Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Infect Immun ; 88(7)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32284371

RESUMEN

The endosomal sorting complex required for transport (ESCRT) plays a crucial role in the transportation and degradation of proteins. We determined that Vps27, a key protein of the ESCRT-0 complex, is required for the transport of the virulence factor laccase to the cell wall in Cryptococcus neoformans Laccase activity was perturbed, as was melanin production, in vps27Δ strains. In the absence of VPS27, there was an accumulation of multivesicular bodies with vacuolar fragmentation and mistargeting of the vacuolar carboxypeptidase CPY/Prc1, resulting in an extracellular localization. In addition, deletion of VPS27 resulted in a defect in laccase targeting of a Lac1-green fluorescent protein (GFP) fusion to the cell wall with trapping within intracellular puncta; this deletion was accompanied by reduced virulence in a mouse model. However, the actin cytoskeleton remained intact, suggesting that the trafficking defect is not due to defects in actin-related localization. Extracellular vesicle maturation was also defective in the vps27Δ mutant, which had a larger vesicle size as measured by dynamic light scattering. Our data identify cryptococcal VPS27 as a required gene for laccase trafficking and attenuates virulence of C. neoformans in a mouse intravenous (i.v.) meningitis model.


Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/patogenicidad , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Lacasa/metabolismo , Transducción de Señal , Actinas/metabolismo , Animales , Transporte Biológico , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Concentración de Iones de Hidrógeno , Meningitis Criptocócica/microbiología , Ratones , Mutación , Transporte de Proteínas , Tolerancia a la Sal , Vacuolas/metabolismo , Virulencia , Factores de Virulencia/genética
2.
Autophagy Rep ; 2(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064812

RESUMEN

Many neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an HdhQ111 mutant mouse. Here, we show that NCT-504 has a broader potential, and in addition reduces levels of Tau, a protein associated with Alzheimer's disease, as well as other tauopathies. We find that in untreated cells, Tau and mHTT are degraded via autophagy. Notably, treatment with NCT-504 diverts these proteins to multivesicular bodies (MVB) and the ESCRT pathway. Specifically, NCT-504 causes a proliferation of endolysosomal organelles including MVB, and an enhanced association of mHTT and Tau with endosomes and MVB. Importantly, depletion of proteins that act late in the ESCRT pathway blocked NCT-504 dependent degradation of Tau. Moreover, NCT-504-mediated degradation of Tau occurred in cells where Atg7 is depleted, which indicates that this pathway is independent of canonical autophagy. Together, these studies reveal that upregulation of traffic through an ESCRT-dependent MVB pathway may provide a therapeutic approach for neurodegenerative diseases.

3.
Front Cell Dev Biol ; 10: 878620, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172289

RESUMEN

E-cadherin, a transmembrane protein involved in epithelial cell-cell adhesion and signaling, is found in exosomal fractions isolated from human body fluids. A cellular mechanism for recruitment of E-cadherin into extracellular vesicles (EVs) has not yet been defined. Here, we show that E-cadherin is incorporated into the membrane of EVs with the extracellular domain exposed at the vesicle surface. This recruitment depends on the endosomal sorting complex required for transport I (ESCRT-I) component Tsg101 and a highly conserved tetrapeptide P(S/T)AP late domain motif in the cytoplasmic tail of E-cadherin that mediates interaction with Tsg101. Mutation of this motif results in a loss of interaction and a dramatic decrease in exosomal E-cadherin secretion. We conclude, that the process of late domain mediated exosomal recruitment is exerted by this endogenous non-ESCRT transmembrane protein.

4.
Methods Mol Biol ; 1998: 105-116, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250297

RESUMEN

Budding yeast Saccharomyces cerevisiae is an ideal model organism to study membrane trafficking pathways. The ESCRT (endosomal sorting complexes required for transport) pathway was first identified in this organism. Upon recognition of endocytosed ubiquitinated membrane proteins at endosomes, ESCRTs assemble at these organelles to catalyze the biogenesis of multivesicular bodies (MVBs). Formation of MVBs leads to the trafficking of these membrane proteins to vacuoles for degradation. Here, we describe genetic and biochemical approaches to study ESCRT function. We outline in vivo endocytosis assays using two model cargoes in Saccharomyces cerevisiae and also describe an in vitro approach to analyze ESCRT-III polymerization on lipid monolayers.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Endocitosis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/aislamiento & purificación , Proteínas Fluorescentes Verdes/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membranas Artificiales , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Mutación , Multimerización de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Vacuolas/metabolismo
5.
Plant Signal Behav ; 2(3): 199-202, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-19704697

RESUMEN

The fungal macrocyclic lactone brefeldin A (BFA) has been a useful tool in studying protein trafficking in the secretory and endocytic pathways in plant cells. The development of various GFP-tagged organelle markers expressed in transgenic plant cells has allowed dynamic study of organelles in response to BFA in living cells. Several organelles including the endoplasmic reticulum (ER), the Golgi apparatus and endosomal compartment have been shown to have visible morphological changes in response to BFA treatment, resulting in the formation of BFA-induced aggregated compartments or ER-Golgi hybrids in various plant cells. Using transgenic tobacco BY-2 cells expressing membrane-anchored yellow fluorescent protein (YFP) reporters marking Golgi apparatus or prevacuolar compartment (PVC), we have recently demonstrated that Golgi and PVC organelles have different sensitivity to BFA, where BFA at recoverable high concentrations (50 to 100 microg/ml) also induced PVC or multivesicular body (MVB) to form aggregates in plant cells. We have thus extended the BFA action to plant PVCs/MVBs, which will serve as a useful tool for studying PVC-mediated protein sorting and PVC biogenesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA