the starch-based microneedles are fabricated with suitable mechanical strength to load components. The resulting Chinese herbal hydrogel microneedles, enriched with integrated berberine and aloe, exhibit antibacterial, anti-inflammatory, and fibroblast growth-promoting properties, thereby facilitating wound healing in the whole process. In vivo experimental results underscore the notable achievements of the microneedles in early-stage antibacterial effects and subsequent tissue reconstruction, contributing significantly to the overall wound healing process. These results emphasize the advantageous combination of traditional Chinese medicine with microneedles, presenting a novel strategy for wound repair and opening new avenues for the application of traditional Chinese medicine.
RESUMEN
Diabetic wounds are characterized by the disruption and cessation of essential healing stages, which include hemostasis, inflammation, proliferation, and remodeling. However, traditional treatments for diabetic wounds concentrate on individual stages of the healing process. Herein, this study utilizes mask-mediated sequential polymerization and varied cross-linking techniques to develop dual-modular microneedles (MNs) with fast- and slow-module, exhibiting varying degradation rates tailored for the full spectrum of diabetic wound healing. First, MNs incorporating calcium ions and dopamine synergistically promote rapid hemostasis. Second, fast-module physically cross-linked MNs rapidly D-mannose/dopamine-enhanced tripolyphosphate-quaternized chitosan (mDTC) nanoparticles (NPs) loaded with microRNA-147 (miRNA-147) to manage inflammation and oxidative stress in diabetic wounds. Additionally, dopamine in these NPs enhances their internalization and safeguards miRNA-147 from oxidative stress and RNase degradation. Finally, slow-module chemically cross-linked MNs facilitate the continuous release of deferoxamine (DFO) and dopamine, accelerating angiogenesis and tissue regeneration during the proliferation and remodeling stages. Manganese/dopamine-enhanced calcium peroxide NPs within the MNs initiate a blast-like generation of oxygen bubbles, not only enhancing the delivery of miRNA-mDTC NPs and DFO but also alleviating tissue hypoxia. Consequently, dual-modular MNs are instrumental in promoting rapid and complete healing of diabetic wounds through all stages of healing.
RESUMEN
In recent years, microneedles (MNs) have attracted a lot of attention due to their microscale sizes and high surface area (500-1000 µm in length), allowing pain-free and efficient drug delivery through the skin. In addition to the great success of MNs based transdermal drug delivery, especially for skin diseases, increasing studies have indicated the expansion of MNs to diverse nontransdermal applications, including the delivery of therapeutics for hair loss, ocular diseases, and oral mucosal. Here, the current treatment of hair loss, eye diseases, and oral disease is discussed and an overview of recent advances in the application of MNs is provided for these three noncutaneous localized organ diseases. Particular emphasis is laid on the future trend of MNs technology development and future challenges of expanding the generalizability of MNs.
Asunto(s)
Agujas , Piel , Humanos , Administración Cutánea , Alopecia , Sistemas de Liberación de MedicamentosRESUMEN
Sustained-release drug delivery formulations are preferable for treating various diseases as they enhance and prolong efficacy, minimize adverse effects, and avoid frequent dosing. However, these formulations are associated with poor patient compliance, require trained personnel for administration, and involve harsh manufacturing conditions that compromise drug stability. Here, a self-healing biodegradable porous microneedle (PMN) patch is reported for sustained drug delivery. The PMN patch is fabricated by a cryogenic micromoulding followed by phase separation, leading to formation of interconnected pores on the surface and internals of MNs. The pores with self-healing feature enable the PMNs to load hydrophilic drugs with different molecular weights in a mild and efficient manner. The healed PMNs can easily penetrate into the skin under press and detach from the supporting substrate under shear, thereby acting as implantable drug reservoirs for achieving sustained release of drugs for at least 40 days. One-time administration of desired therapeutics using the sustained-release healed PMNs resulted in stronger and longer-lasting efficacy in mitigating psoriasis and eliciting immunity compared to conventional methods with multiple administrations. The self-healing PMN patch for self-administrated and long-acting drug delivery can eventually improve medication adherence in prophylactic and therapeutic protocols that typically require frequent dosages.
Asunto(s)
Separación de Fases , Piel , Humanos , Preparaciones de Acción Retardada/farmacología , Administración Cutánea , Porosidad , Sistemas de Liberación de Medicamentos/métodos , AgujasRESUMEN
Microneedles are demonstrated as an effective strategy for chronic wound treatment. Great endeavors are devoted to developing microneedles with natural compositions and potent functions to promote therapeutic effects for wound healing. Herein, a novel graphene oxide-integrated methacrylated fish gelatin (GO-FGelMA) microneedle patch encapsulated with bacitracin and vascular endothelial growth factor (VEGF) is developed for chronic wound management. As the natural components and porous structures of FGelMA, the fabricated microneedle patches display satisfactory biocompatibility and drug-loading ability. Owing to the integration of graphene oxide, the microneedle patches can realize promoted drug release via near-infrared (NIR) irradiation. Besides, the encapsulated bacitracin and VEGF endow the microneedle patches with the ability to inhibit bacterial growth and promote angiogenesis. It is demonstrated that the GO-FGelMA microneedle patches with efficient drug release exert a positive influence on the wound healing process through reduced inflammation, enhanced wound closure, and improved tissue regeneration. Thus, it is believed that the proposed drugs-loaded GO-FGelMA microneedle patches will hold great potential in future chronic wound treatment.
RESUMEN
Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.
Asunto(s)
Líquido Extracelular , Tinta , Nanocompuestos , Agujas , Nanocompuestos/química , Porosidad , Líquido Extracelular/química , AnimalesRESUMEN
Bacteria-induced keratitis is a major cause of corneal blindness in both developed and developing countries. Instillation of antibiotic eyedrops is the most common management of bacterial keratitis but usually suffers from low bioavailability (i.e., <5%) and frequent administration, due to the existence of corneal epithelial barrier that prevents large and hydrophilic drug molecules from entering the cornea, and the tear film on corneal surface that rapidly washes drug away from the cornea. Here, a self-implantable core-shell microneedle (MN) patch with programmed drug release property to facilitate bacterial keratitis treatment is reported. The pH-responsive antimicrobial nanoparticles (NPs), Ag@ZIF-8, which are capable of producing antibacterial metal ions in the infected cornea and generating oxidative stress in bacteria, are loaded in the dissolvable core, while the anti-angiogenic drug, rapamycin (Rapa), is encapsulated in the biodegradable shell, thereby enabling rapid release of Ag@ZIF-8 NPs and sustained release of Rapa after corneal insertion. Owing to the programmed release feature, one single administration of the core-shell MN patch in a rat model of bacterial keratitis, can achieve satisfactory antimicrobial activity and superior anti-angiogenic and anti-inflammation effects as compared to daily topical eyedrops, indicating a great potential for the infectious keratitis therapy in clinics.
Asunto(s)
Liberación de Fármacos , Queratitis , Agujas , Animales , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Ratas , Sirolimus/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Antibacterianos/química , Antibacterianos/uso terapéutico , Ratas Sprague-Dawley , Córnea/metabolismo , Córnea/efectos de los fármacos , Plata/química , Sistemas de Liberación de MedicamentosRESUMEN
Transdermal drug delivery (TDD) has significantly advanced medical practice in recent years due to its ability to prevent the degradation of substances in the gastrointestinal tract and avoid hepatic metabolism. Among different available approaches, microneedle arrays (MNAs) technology represents a fascinating delivery tool for enhancing TDD by penetrating the stratum corneum painless and minimally invasive for delivering antibacterial, antifungal, and antiviral medications. Polymeric MNAs are extensively utilized among many available materials due to their biodegradability, biocompatibility, and low toxicity. Therefore, this review provides a comprehensive discussion of polymeric MNAs, starting with understanding stratum corneum and developing MNA technology. Furthermore, the engineering concepts, fundamental considerations, challenges, and future perspectives of polymeric MNAs in clinical applications are properly outlined, offering a comprehensive and unique overview of polymeric MNAs and their potential for a broad spectrum of clinical applications.
Asunto(s)
Agujas , Polímeros , Polímeros/química , Humanos , Sistemas de Liberación de Medicamentos/instrumentación , Animales , Administración CutáneaRESUMEN
There is an urgent need for research into effective interventions for pain management to improve patients' life quality. Traditional needle and syringe injection were used to administer the local anesthesia. However, it causes various discomforts, ranging from brief stings to trypanophobia and denial of medical operations. In this study, a dissolving microneedles (MNs) system made of composite matrix materials of polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and sodium hyaluronate (HA) was successfully developed for the loading of lidocaine hydrochloride (LidH). The morphology, size and mechanical properties of the MNs were also investigated. After the insertion of MNs into the skin, the matrix at the tip of the MNs was swelled and dissolved by absorption of interstitial fluid, leading to a rapid release of loaded LidH from MNs' tips. And the LidH in the back patching was diffused into deeper skin tissue through microchannels created by MNs insertion, forming a prolonged anesthesia effect. In addition, the back patching of MNs could be acted as a drug reservoir to form a prolonged local anesthesia effect. The results showed that LidH MNs provided a superior analgesia up to 8 h, exhibiting a rapid and long-lasting analgesic effects. Additionally, tissue sectioning and in vitro cytotoxicity tests indicated that the MNs patch we developed had a favorable biosafety profile.
Asunto(s)
Lidocaína , Polímeros , Humanos , Anestesia Local , Alcohol Polivinílico , PovidonaRESUMEN
Scanning Transmission X-ray microscopy (STXM) is a sensitive and selective probe for the penetration of rapamycin which is topically applied to human skin ex vivo and is facilitated by skin treatment with microneedles puncturing the skin. Inner-shell excitation serves as a selective probe for detecting rapamycin by changes in optical density as well as linear combination modeling using reference spectra of the most abundant species. The results indicate that mechanical damage induced by microneedles allows this drug to accumulate in the stratum corneum without reaching the viable skin layers. This is unlike intact skin which shows no drug penetration at all and underscores the mechanical impact of microneedle skin treatment. These results are compared to drug penetration profiles of other drugs highlighting the importance of skin barriers. High spatial resolution studies also indicate that the lipophilic drug rapamycin is observed in corneocytes. Attempts in data evaluation are reported to probe rapamycin also in the lipid layers between the corneocytes, which was not accomplished before. These results are compared to recent results on rapamycin uptake in skin where barrier impairment was induced by pre-treatment with the enzyme trypsin and drug formulations leading to occlusion.
RESUMEN
The absence of established protocols for studying the in vitro performance of dissolvable microarray patches (MAPs) poses a significant challenge within the field. To overcome this challenge, it is essential to optimize testing methods in a way that closely mimics the skin's environment, ensuring biorelevance and enhancing the precision of assessing MAP performance. This study focuses on optimizing in vitro release testing (IVRT) and in vitro permeation testing (IVPT) methods for MAPs containing the antihistamine drugs loratadine (LOR) and chlorpheniramine maleate (CPM). Our primary objective is to investigate the impact of the composition of in vitro release media on the drug release rate, penetration through the skin, and permeation into the release medium. Artificial interstitial fluid is introduced as a biorelevant release medium and compared with commonly used media in IVRT and IVPT studies. Prior to these studies, we evaluated drug solubility in different release media and developed a method for LOR and CPM extraction from the skin using a design of experiment approach. Our findings highlight the effect of the in vitro release medium composition on both LOR and CPM release rate and their penetration through the skin. Furthermore, we identified the importance of considering the interplay between the physicochemical attributes of the drug molecules, the design of the MAP formulation, and the structural properties of the skin when designing IVRT and IVPT protocols.
Asunto(s)
Clorfeniramina , Loratadina , Absorción Cutánea , Piel , Solubilidad , Clorfeniramina/farmacocinética , Loratadina/farmacocinética , Loratadina/química , Piel/metabolismo , Liberación de Fármacos , Parche Transdérmico , Administración Cutánea , Humanos , Animales , PermeabilidadRESUMEN
The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted. To overcome all the challenges associated with the delivery of NCs, the microneedle (MN) technology has emerged as a beacon of hope. Programmable drug release, being painless, and its minimally invasive nature make it an intriguing strategy to circumvent the multiple challenges associated with the various drug delivery systems. The integration of positive traits of NCs and MNs boosts therapeutic effectiveness by evading stratum corneum, facilitating the delivery of NCs through the skin and enhancing their targeted delivery. This review discusses the barrier function of skin, the importance of MNs, the types of MNs, and the superiority of NC-loaded MNs. We highlighted the applications of NC-integrated MNs for the management of various skin ailments, combinational drug delivery, active targeting, in vivo imaging, and as theranostics. The clinical trials, patent portfolio, and marketed products of drug/NC-integrated MNs are covered. Finally, regulatory hurdles toward benchtop-to-bedside translation, along with promising prospects needed to scale up NC-integrated MN technology, have been deliberated. The current review is anticipated to deliver thoughtful visions to researchers, clinicians, and formulation scientists for the successful development of the MN-technology-based product by carefully optimizing all the formulation variables.
Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Agujas , Enfermedades de la Piel , Piel , Humanos , Sistemas de Liberación de Medicamentos/métodos , Enfermedades de la Piel/tratamiento farmacológico , Piel/metabolismo , Piel/efectos de los fármacos , Nanopartículas/química , Nanopartículas/administración & dosificación , Portadores de Fármacos/química , Animales , Absorción Cutánea , Microinyecciones/métodos , Microinyecciones/instrumentaciónRESUMEN
Transdermal drug delivery (TDD) is an attractive route of administration, providing several advantages, especially over oral and parenteral routes. However, TDD is significantly restricted due to the barrier imposed by the uppermost layer of the skin, the stratum corneum (SC). Microneedles is a physical enhancement technique that efficiently pierces the SC and facilitates the delivery of both lipophilic and hydrophilic molecules. Dissolving microneedles is a commonly used type that is fabricated utilizing various biodegradable and biocompatible polymers, such as polylactic acid, polyglycolic acid, or poly(lactide-co-glycolide) (PLGA). Such polymers also promote the prolonged release of the drug due to the slow degradation of the polymer matrix following its insertion. We selected carfilzomib, a small therapeutic peptide (MW: 719.924 g/mol, log P 4.19), as a model drug to fabricate a microneedle-based sustained delivery system. This study is a proof-of-concept investigation in which we fabricated PLGA microneedles using four types of PLGA (50-2A, 50-5A, 75-5A, and 50-7P) to evaluate the feasibility of long-acting transdermal delivery of carfilzomib. Micromolding technique was used to fabricate the PLGA microneedles and characterization tests, including Fourier transform infrared spectroscopy, insertion capability using the skin simulant Parafilm model, histological evaluation, scanning electron microscopy, and confocal microscopy were conducted. In vitro release and permeation testing were conducted in vertical Franz diffusion cells. N-methyl pyrrolidone was utilized as the organic solvent and microneedles were solidified in controlled conditions, which led to good mechanical strength. Both in vitro release and permeation testing showed sustained profiles of carfilzomib over 7 days. The release and permeation were significantly influenced by the molecular weight of PLGA and the lipophilic properties of carfilzomib.
Asunto(s)
Administración Cutánea , Sistemas de Liberación de Medicamentos , Agujas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Sistemas de Liberación de Medicamentos/métodos , Animales , Piel/metabolismo , Piel/efectos de los fármacos , Absorción Cutánea/efectos de los fármacos , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Ácido Láctico/química , Oligopéptidos/química , Oligopéptidos/administración & dosificación , Oligopéptidos/farmacocinética , Péptidos/química , Péptidos/administración & dosificación , Ácido Poliglicólico/química , Liberación de Fármacos , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Transdermal microneedles have demonstrated promising potential as an alternative to typical drug administration routes for the treatment of various diseases. As microneedles offer lower administration burden with enhanced patient adherence and reduced ecological footprint, there is a need for further exploitation of microneedle devices. One of the main objectives of this work was to initially develop an innovative biobased photocurable resin with high biobased carbon content comprising isobornyl acrylate (IBA) and pentaerythritol tetraacrylate blends (50:50 wt/wt). The optimization of the printing and curing process resulted in µNe3dle arrays with durable mechanical properties and piercing capacity. Another objective of the work was to employ the 3D printed hollow µNe3dles for the treatment of osteoporosis in vivo. The 3D printed µNe3dle arrays were used to administer denosumab (Dmab), a monoclonal antibody, to osteoporotic mice, and the serum concentrations of critical bone minerals were monitored for six months to assess recovery. It was found that the Dmab administered by the 3D printed µNe3dles showed fast in vitro rates and induced an enhanced therapeutic effect in restoring bone-related minerals compared to subcutaneous injections. The findings of this study introduce a novel green approach with a low ecological footprint for 3D printing of biobased µNe3dles, which can be tailored to improve clinical outcomes and patient compliance for chronic diseases.