Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.115
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(13): e2300085120, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36952382

RESUMEN

The peroxymonosulfate (PMS)-triggered radical and nonradical active species can synergistically guarantee selectively removing micropollutants in complex wastewater; however, realizing this on heterogeneous metal-based catalysts with single active sites remains challenging due to insufficient electron cycle. Herein, we design asymmetric Co-O-Bi triple-atom sites in Co-doped Bi2O2CO3 to facilitate PMS oxidation and reduction simultaneously by enhancing the electron transfer between the active sites. We propose that the asymmetric Co-O-Bi sites result in an electron density increase in the Bi sites and decrease in the Co sites, thereby PMS undergoes a reduction reaction to generate SO4•- and •OH at the Bi site and an oxidation reaction to generate 1O2 at the Co site. We suggest that the synergistic effect of SO4•-, •OH, and 1O2 enables efficient removal and mineralization of micropollutants without interference from organic and inorganic compounds under the environmental background. As a result, the Co-doped Bi2O2CO3 achieves almost 99.3% sulfamethoxazole degradation in 3 min with a k-value as high as 82.95 min-1 M-1, which is superior to the existing catalysts reported so far. This work provides a structural regulation of the active sites approach to control the catalytic function, which will guide the rational design of Fenton-like catalysts.

2.
Environ Sci Technol ; 58(31): 14022-14033, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39052879

RESUMEN

Interlayered thin-film nanocomposite (TFN) membranes have shown the potential to boost nanofiltration performance for water treatment applications including the removal of organic micropollutants (OMPs). However, the effects of substrates have been overlooked when exploiting and evaluating the efficacy of certain kinds of interlayers in tailoring membrane performance. Herein, a series of TFN membranes were synthesized on different porous substrates with identical interlayers of metal-organic framework nanosheets. It was revealed that the interlayer introduction could narrow but not fully eliminate the difference in the properties among the polyamide layers formed on different substrates, and the membrane performance variation was prominent in distinct aspects. For substrates with small pore sizes exerting severe water transport hindrance, the introduced interlayer mainly enhanced membrane water permeance by affording the gutter effect, while it could be more effective in reducing membrane pore size by improving the interfacial polymerization platform and avoiding PA defects when using a large-pore-size substrate. By matching the selected substrates and interlayers well, superior TFN membranes were obtained with simultaneously higher water permeance and OMP rejections compared to three commercial membranes. This study helps us to objectively understand interlayer efficacies and attain performance breakthroughs of TFN membranes for more efficient water treatment.


Asunto(s)
Filtración , Membranas Artificiales , Nylons , Contaminantes Químicos del Agua , Purificación del Agua , Nylons/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Nanocompuestos/química
3.
Environ Sci Technol ; 58(16): 7144-7153, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38527158

RESUMEN

Biodegradation plays a key role in the fate of chemicals in the environment. The variability of biodegradation in time can cause uncertainty in evaluating the environmental persistence and risk of chemicals. However, the seasonality of biodegradation in rivers has not yet been the subject of environmentally relevant testing and systematic investigation for large numbers of chemicals. In this work, we studied the biodegradation of 96 compounds during four seasons at four locations (up- and downstream of WWTPs located on two Swedish rivers). Significant seasonality (ANOVA, p < 0.05) of the first-order rate constant for primary biodegradation was observed for most compounds. Variations in pH and total bacterial cell count were not the major factors explaining the seasonality of biodegradation. Deviation from the classical Arrhenius-type behavior was observed for most of the studied compounds, which calls into question the application of this relationship to correct biodegradation rate constants for differences in environmental temperature. Similarities in magnitude and seasonality of biodegradation rate constants were observed for some groups of chemicals possessing the same functional groups. Moreover, reduced seasonality of biodegradation was observed downstream of WWTPs, while biodegradation rates of most compounds were not significantly different between up- and downstream.

4.
Environ Sci Technol ; 58(21): 9370-9380, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743251

RESUMEN

Utilizing solar light and water matrix components in situ to reduce the chemical and energy demands would make treatment technologies more sustainable for micropollutant abatement in wastewater effluents. We herein propose a new strategy for micropollutant abatement through dissolved organic matter (DOM)-mediated photosensitized activation of monochloramine (NH2Cl). Exposing the chlorinated wastewater effluent with residual NH2Cl to solar irradiation (solar/DOM/NH2Cl process) degrades six structurally diverse micropollutants at rate constants 1.26-34.2 times of those by the solar photolysis of the dechlorinated effluent (solar/DOM process). Notably, among the six micropollutants, the degradation rate constants of estradiol, acetaminophen, bisphenol A, and atenolol by the solar/DOM/NH2Cl process are 1.13-4.32 times the summation of those by the solar/DOM and solar/NH2Cl processes. The synergism in micropollutant degradation is attributed to the generation of reactive nitrogen species (RNS) and hydroxyl radicals (HO·) from the photosensitized activation of NH2Cl. Triplet state-excited DOM (3DOM*) dominates the activation of NH2Cl, leading to the generation of RNS, while HO· is produced from the interactions between RNS and other photochemically produced reactive intermediates (e.g., O2·- and DOM·+/·-). The findings advance the knowledge of DOM-mediated photosensitization and offer a sustainable method for micropollutant abatement in wastewater effluents containing residual NH2Cl.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Fotólisis , Luz Solar
5.
Environ Sci Technol ; 58(13): 6030-6038, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517061

RESUMEN

Increasing radical yields to reduce UV fluence requirement for achieving targeted removal of micropollutants in water would make UV-based advanced oxidation processes (AOPs) less energy demanding in the context of United Nations' Sustainable Development Goals and carbon neutrality. We herein demonstrate that, by switching the UV radiation source from conventional low-pressure UV at 254 nm (UV254) to emerging Far-UVC at 222 nm (UV222), the fluence-based concentration of HO• in the UV/peroxydisulfate (UV/PDS) AOP increases by 6.40, 2.89, and 6.00 times in deionized water, tap water, and surface water, respectively, with increases in the fluence-based concentration of SO4•- also by 5.06, 5.81, and 55.47 times, respectively. The enhancement to radical generation is confirmed using a kinetic model. The pseudo-first-order degradation rate constants of 16 micropollutants by the UV222/PDS AOP in surface water are predicted to be 1.94-13.71 times higher than those by the UV254/PDS AOP. Among the tested water matrix components, chloride and nitrate decrease SO4•- but increase HO• concentration in the UV222/PDS AOP. Compared to the UV254/PDS AOP, the UV222/PDS AOP decreases the formation potentials of carbonaceous disinfection byproducts (DBPs) but increases the formation potentials of nitrogenous DBPs.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Agua , Fotólisis , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno , Oxidación-Reducción , Rayos Ultravioleta , Desinfección
6.
Environ Sci Technol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324836

RESUMEN

In this study, vacuum ultraviolet (VUV) was first proposed to activate ferrate (Fe(VI)) for degrading micropollutants (e.g., carbamazepine (CBZ)). Results indicated that VUV/Fe(VI) could significantly facilitate the CBZ degradation, and the removal efficiencies of VUV/Fe(VI) were 30.9-83.4% higher than those of Fe(VI) at pH = 7.0-9.0. Correspondingly, the degradation rate constants of VUV/Fe(VI) were 2.3-36.0-fold faster than those of Fe(VI). Free radical quenching and probe experiments revealed that the dominant active species of VUV/Fe(VI) were •OH and Fe(V)/Fe(IV), whose contribution ratios were 43.3 to 48.6% and 48.2 to 46.6%, respectively, at pH = 7.0-9.0. VUV combined with Fe(VI) not only effectively mitigated the weak oxidizing ability of Fe(VI) under alkaline conditions (especially pH = 9.0) but also attenuated the deteriorating effect of background constituents on Fe(VI). In different real waters (tap water, river water, WWTPs effluent), VUV/Fe(VI) retained a remarkably enhanced effect on CBZ degradation compared to Fe(VI). Moreover, VUV/Fe(VI) exhibited outstanding performance in the debasement of CBZ and sulfamethoxazole (SMX), as well as six other micropollutants, displaying broad-spectrum capability in degrading micropollutants. Overall, this study developed a novel oxidation process that was efficient and energy-saving for the rapid removal of micropollutants.

7.
Environ Sci Technol ; 58(22): 9723-9730, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38761139

RESUMEN

The presence of organic micropollutants in water and sediments motivates investigation of their biotransformation at environmentally low concentrations, usually in the range of µg L-1. Many are biotransformed by cometabolic mechanisms; however, there is scarce information concerning their direct metabolization in this concentration range. Threshold concentrations for microbial assimilation have been reported in both pure and mixed cultures from different origins. The literature suggests a range value for bacterial growth of 1-100 µg L-1 for isolated aerobic heterotrophs in the presence of a single substrate. We aimed to investigate, as a model case, the threshold level for sulfamethoxazole (SMX) metabolization in pure cultures of Microbacterium strain BR1. Previous research with this strain has covered the milligram L-1 range. In this study, acclimated cultures were exposed to concentrations from 0.1 to 25 µg L-1 of 14C-labeled SMX, and the 14C-CO2 produced was trapped and quantified over 24 h. Interestingly, SMX removal was rapid, with 98% removed within 2 h. In contrast, mineralization was slower, with a consistent percentage of 60.0 ± 0.7% found at all concentrations. Mineralization rates increased with rising concentrations. Therefore, this study shows that bacteria are capable of the direct metabolization of organic micropollutants at extremely low concentrations (sub µg L-1).


Asunto(s)
Sulfametoxazol , Sulfametoxazol/metabolismo , Contaminantes Químicos del Agua/metabolismo
8.
Environ Res ; 254: 119128, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38740294

RESUMEN

The growing worry for human health stems from the fact that micropollutants (MPs), particularly dyes, are more common in aquatic settings. These particles pose a serious risk to both humans and animals since they have been found in a variety of bodily fluids and waste products from both humans and animals. MPs pose significant dangers to human health and other living things due to their extended half-lives, high fragmentation propensity, and capacity to absorb organic pollutants as well (MB, MR, MO and CV dyes) and heavy metals as well (Pb(II), Cd(II) Co(II) Cr(III) and Ag(I) ….). They also contribute to the degradation of terrestrial and aquatic habitats. Sustainable and effective methods for removing MPs from wastewater and treating organic micropollutants in an environmentally friendly manner are being developed in order to address this problem. This work offers a thorough review of adsorption technology as a productive and environmentally friendly means of eliminating MPs from aqueous environments, with an emphasis on developments in the application of polymeric resin in MP removal. The review examines the adsorption process and the variables that affect adsorption efficiency, including the characteristics of the micropollutant, the resin, and the solution. To improve understanding, a number of adsorption mechanisms and models are explored. The study also addresses the difficulties and future possibilities of adsorption technology, emphasising the need to optimize resin characteristics, create sustainable and affordable regeneration techniques, and take into account the environmental effects of adsorbent materials.


Asunto(s)
Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Restauración y Remediación Ambiental/métodos , Polímeros/química , Resinas Sintéticas/química
9.
Environ Res ; 248: 118168, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220073

RESUMEN

This study investigated degradation kinetics of five selected organic micropollutants (OMPs) present in poultry litter (namely: sulfadiazine, tetracycline, and doxycycline hyclate (antibiotics); estrone and 17-ß-estradiol (hormones)) during hydrothermal carbonization (HTC) treatment as the temperature stepwise increased to 250 °C. All five pure OMPs were completely degraded before 250 °C was reached during the HTC process. Nevertheless, presence of poultry litter slowed down the degradation of OMPs. Through elemental mass balance calculation, it is noted that after 15 min (temperature less than 137 °C), 69-82% of organic carbon and 50-66% of organic nitrogen initially consisting part of the target antibiotics were fully mineralized. Both HTC filtrates and hydrochars obtained from poultry litter inhibited Escherichia coli and Bacillus subtilis growth. A combination of high salinity, high nutrients, dissolved organic carbon, and other ions in the filtrate as well as the adsorption of OMPs on hydrochars were probably the reason for the high toxicity.


Asunto(s)
Antibacterianos , Aves de Corral , Animales , Carbono , Temperatura , Estradiol
10.
Appl Microbiol Biotechnol ; 108(1): 301, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639797

RESUMEN

Water bodies are increasingly contaminated with a diversity of organic micropollutants (OMPs). This impacts the quality of ecosystems due to their recalcitrant nature. In this study, we assessed the removal of OMPs by spent mushroom substrate (SMS) of the white button mushroom (Agaricus bisporus) and by its aqueous tea extract. Removal of acesulfame K, antipyrine, bentazon, caffeine, carbamazepine, chloridazon, clofibric acid, and N, N-diethyl-meta-toluamide (DEET) by SMS and its tea was between 10 and 90% and 0-26%, respectively, in a 7-day period. Sorption to SMS particles was between 0 and 29%, which can thus not explain the removal difference between SMS and its tea, the latter lacking these particles. Carbamazepine was removed most efficiently by both SMS and its tea. Removal of OMPs (except caffeine) by SMS tea was not affected by heat treatment. By contrast, heat-treatment of SMS reduced OMP removal to < 10% except for carbamazepine with a removal of 90%. These results indicate that OMP removal by SMS and its tea is mediated by both enzymatic and non-enzymatic activities. The presence of copper, manganese, and iron (0.03, 0.88, and 0.33 µg L-1, respectively) as well as H2O2 (1.5 µM) in SMS tea indicated that the Fenton reaction represents (part of) the non-enzymatic activity. Indeed, the in vitro reconstituted Fenton reaction removed OMPs > 50% better than the teas. From these data it is concluded that spent mushroom substrate of the white button mushroom, which is widely available as a waste-stream, can be used to purify water from OMPs.


Asunto(s)
Agaricus , Ecosistema , Cafeína , Peróxido de Hidrógeno , Agua , , Carbamazepina
11.
Ecotoxicol Environ Saf ; 279: 116510, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810284

RESUMEN

Microplastics and organic micropollutants are two emerging contaminants that interact with each other in environmental and engineered systems. Sorption of organic micropollutants, such as pharmaceuticals, pesticides and industrial compounds, to microplastics can modify their bioavailability and biodegradation. The present study investigated the capacity of ultra-high density polyethylene particles (125 µm in diameter), before and after aging, to sorb 21 organic micropollutants at different environmentally relevant concentration. Furthermore, the biodegradation of these organic micropollutants by a biofilm microbial community growing on the microplastic surface was compared with the biodegradation by a microbial community originating from activated sludge. Among all tested organic micropollutants, propranolol (70%), trimethoprim (25%) and sotalol (15%) were sorbed in the presence of polyethylene particles. Growth of a biofilm on the polyethylene particles had a beneficial effect on the sorption of bromoxynil, caffeine and chloridazon and on the biodegradation of irbesartan, atenolol and benzotriazole. On the other hand, the biofilm limited the sorption of trimethoprim, propranolol, sotalol and benzotriazole and the biodegradation of 2,4-D. These results showed that ultra-high density polyethylene particles can affect both in a positive and negative way for the abiotic and biotic removal of organic micropollutants in wastewater. This project highlights the need for further investigation regarding the interaction between microplastics and organic micropollutants in the aquatic environment.


Asunto(s)
Biodegradación Ambiental , Biopelículas , Microplásticos , Polietileno , Propranolol , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Polietileno/química , Adsorción , Trimetoprim , Atenolol , Triazoles/química , Aguas del Alcantarillado/química , Aguas del Alcantarillado/microbiología
12.
Ecotoxicol Environ Saf ; 270: 115915, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38194809

RESUMEN

This study systematically investigated the influence of effluent particles and activated sludge (AS) particles on the removal of micropollutants via wastewater effluent ozonation within typical effluent total suspended solids (TSS) concentrations. A series of batch experiments revealed that particle concentrations up to 30 mg/L had a minor impact on the removal of organic micropollutants (OMPs) in the aqueous phase. Moreover, the reduction of UV absorbance at 254 nm (UVA254) was negatively correlated to the level of particle concentration at ozone doses higher than 0.5 gO3/gDOC. It indicates that UVA254 abatement was more sensitive to the presence of particles compared to OMP removal. Organic micropollutants (OMPs) sorbed on effluent particles and sludge particles were extracted before and after ozonation. OMP sorption in effluent particles was 2-5 times higher than that in sludge particles. During the ozonation of raw secondary effluent, particle-bound micropollutants were removed comparably to the micropollutants in the aqueous phase. This suggests that the boundary layer surrounding the particle didn't affect the removal of OMPs in the particle phase. Furthermore, the removal of existing OMPs (irbesartan, sulfamethoxazole, and metoprolol) in the effluent was used to assess the ozone and •OH exposure. In water samples with and without particles, the elimination of OMPs could be reliably predicted (R² > 0.95) by calculated ozone and •OH exposures.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Aguas Residuales , Eliminación de Residuos Líquidos , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Agua
13.
J Environ Manage ; 366: 121857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39029166

RESUMEN

Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.


Asunto(s)
Agaricales , Ciprofloxacina , Lacasa , Norfloxacino , Aguas Residuales , Contaminantes Químicos del Agua , Lacasa/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Agaricales/enzimología , Ciprofloxacina/química , Biodegradación Ambiental , Antibacterianos/química
14.
J Environ Manage ; 368: 122171, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39128353

RESUMEN

This study evaluates the effectiveness of microalgal-based carbon-encapsulated iron nanoparticles (ME-nFe) in the removal of pharmaceutical compounds (PhACs) from water solutions and real municipal effluent at a laboratory scale. The investigated PhACs were chosen to represent different classes of synthetic drugs: antibiotics, anti-inflammatory drugs, antihypertensives, antiepileptics, neuroprotectors, and antidepressants. The adsorbent material was produced through hydrothermal carbonization (225 °C for 3 h), using microalgae grown on wastewater as the carbon source. ME-nFe showed heterogeneity in terms of porosity (with both abundance of macro and mesopores), a total pore volume of 0.65 mL g-1, a specific surface area of 117 m2 g-1 and a total iron content of 40%. Laboratory scale adsorption tests (1 g L-1 of nanoparticles with 2 min contact time) showed high removal for the most hydrophobic compounds. Removal efficiencies were high (over 98%) for Irbesartan, Ofloxacin and Diclofenac, promising (over 65-80%) for Clarithromycin, Fluoxetine, Lamotrigine and Metoprolol, but low for Gabapentin-Lactam and Propyphenazone (<20%). Electrostatic interactions between the drugs and the surface of the nanoparticles may account for the observed data, although additional removal mechanisms cannot be ruled out.


Asunto(s)
Carbono , Hierro , Microalgas , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Hierro/química , Adsorción , Carbono/química , Nanopartículas del Metal/química , Preparaciones Farmacéuticas/química , Purificación del Agua/métodos
15.
J Environ Manage ; 367: 121950, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39068780

RESUMEN

This study aimed to investigate the recovery of agricultural biostimulants and biogas from microalgae treating wastewater, in the framework of a circular bioeconomy. To this end, municipal wastewater was treated in demonstrative raceway ponds, and microalgal biomass (Scenedesmus sp.) was then harvested and downstream processed to recover biostimulants and biogas in a biorefinery approach. The effect of microalgal biostimulants on plants was evaluated by means of bioassays, while the biogas produced was quantified in biochemical methane potential (BMP) tests. Furthermore, the fate of contaminants of emerging concern (CECs) over the process was also assessed. Bioassays confirmed the biostimulant effect of microalgae, which showed gibberellin-, auxin- and cytokinin-like activity in watercress seed germination, mung bean rooting, and wheat leaf chlorophyll retention. In addition, the downstream process applied to raw biomass acted as a pre-treatment to enhance anaerobic digestion performance. After biostimulant extraction, the residual biomass represented 91% of the methane yield from the raw biomass (276 mLCH4·g-1VS). The kinetic profile of the residual biomass was 43% higher than that of the unprocessed biomass. Co-digestion with primary sludge further increased biogas production by 24%. Finally, the concentration of CECs in wastewater was reduced by more than 80%, and only 6 out of 22 CECs analyzed were present in the biostimulant obtained. Most importantly, the concentration of those contaminants was lower than in biosolids that are commonly used in agriculture, ensuring environmental safety.


Asunto(s)
Microalgas , Aguas Residuales , Microalgas/metabolismo , Aguas Residuales/química , Biomasa , Biocombustibles , Eliminación de Residuos Líquidos/métodos , Metano/metabolismo
16.
J Environ Manage ; 358: 120822, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599088

RESUMEN

Contamination by wastewater has been traditionally assessed by measuring faecal coliforms, such as E. coli and entereococci. However, using micropollutants to track wastewater input is gaining interest. In this study, we identified nine micropollutant indicators that could be used to characterize water quality and wastewater treatment efficiency in pond-based wastewater treatment plants (WWTPs) of varying configuration. Of 232 micropollutants tested, nine micropollutants were detected in treated wastewater at concentrations and frequencies suitable to be considered as indicators for treated wastewater. The nine indicators were then classified as stable (carbamazepine, sucralose, benzotriazole, 4+5-methylbenzotriazole), labile (atorvastatin, naproxen, galaxolide) or intermediate/uncertain (gemfibrozil, tris(chloropropyl)phosphate isomers) based on observed removals in the pond-based WWTPs and correlations between micropollutant and dissolved organic carbon removal. The utility of the selected indicators was evaluated by assessing the wastewater quality in different stages of wastewater treatment in three pond-based WWTPs, as well as selected groundwater bores near one WWTP, where treated wastewater was used to irrigate a nearby golf course. Ratios of labile to stable indicators provided insight into the treatment efficiency of different facultative and maturation ponds and highlighted the seasonal variability in treatment efficiency for some pond-based WWTPs. Additionally, indicator ratios of labile to stable indicators identified potential unintended release of untreated wastewater to groundwater, even with the presence of micropollutants in other groundwater bores related to approved reuse of treated wastewater.


Asunto(s)
Agua Subterránea , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Aguas Residuales/análisis , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Eliminación de Residuos Líquidos/métodos , Calidad del Agua , Triazoles/análisis , Purificación del Agua/métodos , Gemfibrozilo/análisis
17.
J Environ Manage ; 357: 120723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38565028

RESUMEN

Due to increased pesticide usage in agriculture, a significant concentration of pesticides is reported in the environment that can directly impact humans, aquatic flora, and fauna. Utilizing microalgae-based systems for pesticide removal is becoming more popular because of their environmentally friendly nature, ability to degrade pesticide molecules into simpler, nontoxic molecules, and cost-effectiveness of the technology. Thus, this review focused on the efficiency, mechanisms, and factors governing pesticide removal using microalgae-based systems and their effect on microalgal metabolism. A wide range of pesticides, like atrazine, cypermethrin, malathion, trichlorfon, thiacloprid, etc., can be effectively removed by different microalgal strains. Some species of Chlorella, Chlamydomonas, Scenedesmus, Nostoc, etc., are documented for >90% removal of different pesticides, mainly through the biodegradation mechanism. The antioxidant enzymes such as ascorbate peroxidase, superoxide dismutase, and catalase, as well as the complex structure of microalgae cell walls, are mainly involved in eliminating pesticides and are also crucial for the defense mechanism of microalgae against reactive oxygen species. However, higher pesticide concentrations may alter the biochemical composition and gene expression associated with microalgal growth and metabolism, which may vary depending on the type of strain, the pesticide type, and the concentration. The final section of this review discussed the challenges and prospects of how microalgae can become a successful tool to remediate pesticides.


Asunto(s)
Chlorella , Microalgas , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Plaguicidas/química , Microalgas/metabolismo , Contaminantes Químicos del Agua/química , Malatión/metabolismo , Malatión/farmacología
18.
J Environ Manage ; 352: 119964, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38228044

RESUMEN

The application of sewage sludge to agricultural land is facing increasing restrictions due to concerns about various micropollutants, including polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs), per- and poly-fluoroalkyl substances (PFAS), and heavy metals (HMs). As an alternative approach to manage this residue, the use of pyrolysis, a process that transforms sludge into biochar, a carbon-rich solid material, is being explored. Despite the potential benefits of pyrolysis, there is limited data on its effectiveness in removing micropollutants and the potential presence of harmful elements in the resulting biochar. This study aims to evaluate the impact of the temperature and the use of a carrier gas (N2) during a two-stage pyrolysis and cooling on micropollutant removal. Pilot-scale tests showed that a higher temperature (650 °C) and the use of a carrier gas (0.4 L/min N2) during the pyrolysis and the cooling process led to a reduction of PAHs, PCDD/Fs, PCBs and PFAS below their detection limits. As such, the generated biochar aligns with the guidelines set by the International Biochar Initiative (IBI) and the European Biochar Certificate (EBC) for all micropollutants, except for zinc and copper. Additional investigation is required to determine whether the micropollutants undergo destruction or transition into other pyrolysis end-products, such as the gas or liquid phase.


Asunto(s)
Fluorocarburos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Aguas del Alcantarillado/química , Temperatura , Dibenzofuranos , Pirólisis , Carbón Orgánico/química
19.
J Environ Manage ; 353: 120203, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38325285

RESUMEN

Biofiltration utilizes natural mechanisms including biodegradation and biotransformation along with other physical processes for the removal of organic micropollutants (OMPs) such as pharmaceuticals, personal care products, pesticides and industrial compounds found in (waste)water. In this systematic review, a total of 120 biofiltration studies from 25 countries were analyzed, considering various biofilter configurations, source water types, biofilter media and scales of operation. The study also provides a bibliometric analysis to identify the emerging research trends in the field. The results show that granular activated carbon (GAC) either alone or in combination with another biofiltration media can remove a broad range of OMPs efficiently. The impact of pre-oxidation on biofilter performance was investigated, revealing that pre-oxidation significantly improved OMP removal and reduced the empty bed contact time (EBCT) needed to achieve a consistently high OMP. Biofiltration with pre-oxidation had median removals ranging between 65% and >90% for various OMPs at 10-45 min EBCT with data variability drastically reducing beyond 20 min EBCT. Biofiltration without pre-oxidation had lower median removals with greater variability. The results demonstrate that pre-oxidation greatly enhances the removal of adsorptive and poorly biodegradable OMPs, while its impact on other OMPs varies. Only 19% of studies we reviewed included toxicity testing of treated effluent, and even fewer measured transformation products. Several studies have previously reported an increase in effluent toxicity because of oxidation, although it was successfully abated by subsequent biofiltration in most cases. Therefore, the efficacy of biofiltration treatment should be assessed by integrating toxicity testing into the assessment of overall removal.


Asunto(s)
Biodegradación Ambiental , Filtración , Contaminantes Químicos del Agua , Filtración/métodos , Purificación del Agua/métodos , Carbón Orgánico/química , Aguas Residuales/química
20.
J Environ Manage ; 367: 121936, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096723

RESUMEN

Sustainability and life-cycle concerns about the conventional activated sludge (CAS) process for wastewater treatment have been driving the development of energy-efficient, greener alternatives. Feasibility of an algal-based wastewater treatment (A-WWT) system has been demonstrated recently as a possible alternative, capable of simultaneous nutrient and energy recovery. This study compared capabilities of the A-WWT and CAS systems in removing organic micropollutants (OMP). Initial assessments based on surrogate organic measures and fluorescence excitation-emission matrix (FEEM) scans revealed that the A-WWT system achieved higher removals of organics than the CAS system. However, effluents of both systems contained residual organic matter, necessitating further OMP assessment for a rigorous comparison. A novel ultrahigh-performance liquid chromatography- Fourier transform mass spectrometry (UPLC-FTMS)-based non-targeted screening approach was adopted here for residual OMP analysis. This approach confirmed that the A-WWT system resulted in better OMP removal, eliminating 329 compounds and partially reducing 472 compounds, compared to 206 eliminations and 410 partial reductions by the CAS system. Mass spectra signal corresponding to some OMPs increased with treatment while some transformation products were observed following treatment. Higher OMP reduction in the A-WWT system with concurrent reductions of biodegradable carbon, nutrients, and pathogens in a single-step while producing energy and nutrient rich algal biomass underscore its potential as a greener alternative for wastewater treatment.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas del Alcantarillado/química , Aguas Residuales/química , Aguas Residuales/análisis , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA