Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nano Lett ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054892

RESUMEN

Lipids and nucleic acids are two of the most abundant components of our cells, and both molecules are widely used as engineering materials for nanoparticles. Here, we present a systematic study of how hydrophobic modifications can be employed to modulate the DNA/lipid interface. Using a series of DNA anchors with increasing hydrophobicity, we quantified the capacity to immobilize double-stranded (ds) DNA to lipid membranes in the liquid phase. Contrary to electrostatic effects, hydrophobic anchors are shown to be phase-independent if sufficiently hydrophobic. For weak anchors, the overall hydrophobicity can be enhanced following the concept of multivalency. Finally, we demonstrate that structural flexibility and anchor orientation overrule the effect of multivalency, emphasizing the need for careful scaffold design if strong interfaces are desired. Together, our findings guide the design of tailored DNA/membrane interfaces, laying the groundwork for advancements in biomaterials, drug delivery vehicles, and synthetic membrane mimics for biomedical research and nanomedicine.

2.
Small ; 20(31): e2307709, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38438885

RESUMEN

The activation of the host adaptive immune system is crucial for eliminating viruses. However, influenza infection often suppresses the innate immune response that precedes adaptive immunity, and the adaptive immune responses are typically delayed. Dendritic cells, serving as professional antigen-presenting cells, have a vital role in initiating the adaptive immune response. In this study, an immuno-stimulating antiviral system (ISAS) is introduced, which is composed of the immuno-stimulating adjuvant lipopeptide Pam3CSK4 that acts as a scaffold onto which it is covalently bound 3 to 4 influenza-inhibiting peptides. The multivalent display of peptides on the scaffold leads to a potent inhibition against H1N1 (EC50 = 20 nM). Importantly, the resulting lipopeptide, Pam3FDA, shows an irreversible inhibition mechanism. The chemical modification of peptides on the scaffold maintains Pam3CSK4's ability to stimulate dendritic cell maturation, thereby rendering Pam3FDA a unique antiviral. This is attributed to its immune activation capability, which also acts in synergy to expedite viral elimination.


Asunto(s)
Células Dendríticas , Lipopéptidos , Lipopéptidos/química , Lipopéptidos/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Antivirales/farmacología , Antivirales/química , Humanos , Animales
3.
Eur J Nucl Med Mol Imaging ; 51(6): 1544-1557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38276986

RESUMEN

PURPOSE: Several studies have demonstrated the advantages of heterodimers over their corresponding monomers due to the multivalency effect. This effect leads to an increased number of effective targeted receptors and, consequently, improved tumor uptake. Fibroblast activation protein (FAP) and integrin αvß3 are found to be overexpressed in different components of the tumor microenvironment. In our pursuit of enhancing tumor uptake and retention, we designed and developed a novel peptidic heterodimer that synergistically targets both FAP and integrin αvß3. METHODS: FAP-RGD was synthesized from FAP-2286 and c(RGDfK) through a multi-step organic synthesis. The dual receptor binding property of 68Ga-FAP-RGD was investigated by cell uptake and competitive binding assays. Preclinical pharmacokinetics were determined in HT1080-FAP and U87MG tumor models using micro-positron emission tomography/computed tomography (micro-PET/CT) and biodistribution studies. The antitumor efficacy of 177Lu-FAP-RGD was assessed in U87MG tumor models. The radiation exposure and clinical diagnostic performance of 68 Ga-FAP-RGD were evaluated in healthy volunteers and cancer patients. RESULTS: Bi-specific radiotracer 68Ga-FAP-RGD exhibited high binding affinity for both FAP and integrin αvß3. In comparison to 68Ga-FAP-2286 and 68Ga-RGDfK, 68Ga-FAP-RGD displayed enhanced tumor uptake and longer tumor retention time in preclinical models. 177Lu-FAP-RGD could efficiently suppress the growth of U87MG tumor in vivo when applied at an activity of 18.5 and 29.6 MBq. The effective dose of 68Ga-FAP-RGD was 1.06 × 10-2 mSv/MBq. 68Ga-FAP-RGD demonstrated low background activity and stable accumulation in most neoplastic lesions up to 3 h. CONCLUSION: Taking the advantages of multivalency effect, the bi-specific radiotracer 68Ga-FAP-RGD showed superior tumor uptake and retention compared to its corresponding monomers. Preclinical studies with 68Ga- or 177Lu-labeled FAP-RGD showed favorable image contrast and effective antitumor responses. Despite the excellent performance of 68Ga-FAP-RGD in clinical diagnosis, experimental efforts are currently underway to optimize the structure of FAP-RGD to increase its potential for clinical application in endoradiotherapy.


Asunto(s)
Endopeptidasas , Integrina alfaVbeta3 , Proteínas de la Membrana , Tomografía Computarizada por Tomografía de Emisión de Positrones , Serina Endopeptidasas , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Dimerización , Endopeptidasas/metabolismo , Endopeptidasas/farmacología , Radioisótopos de Galio/química , Integrina alfaVbeta3/química , Integrina alfaVbeta3/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/farmacología , Oligopéptidos/química , Oligopéptidos/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Trazadores Radiactivos , Radiofármacos/farmacocinética , Radiofármacos/química , Serina Endopeptidasas/metabolismo , Distribución Tisular , Péptidos/metabolismo , Péptidos/farmacología
4.
Chemistry ; 30(19): e202304126, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38221894

RESUMEN

Multivalency represents an appealing option to modulate selectivity in enzyme inhibition and transform moderate glycosidase inhibitors into highly potent ones. The rational design of multivalent inhibitors is however challenging because global affinity enhancement relies on several interconnected local mechanistic events, whose relative impact is unknown. So far, the largest multivalent effects ever reported for a non-polymeric glycosidase inhibitor have been obtained with cyclopeptoid-based inhibitors of Jack bean α-mannosidase (JBα-man). Here, we report a structure-activity relationship (SAR) study based on the top-down deconstruction of best-in-class multivalent inhibitors. This approach provides a valuable tool to understand the complex interdependent mechanisms underpinning the inhibitory multivalent effect. Combining SAR experiments, binding stoichiometry assessments, thermodynamic modelling and atomistic simulations allowed us to establish the significant contribution of statistical rebinding mechanisms and the importance of several key parameters, including inhitope accessibility, topological restrictions, and electrostatic interactions. Our findings indicate that strong chelate-binding, resulting from the formation of a cross-linked complex between a multivalent inhibitor and two dimeric JBα-man molecules, is not a sufficient condition to reach high levels of affinity enhancements. The deconstruction approach thus offers unique opportunities to better understand multivalent binding and provides important guidelines for the design of potent and selective multiheaded inhibitors.


Asunto(s)
Glicósido Hidrolasas , Iminoazúcares , Humanos , Glicósido Hidrolasas/metabolismo , Iminoazúcares/química , alfa-Manosidasa , Relación Estructura-Actividad
5.
Chemistry ; : e202401542, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958349

RESUMEN

Taspase 1 is a unique protease not only pivotal for embryonic development but also implicated in leukemias and solid tumors. As such, this enzyme is a promising while still challenging therapeutic target, and with its protein structure featuring a flexible loop preceding the active site a versatile model system for drug development. Supramolecular ligands provide a promising complementary approach to traditional small-molecule inhibitors. Recently, the multivalent arrangement of molecular tweezers allowed the successful targeting of Taspase 1's surface loop. With this study we now want to take the next logic step und utilize functional linker systems that not only allow the implementation of novel properties but also engage in protein surface binding. Consequently, we chose two different linker types differing from the original divalent assembly: a backbone with aggregation-induced emission (AIE) properties to enable monitoring of binding and a calix[4]arene scaffold initially pre-positioning the supramolecular binding units. With a series of four AIE-equipped ligands with stepwise increased valency we demonstrated that the functionalized AIE linkers approach ligand binding affinities in the nanomolar range and allow efficient proteolytic inhibition of Taspase 1. Moreover, implementation of the calix[4]arene backbone further enhanced the ligands' inhibitory potential, pointing to a specific linker contribution.

6.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750548

RESUMEN

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Asunto(s)
Endocitosis , Galectina 1 , Galectinas , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Animales , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Galectinas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
7.
Bioorg Chem ; 146: 107295, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513326

RESUMEN

A concise asymmetric synthesis of clickable enantiomeric pyrrolidines was achieved using Crabbé-Ma allenation. The synthesized iminosugars were grafted by copper-free strain-promoted alkyne-azide cycloaddition onto phosphorus dendrimers. The hexavalent and dodecavalent pyrrolidines were evaluated as ß-glucocerebrosidase inhibitors. The level of inhibition suggests that monofluorocyclooctatriazole group may contribute to the affinity for the protein leading to potent multivalent inhibitors. Docking studies were carried out to rationalize these results. Then, the iminosugars clusters were evaluated as pharmacological chaperones in Gaucher patients' fibroblasts. An increase in ß-glucocerebrosidase activity was observed with hexavalent and dodecavalent pyrrolidines at concentrations as low as 1 µM and 0.1 µM, respectively. These iminosugar clusters constitute the first example of multivalent pyrrolidines acting as pharmacological chaperones against Gaucher disease.


Asunto(s)
Enfermedad de Gaucher , Iminoazúcares , Humanos , Enfermedad de Gaucher/tratamiento farmacológico , Glucosilceramidasa , Pirrolidinas/farmacología , Inhibidores Enzimáticos/farmacología
8.
Arch Pharm (Weinheim) ; 357(7): e2400038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38498884

RESUMEN

A novel series of sulfonamide-incorporated bis(α-aminophosphonates) acting as effective carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported. The synthesized bivalent ligands were tested against five human (h) isoforms, hCA I, hCA II, hCA VII, hCA IX, and hCA XIII. Such derivatives showed high activity and selectivity against the cancer-related, membrane-bound isoform hCA IX, and among them, compound 5h, tetraisopropyl (1,3-phenylenebis{[(4-sulfamoylphenyl)amino]methylene})bis(phosphonate) showed a KI of 15.1 nM, being highly selective against this isoform over all other investigated ones (hCA I/IX = 42; hCA II/IX = 6, hCA VII/IX = 3, hCA XIII/IX = 5). Therefore, compound 5h could be a potential lead for the development of selective anticancer agents. The newly developed sulfonamides were also found effective inhibitors against the cytosolic hCA XIII isoform. Compound 5i displayed the best inhibition against this isoform with a KI of 17.2 nM, equal to that of the well-known inhibitor acetazolamide (AAZ), but significantly more selective over all other tested isoforms (hCA I/XIII = 239; hCA II/XIII = 23, hCA VII/XIII = 2, hCA IX/XIII = 3) compared to AAZ.


Asunto(s)
Inhibidores de Anhidrasa Carbónica , Anhidrasas Carbónicas , Diseño de Fármacos , Sulfonamidas , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Humanos , Sulfonamidas/farmacología , Sulfonamidas/química , Sulfonamidas/síntesis química , Relación Estructura-Actividad , Anhidrasas Carbónicas/metabolismo , Cristalografía por Rayos X , Estructura Molecular , Isoenzimas/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Organofosfonatos/farmacología , Organofosfonatos/química , Organofosfonatos/síntesis química , Relación Dosis-Respuesta a Droga
9.
Angew Chem Int Ed Engl ; : e202407037, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767062

RESUMEN

The stimulator of interferon genes (STING) pathway is a potent therapeutic target for innate immunity. Despite the efforts to develop pocket-dependent small-molecule STING agonists that mimic the endogenous STING ligand, cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), most of these agonists showed disappointing results in clinical trials owing to the limitations of the STING pocket. In this study, we developed novel pocket-independent STING-activating agonists (piSTINGs), which act through multivalency-driven oligomerization to activate STING. Additionally, a piSTING-adjuvanted vaccine elicited a significant antibody response and inhibited tumour growth in therapeutic models. Moreover, a piSTING-based vaccine combination with aPD-1 showed remarkable potential to enhance the effectiveness of immune checkpoint blockade (ICB) immunotherapy. In particular, piSTING can strengthen the impact of STING pathway in immunotherapy and accelerate the clinical translation of STING agonists.

10.
Adv Sci (Weinh) ; 11(17): e2308924, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38425146

RESUMEN

Selective protein degradation platforms have opened novel avenues in therapeutic development and biological inquiry. Antibody-based lysosome-targeting chimeras (LYTACs) have emerged as a promising technology that extends the scope of targeted protein degradation to extracellular targets. Aptamers offer an advantageous alternative owing to their potential for modification and manipulation toward a multivalent state. In this study, a chemically engineered platform of multivalent aptamer-based LYTACs (AptLYTACs) is established for the targeted degradation of either single or dual protein targets. Leveraging the biotin-streptavidin system as a molecular scaffold, this investigation reveals that trivalently mono-targeted AptLYTACs demonstrate optimum efficiency in degrading membrane proteins. The development of this multivalent AptLYTACs platform provides a principle of concept for mono-/dual-targets degradation, expanding the possibilities of targeted protein degradation.


Asunto(s)
Aptámeros de Nucleótidos , Lisosomas , Proteolisis , Lisosomas/metabolismo , Aptámeros de Nucleótidos/metabolismo , Humanos
11.
J Agric Food Chem ; 72(26): 14967-14974, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957086

RESUMEN

Nanobodies (Nbs) serve as powerful tools in immunoassays. However, their small size and monovalent properties pose challenges for practical application. Multimerization emerges as a significant strategy to address these limitations, enhancing the utilization of nanobodies in immunoassays. Herein, we report the construction of a Salmonella-specific fenobody (Fb) through the fusion of a nanobody to ferritin, resulting in a self-assembled 24-valent nanocage-like structure. The fenobody exhibits a 35-fold increase in avidity compared to the conventional nanobody while retaining good thermostability and specificity. Leveraging this advancement, three ELISA modes were designed using Fb as the capture antibody, along with unmodified Nb422 (FbNb-ELISA), biotinylated Nb422 (FbBio-ELISA), and phage-displayed Nb422 (FbP-ELISA) as the detection antibody, respectively. Notably, the FbNb-ELISA demonstrates a detection limit (LOD) of 3.56 × 104 CFU/mL, which is 16-fold lower than that of FbBio-ELISA and similar to FbP-ELISA. Moreover, a fenobody and nanobody sandwich chemiluminescent enzyme immunoassay (FbNb-CLISA) was developed by replacing the TMB chromogenic substrate with luminal, resulting in a 12-fold reduction in the LOD. Overall, the ferritin-displayed technology represents a promising methodology for enhancing the detection performance of nanobody-based sandwich ELISAs, thereby expanding the applicability of Nbs in food detection and other fields requiring multivalent modification.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Ferritinas , Salmonella , Anticuerpos de Dominio Único , Ferritinas/inmunología , Ferritinas/química , Ferritinas/genética , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología , Salmonella/inmunología , Salmonella/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Límite de Detección , Afinidad de Anticuerpos , Anticuerpos Antibacterianos/inmunología , Inmunoensayo/métodos
12.
Bioeng Transl Med ; 9(2): e10632, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38435828

RESUMEN

Intravitreal (IVT) injection of anti-vascular endothelial growth factor (anti-VEGF) has greatly improved the treatment of many retinal disorders, including wet age-related macular degeneration (wAMD), which is the third leading cause of blindness. However, frequent injections can be difficult for patients and may lead to various risks such as elevated intraocular pressure, infection, and retinal detachment. To address this issue, researchers have found that IVT injection of anti-VEGF proteins at their maximally viable concentration and dose can be an effective strategy. However, the intrinsic protein structure can limit the maximum concentration due to stability and solution viscosity. To overcome this challenge, we developed a novel anti-VEGF protein called nanoFc by fusing anti-VEGF nanobodies with a crystallizable fragment (Fc). NanoFc has demonstrated high binding affinity to VEGF165 through multivalency and potent bioactivity in various bioassays. Furthermore, nanoFc maintains satisfactory chemical and physical stability at 4°C over 1 month and is easily injectable at concentrations up to 200 mg/mL due to its unique architecture that yields a smaller shape factor. The design of nanoFc offers a bioengineering strategy to ensure both strong anti-VEGF binding affinity and high protein concentration, with the goal of reducing the frequency of IV injections.

13.
Cytokine Growth Factor Rev ; 77: 39-55, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719671

RESUMEN

Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.


Asunto(s)
Factores de Crecimiento de Fibroblastos , Receptores de Factores de Crecimiento de Fibroblastos , Transducción de Señal , Humanos , Glicosilación , Factores de Crecimiento de Fibroblastos/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Procesamiento Proteico-Postraduccional
14.
Biochem Pharmacol ; 227: 116457, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39098732

RESUMEN

The chemokine receptor CXCR4 is involved in the development and migration of stem and immune cells but is also implicated in tumor progression and metastasis for a variety of cancers. Antagonizing ligand (CXCL12)-induced CXCR4 signaling is, therefore, of therapeutic interest. Currently, there are two small-molecule CXCR4 antagonists on the market for the mobilization of hematopoietic stem cells. Other molecules with improved potencies and safety profiles are being developed for different indications, including cancer. Moreover, multiple antagonistic nanobodies targeting CXCR4 displayed similar or better potencies as compared to the CXCR4-targeting molecule AMD3100 (Plerixafor), which was further enhanced through avid binding of bivalent derivatives. In this study, we aimed to compare the affinities of various multivalent nanobody formats which might be differently impacted by avidity. By fusion to a flexible GS-linker, Fc-region of human IgG1, different C4bp/CLR multimerization domains, or via site-directed conjugation to a trivalent linker scaffold, we generated different types of multivalent nanobodies with varying valencies ranging from bivalent to decavalent. Of these, C-terminal fusion, especially to human Fc, was most advantageous with a 2-log-fold and 3-log-fold increased potency in inhibiting CXCL12-mediated Gαi- or ß-arrestin recruitment, respectively. Overall, we describe strategies for generating multivalent and high-potency CXCR4 antagonistic nanobodies able to induce receptor clustering and conclude that fusion to an Fc-tail results in the highest avidity effect irrespective of the hinge linker.


Asunto(s)
Receptores CXCR4 , Anticuerpos de Dominio Único , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Receptores CXCR4/inmunología , Humanos , Anticuerpos de Dominio Único/farmacología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Animales , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/inmunología , Células HEK293 , Afinidad de Anticuerpos
15.
Anal Chim Acta ; 1289: 342209, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38245207

RESUMEN

BACKGROUND: Nanobodies (Nbs), which consist of only antigen-binding domains of heavy chain antibodies, have been used in a various range of applications due to their excellent properties. Nevertheless, the size of Nbs is so small that their antigen binding sites may be sterically hindered after random fixation as capture antibodies, thus leading to poor detection performance in immunoassays. To address this problem, we have focused on the multivalent modification of Nbs, wanted to retain the advantage of good stability through enlarging the size of Nbs to a certain extent, while improve its affinity and reduce its influence by spatial orientation. RESULTS: Here, we designed homo- and heterodimeric Nbs based on Nb413 and Nb422 which recognize different epitopes of Salmonella. The affinity of engineered bivalent nanobodies for S. Enteritidis were 2 orders of magnitude higher compared to monovalent Nbs and low to sub-nM KD, as calculated by Scatchard analysis. To further explore the potential of bivalent Nbs for the detection of Salmonella, we established a sandwich ELISA based on bivalent and phage-displayed Nbs (BNb-ELISA) for multiplex Salmonella determination. Compared with monovalent Nb-based ELISA, the limit of detection (LOD) of the BNb-ELISA was shown to increase 7.5-fold to 2.364 × 103 CFU mL-1 for S. Enteritidis. In addition, the feasibility of this approach for S. Enteritidis detection in real samples was evaluated, with recoveries ranging from 73.0 % to 125.6 % and coefficients of variation (CV) below 7.68 %. SIGNIFICANCE AND NOVELTY: In this study, we developed for the first time bivalent Nbs against Salmonella and examined their improved affinity and impact on the performance of ELISA assay. It confirmed the high binding affinity and good ability of dimeric Nbs to reduce the occupation of the binding sites of immobilized antibodies. Thus, the multivalent modification of Nbs was demonstrated to be a promising means to enhance the performance of Nbs-based immunoassays for foodborne pathogens.


Asunto(s)
Anticuerpos de Dominio Único , Inmunoensayo , Ensayo de Inmunoadsorción Enzimática , Anticuerpos , Límite de Detección
16.
Carbohydr Res ; 536: 109050, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38335804

RESUMEN

Lectin Con A, with specificity to interact with α-d-mannopyranoside, achieves tight binding affinity with the aid of optimal multivalent ligand valencies, distances and orientations between the ligands. A series of synthetic arabinomannans, possessing arabinan core and mannan at the non-reducing ends, is studied to assess the above constraints involved with lectin binding in this report. Trisaccharides, with (1 â†’ 2)(1 â†’ 3), (1 â†’ 2)(1 â†’ 5) and (1 â†’ 3)(1 â†’ 5) glycosidic bond connectivities, and a pentasaccharide with mannopyranosides at the non-reducing ends are synthesized. The binding affinities of the mannose bivalent ligands are studied with tetrameric Con A lectin by isothermal titration calorimetry (ITC). Among the derivatives, trisaccharide with (1 â†’ 2)(1 â†’ 3) glycosidic bond connectivity and the pentasaccharide undergo lectin interaction, clearly fulfilling the bivalent structural and functional valencies. Remaining oligosaccharides exhibit only a functional monovalency, defying the bivalent structural valency. The trisaccharide fulfilling the structural and functional valencies represent the smallest bivalent ligand, undergoing the lectin interaction in a trans-mode.


Asunto(s)
Lectinas , Mananos , Lectinas/química , Ligandos , Concanavalina A/química , Manosa/química , Glicósidos/química , Oligosacáridos , Trisacáridos , Unión Proteica
17.
Int J Biol Macromol ; : 134371, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094876

RESUMEN

Galectin-8 is a small soluble lectin with two carbohydrate recognition domains (CRDs). N- and C-terminal CRDs of Gal-8 differ in their specificity for glycan ligands. Here, we wanted to find out whether oligomerization of individual CRDs of galectin-8 affects its biological activity. Using green fluorescent protein polygons (GFPp) as an oligomerization scaffold, we generated intrinsically fluorescent CRDs with altered valency. We show that oligomers of C-CRD are characterized by significant cell surface affinity. Furthermore, the multivalency of the resulting variants has an impact on cellular activities such as cell signaling, heparin binding and proliferation. Our data indicates that tunable valence is a useful tool for modifying the biological activity of CRDs of galectins.

18.
Biotechnol Prog ; : e3463, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568030

RESUMEN

Alzheimer's disease and other tauopathies are characterized by the misfolding and aggregation of the tau protein into oligomeric and fibrillar structures. Antibodies against tau play an increasingly important role in studying these neurodegenerative diseases and the generation of tools to diagnose and treat them. The development of antibodies that recognize tau protein aggregates, however, is hindered by complex immunization and antibody selection strategies and limitations to antigen presentation. Here, we have taken a facile approach to identify single-domain antibodies, or nanobodies, that bind to many forms of tau by screening a synthetic yeast surface display nanobody library against monomeric tau and creating multivalent versions of our lead nanobody, MT3.1, to increase its avidity for tau aggregates. We demonstrate that MT3.1 binds to tau monomer, oligomers, and fibrils, as well as pathogenic tau from a tauopathy mouse model, despite being identified through screens against monomeric tau. Through epitope mapping, we discovered binding epitopes of MT3.1 contain the key motif VQIXXK which drives tau aggregation. We show that our bivalent and tetravalent versions of MT3.1 have greatly improved binding ability to tau oligomers and fibrils compared to monovalent MT3.1. Our results demonstrate the utility of our nanobody screening and multivalent design approach in developing nanobodies that bind amyloidogenic protein aggregates. This approach can be extended to the generation of multivalent nanobodies that target other amyloid proteins and has the potential to advance the research and treatment of neurodegenerative diseases.

19.
Protein Sci ; 33(4): e4974, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533540

RESUMEN

Enveloped viruses carry one or multiple proteins with receptor-binding functionalities. Functional receptors can be glycans, proteinaceous, or both; therefore, recombinant protein approaches are instrumental in attaining new insights regarding viral envelope protein receptor-binding properties. Visualizing and measuring receptor binding typically entails antibody detection or direct labeling, whereas direct fluorescent fusions are attractive tools in molecular biology. Here, we report a suite of distinct fluorescent fusions, both N- and C-terminal, for influenza A virus hemagglutinins and SARS-CoV-2 spike RBD. The proteins contained three or six fluorescent protein barrels and were applied directly to cells to assess receptor binding properties.


Asunto(s)
Glicoproteína de la Espiga del Coronavirus , Proteínas del Envoltorio Viral , Proteínas del Envoltorio Viral/química , Glicoproteína de la Espiga del Coronavirus/química , Unión Proteica , Polisacáridos/metabolismo , Proteínas Recombinantes/metabolismo
20.
ACS Nano ; 18(2): 1381-1395, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38126310

RESUMEN

Dendritic cells (DCs) regulate immune priming by expressing programmed death ligand 1 (PD-L1) and PD-L2, which interact with the inhibitory receptor PD-1 on activated T cells. PD-1 signaling regulates T cell effector functions and limits autoimmunity. Tumor cells can hijack this pathway by overexpressing PD-L1 to suppress antitumor T cell responses. Blocking this inhibitory pathway has been beneficial for the treatment of various cancer types, although only a subset of patients responds. A deepened understanding of the spatial organization and molecular interplay between PD-1 and its ligands may inform the design of more efficacious nanotherapeutics. We visualized the natural molecular PD-L1 organization on DCs by DNA-PAINT microscopy and created a template to engineer DNA-based nanoclusters presenting PD-1 at defined valencies, distances, and patterns. These multivalent nanomaterials were examined for their cellular binding and blocking ability. Our data show that PD-1 nano-organization has profound effects on ligand interaction and that the valency of PD-1 molecules modulates the effectiveness in restoring T cell function. This work highlights the power of spatially controlled functional materials to unravel the importance of multivalent patterns in the PD-1 pathway and presents alternative design strategies for immune-engineering.


Asunto(s)
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Linfocitos T , Neoplasias/metabolismo , ADN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA