Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(27): 8327-8334, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38942742

RESUMEN

Titanium-based composites hold great promise in versatile functional application fields, including supercapacitors. However, conventional subtractive methods for preparing complex-shaped titanium-based composites generally suffer from several significant shortcomings, including low efficiency, strictly simple geometry, low specific surface area, and poor electrochemical performance of the products. Herein, three-dimensional composites of Ti/TiN nanotube arrays with hierarchically porous structures were prepared using the additive manufacturing method of selective laser melting combined with anodic oxidation and nitridation. The resultant Ti/TiN nanotube array composites exhibit good electrical conductivity, ultrahigh specific surface areas, and outstanding supercapacitor performances featuring the unique combination of a large specific capacitance of 134.4 mF/cm2 and a high power density of 4.1 mW/cm2, which was remarkably superior to that of their counterparts. This work is anticipated to provide new insights into the facile and efficient preparation of high-performance structural and functional devices with arbitrarily complex geometries and good overall performances.

2.
Nano Lett ; 24(4): 1423-1430, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38251923

RESUMEN

Nanopillar/tube arrays have emerged as encouraging platforms, possessing remarkable advantages, including large specific areas and highly aligned orientations. Despite the progress of nano/microfabrication technologies, facile and controllable fabrication of conductive polymer nanopillar/tube arrays remains challenging. In this study, we demonstrate that the air-liquid interfacial self-assembly can be extended to obtain three-dimensional nanostructured arrays. A smart and novel method is proposed for preparing uniform conductive polymer nanopillar/tube arrays by a template-mediated interfacial synthesis approach. By utilizing capillary force, precise control processes of the nanostructure and patterned structure can be easily realized. Furthermore, a transfer strategy is devised, allowing for scalable fabrication and expansion of the applicability. Applications, including antibacterial surfaces and actuators, have been demonstrated. We extend the air-liquid interfacial synthesis technique as a powerful and universal strategy for producing ordered nanopillar/tube arrays and show the great potential of soft nanostructured arrays as advanced platforms in diverse applications.

3.
Small ; : e2407790, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39460413

RESUMEN

While Pt is highly efficient for hydrogen evolution reaction (HER), its widespread use is limited by scarcity and high cost. Herein, a vertically aligned electrocatalyst is present comprising Ni3S2 nanotube arrays (NTAs) and Ni nanoparticles (NPs) (Ni3S2/Ni NTAs) for neutral HER. In a neutral 4 wt.% NaCl solution (pH = 7), the Ni3S2/Ni NTAs achieves a current density of 100 mA cm-2 at a low overpotential of 540 mV, outperforming both Ni3S2 NTAs and Ni NTAs and even the commercial Pt plate. The hollow tubular structure offers ample mass transfer channels, and strong electronic interaction between Ni3S2 and Ni is observed. Theoretical studies reveal that the lowered d-band center (ɛd) of Ni 3d orbital significantly reduces the activation energy for H2O dissociation and facilitates the movement of an H atom in H2O away from OH to form a transition state, consequently promoting H2 evolution. When Ni3S2/Ni NTAs is used as the cathode in a two-electrode diaphragm-free electrolyzer with a RuSnTi anode, efficient H2 production and energy-saving Cl2 evolution are achieved. This work highlights the potential of uniquely structured electrocatalysts for HER in neutral NaCl solutions.

4.
Nanotechnology ; 35(17)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38271740

RESUMEN

Self-powered ultraviolet (UV) photodetectors (PDs) are critical for future energy-efficient optoelectronic systems due to their low energy consumption and high sensitivity. In this paper, the vertically alignedß-Ga2O3nanotube arrays (NTs) have been prepared on GaN/sapphire substrate by the thermal oxidation process combined with the dry etching technology, and applied in the UV photoelectrochemical photodetectors (PEC-PDs) for the first time. Based on the large specific surface area ofß-Ga2O3NTs on GaN/sapphire substrates and the solid/liquid heterojunction, the PEC-PDs exhibit excellent self-powered characteristics under 255 nm (UVA) and 365 nm (UVC) light illumination. Under 255 nm (365 nm) light illumination, the maximum responsivity of 49.9 mA W-1(32.04 mA W-1) and a high detectivity of 1.58 × 1011Jones (1.01 × 1011Jones) were achieved for theß-Ga2O3NTs photodetectors at 0 V bias. In addition, the device shows a fast rise/decay time of 8/4 ms (4/2 ms), which is superior to the level of the previously reported self-powered UV PEC-PDs. This high-performance PEC-PD has potential applications in next-generation low-energy UV detection systems.

5.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930847

RESUMEN

Electrochemical nitrate reduction (NO3-RR) has been recognized as a promising strategy for sustainable ammonia (NH3) production due to its environmental friendliness and economical nature. However, the NO3-RR reaction involves an eight-electron coupled proton transfer process with many by-products and low Faraday efficiency. In this work, a molybdenum oxide (MoOx)-decorated titanium dioxide nanotube on Ti foil (Mo/TiO2) was prepared by means of an electrodeposition and calcination process. The structure of MoOx can be controlled by regulating the concentration of molybdate during the electrodeposition process, which can further influence the electron transfer from Ti to Mo atoms, and enhance the binding energy of intermediate species in NO3-RR. The optimized Mo/TiO2-M with more Mo(IV) sites exhibited a better activity for NO3-RR. The Mo/TiO2-M electrode delivered a NH3 yield of 5.18 mg h-1 cm-2 at -1.7 V vs. Ag/AgCl, and exhibited a Faraday efficiency of 88.05% at -1.4 V vs. Ag/AgCl. In addition, the cycling test demonstrated that the Mo/TiO2-M electrode possessed a good stability. This work not only provides an attractive electrode material, but also offers new insights into the rational design of catalysts for NO3-RR.

6.
Biotechnol Appl Biochem ; 70(3): 1072-1084, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36567620

RESUMEN

In biomedical implant technology, nanosurface such as titania nanotube arrays (TNA) could provide better cellular adaptation, especially for long-term tissue acceptance response. Mechanotransduction activities of TNA nanosurface could involve the cytoskeleton remodeling mechanism. However, there is no clear insight into TNA mechano-cytoskeleton remodeling activities, especially computational approaches. Epithelial cells have played critical interface between biomedical implant surface and tissue acceptance, particularly for long-term interaction. Therefore, this study investigates genomic responses that are responsible for cell-TNA mechano-stimulus using epithelial cells model. Findings suggested that cell-TNA interaction may improve structural and extracellular matrix (ECM) support on the cells as an adaptive response toward the nanosurface topography. More specifically, the surface topography of the TNA might improve the cell polarity and adhesion properties via the interaction of the plasma membrane and intracellular matrix responses. TNA nanosurface might engross the cytoskeleton remodeling activities for multidirectional cell movement and cellular protrusions on TNA nanosurface. These observations are supported by the molecular docking profiles that determine proteins' in silico binding mechanism on TNA. This active cell-surface revamping would allow cells to adapt to develop a protective barrier toward TNA nanosurface, thus enhancing biocompatibility properties distinctly for long-term interaction. The findings from this study will be beneficial toward nano-molecular knowledge of designing functional nanosurface technology for advanced medical implant applications.


Asunto(s)
Mecanotransducción Celular , Nanotubos , Simulación del Acoplamiento Molecular , Nanotubos/química , Titanio/química , Citoesqueleto , Propiedades de Superficie
7.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836836

RESUMEN

Efficient and stable electrode materials are urgently required for wastewater treatment in the electrocatalytic degradation of toxic and refractory organic pollutants. Ti3+ self-doping black TiO2 nanotube arrays (Ti/B-TiO2-NTs) as an interlayer were used for preparing a novel PbO2 electrode via an electrochemical reduction technology, and a sodium dodecyl sulfate (SDS)-modified PbO2 catalytic layer was successfully achieved via an electrochemical deposition technology. The physicochemical characterization tests showed that the Ti/B-TiO2-NTs/PbO2-SDS electrodes have a denser surface and finer grain size with the introduction of Ti3+ in the interlayer of Ti/TiO2-NTs and the addition of SDS in the active layer of PbO2. The electrochemical characterization results showed that the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode had higher oxygen evolution potential (2.11 V vs. SCE), higher electrode stability, smaller charge-transfer resistance (6.74 Ω cm-2), and higher hydroxyl radical production activity, leading to it possessing better electrocatalytic properties. The above results indicated that the physicochemical and electrochemical characterization of the PbO2 electrode were all enhanced significantly with the introduction of Ti3+ and SDS. Furthermore, the Ti/B-TiO2-NTs/PbO2-SDS electrodes displayed the best performance on the degradation of methylene blue (MB) in simulated wastewater via bulk electrolysis. The removal efficiency of MB and the chemical oxygen demand (COD) could reach about 99.7% and 80.6% under the optimal conditions after 120 min, respectively. The pseudo-first-order kinetic constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode was 0.03956 min-1, which was approximately 3.18 times faster than that of the Ti/TiO2-NTs/PbO2 electrode (0.01254 min-1). In addition, the Ti/B-TiO2-NTs/PbO2-SDS electrodes showed excellent stability and reusability. The degradation mechanism of MB was explored via the experimental identification of intermediates. In summary, the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode is a promising electrode in treating wastewater.

8.
Small ; 18(2): e2104323, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34738715

RESUMEN

With the development of clean hydrogen energy, the cost effective and high-performance hydrogen evolution reaction (HER) electrocatalysts are urgently required. Herein, a green, facile, and time-efficient Ru doping synergistic with air-plasma treatment strategy is reported to boost the HER performance of CoNi-layered double hydroxide (LDH) nanotube arrays (NTAs) derived from zeolitic imidazolate framework nanorods. The Ru doping and air-plasma treatment not only regulate the oxygen vacancy to optimize the electron structure but also increase the surface roughness to improve the hydrophilicity and hydrogen spillover efficiency. Therefore, the air plasma treated Ru doped CoNi-LDH (P-Ru-CoNi-LDH) nanotube arrays display superior HER performance with an overpotential of 29 mV at a current density of 10 mA cm-2 . Furthermore, by assembling P-Ru-CoNi-LDH as both cathode and anode for two-electrode urea-assisted water electrolysis, a small cell voltage of 1.36 V is needed at 10 mA cm-2 and can last for 100 h without any obvious activity attenuation that showing outstanding durability. In general, the P-Ru-CoNi-LDH can improve the HER performance from intrinsic electronic structure regulation cooperated with extrinsic surface wettability modification. These findings provide an effective intrinsic and extrinsic synergistic effect avenue to develop high performance HER electrocatalysts, which is potential to be applied to other research fields.

9.
Mikrochim Acta ; 189(4): 136, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258701

RESUMEN

Prominent electrochemiluminescence (ECL) in Ti-Fe-O nanotube arrays (Ti-Fe-O NTs) with K2S2O8 as the cathode coreactant is reported for the first time. Compared with pure titanium dioxide nanotubes (TiO2 NTs), this heterojunction could effectively reduce the band gap, facilitate electronic transitions, and move the ECL potential to a positive direction. The ECL performance motivated the development of an ultrasensitive ECL immunosensor for detecting cytokeratin fragment 21-1 (CYFRA21-1). Magnetic beads loaded with conductive carbon black (CCB/MNTs) were used to efficiently quench the ECL signal of a Ti-Fe-O NTs electrode and were combined with an ECL immunoassay to realize sensitive detection of CYFRA21-1. Over a CYFRA21-1 concentration range of 1.0 pg·mL-1 ~ 100 ng·mL-1, the change in the ECL signal was highly linear with the logarithm of the CYFRA21-1 concentration, and the limit of detection (LOD) was 0.114 pg·mL-1. This ECL immunosensor was used to successfully determine the CYFRA21-1 content in serum. The recovery of CYFRA21-1 in actual serum was 88.6 - 104.4%, and the RSD was 1.4 - 3.0%. The coreaction solution used in this work was PBS (0.1 M, pH = 7.4) containing 0.05 M K2S2O8, the scanning range was -1.0 - 0 V, the photomultiplier tube (PMT) was set to 750 V, and the scanning rate was 100 mV·s-1.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Antígenos de Neoplasias , Inmunoensayo , Queratina-19 , Nanotubos/química , Titanio/química
10.
Nanotechnology ; 32(24)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33691290

RESUMEN

Large-scale and well-alignedin situgrowth SnO2nanotube (NT) arrays have been synthesized directly on the surface of the Al2O3ceramic tube by a cost-effective template self-etching method. The morphology ofin situSnO2NTs can be adjusted by changing the concentration of urea. The structure and morphology characteristics of SnO2NT were examined via x-ray diffraction, BET, and scanning electron microscopy, respectively. A series of detections were carried out to evaluate the gas sensing performances. The results indicated thatin situgrowth SnO2NT arrays sensor exhibited an excellent response (S = 20.3), good linearity under the concentration range of ppm level (5-300 ppm), and outstanding selectivity to 100 ppm of acetone gas. Compared with the sensors fabricated by a slurry-coating method, the controllablein situassembled SnO2NT arrays exhibited a more stable structure and easier fabrication process. The high acetone sensing performance might due to the unique hollow structure and favorable orientation growth. The dominant sensing mechanism about thein situgrowth SnO2NT arrays sensor has been discussed in detail. It is expected thatin situgrowth SnO2NT arrays sensor with the general working principle and controllable growth strategy will become a promising functional material in monitoring and detecting acetone.

11.
Nanotechnology ; 33(5)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34670208

RESUMEN

Titania (TiO2) is a widely used semiconductor for the photocatalytic decomposition of organic impurities in air, water and the conversion of CO2into hydrocarbon fuel precursors. TiO2in the form of nanotubes arrays is the most attractive for practical use because of the morphological advantages providing more favorable diffusion of photocatalytic reaction products and a low recombination rate of photogenerated electrons and holes. We have carried out a comparative study of the photocatalytic activity of gas-phase conversion of CO2to hydrocarbon products and the defect properties of multi-walled and single-walled arrays of TiO2nanotubes. Methanol and methane have been detected in the CO2photoreduction process. The photocatalytic evolution rate of multi-walled TiO2nanotubes is twice as fast for methane as for single-walled TiO2nanotubes after four hours of irradiation and four times faster for methanol. The type and features of the structural defects have been investigated by EPR spectroscopy. For the first time, it has been shown that Ti3+/oxygen vacancy centers are mainly located inside the outer layer of nanotubes, while carbon dangling bonds have been observed directly on the surface of the inner layer. Carbon defects have been found to be the centers of adsorption and accumulation of photoinduced charge carriers. The results are entirely new; they clarify the role of different types of defects in the photocatalytic conversion of CO2to hydrocarbon compounds and show good prospects for applying TiO2nanotube arrays.

12.
Angew Chem Int Ed Engl ; 60(17): 9330-9333, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33586308

RESUMEN

In-situ growth of high-density single-walled carbon nanotube (SWNT) arrays with homogeneity is highly desirable for integrated circuits. However, disastrous migration and aggregation of catalyst nanoparticles on substrate has greatly limited the area of as-grown SWNT arrays. Herein, we develop a magnesium-assisted catalyst anchoring strategy to restrain catalyst nanoparticles sintering on substrate. Magnesium modification ameliorates sapphire surface by high temperature solid reaction and thus provides a stronger metal-support interaction (SMSI). Hereby, we realize the direct growth of high-density SWNT arrays that fully cover an entire 10×10 mm2 substrate with the local highest density of ≈110 tubes µm-1 using iron as catalyst. This strategy was also proven universal when employing solid carbide catalysts.

13.
Chemistry ; 26(64): 14708-14714, 2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-32748981

RESUMEN

Recently, Li-ion batteries (LIBs) have attracted extensive attention owing to their wide applications in portable and flexible electronic devices. Such a huge market for LIBs has caused an ever-increasing demand for excellent mechanical flexibility, outstanding cycling life, and electrodes with superior rate capability. Herein, an anode of self-supported Fe3 O4 @C nanotubes grown on carbon fabric cloth (CFC) is designed rationally and fabricated through an in situ etching and deposition route combined with an annealing process. These carbon-coated nanotube structured Fe3 O4 arrays with large surface area and enough void space can not only moderate the volume variation during repeated Li+ insertion/extraction, but also facilitate Li+ /electrons transportation and electrolyte penetration. This novel structure endows the Fe3 O4 @C nanotube arrays stable cycle performance (a large reversible capacity of 900 mA h g-1 up to 100 cycles at 0.5 A g-1 ) and outstanding rate capability (reversible capacities of 1030, 985, 908, and 755 mA h g-1 at 0.15, 0.3, 0.75, and 1.5 A g-1 , respectively). Fe3 O4 @C nanotube arrays still achieve a capacity of 665 mA h g-1 after 50 cycles at 0.1 A g-1 in Fe3 O4 @C//LiCoO2 full cells.

14.
Mikrochim Acta ; 187(2): 123, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31932917

RESUMEN

A non-enzymatic glucose sensor based on the use of CuO-Cu nanospheres placed on a TiO2 nanotube (TNT) array with excellent performance is described. The electrode was fabricated by coating the CuO-Cu nanospheres onto the TNT array through electrochemical deposition. The CuO-Cu nanospheres with a diameter of ~200 nm are well dispersed on the TNT surface, which warrants smooth interaction and a 3D nanostructure with high uniformity. The modified electrode was then used for amperometric determination of glucose in 0.1 M NaOH solution. Figures of merit include (a) a typical working voltage of 0.65 V (vs. Ag/AgCl). (b) a linear range as wide as from 0.2-90 mM, (c) good sensitivity (234 µA mM-1 cm-2), and a 19 nM lower detection limit. The sensor is selective over ascorbic acid (AA), dopamine (DA), uric acid (UA), lactose, sucrose, and fructose. Graphical abstract.

15.
Molecules ; 25(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316530

RESUMEN

TiO2 nanotube arrays (TNAs) with tube lengths of 4, 6, and 7 µm were prepared via two-step anodization. Thereafter, ultraviolet (UV) photodetectors (PDs) with Au/TiO2/Au structures were prepared using these TNAs with different tube lengths. The effects of TNA length and device area on the performance of the device were investigated using in situ Raman spectroscopy. The maximum laser/dark current ratio was achieved by using a TNA with a size of 1 × 1 cm2 and a length of 7 µm, under a 532 nm laser. In addition, when the device was irradiated with a higher energy laser (325 nm), the UV Raman spectrum was found to be more sensitive than the visible Raman spectrum. At 325 nm, the laser/dark current ratio was nearly 24 times higher than that under a 532 nm laser. Six phonon modes of anatase TNAs were observed, at 144, 199, 395, 514, and 635 cm-1, which were assigned to the Eg(1), Eg(2), B1g(1), A1g/B1g(2), and Eg(3) modes, respectively. The strong low-frequency band at 144 cm-1 was caused by the O-Ti-O bending vibration and is a characteristic band of anatase. The results show that the performance of TNA-based PDs is length-dependent. Surface-enhanced Raman scattering signals of 4-mercaptobenzoic acid (4-MBA) molecules were also observed on the TNA surface. This result indicates that the length-dependent performance may be derived from an increase in the specific surface area of the TNA. In addition, the strong absorption of UV light by the TNAs caused a blueshift of the Eg(1) mode.


Asunto(s)
Nanotubos , Espectrofotometría , Espectrometría Raman , Titanio , Rayos Ultravioleta , Nanotubos/química , Nanotubos/ultraestructura , Titanio/química , Difracción de Rayos X
16.
Biol Proced Online ; 21: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30718978

RESUMEN

Long-term organotypic culture of adult tissues not only open up possibilities for studying complex structures of explants in vitro, but also can be employed e.g. to investigate pathological changes, their fingerprints on tissue mechanics, as well as the effectiveness of drugs. While conventional culture methods do not allow for survival times of more than a few days, we have demonstrated recently that TiO2 nanotube arrays allow to maintain integrity of numerous tissues, including retina, brain, spline and tonsils, for as long as 2 weeks in vitro. A mystery in culturing has been the interaction of tissue with these substrates, which is also reflected by tissue debris after liftoff. As the latter reveals fingerprints of tissue adhesion and impedes with nanotube array reuse, we address within the present environmental scanning electron study debris nature and the effectiveness of cleaning approaches of distinct physical and chemical methods, including UV-light irradiation, O2 plasma treatment and application of an enzyme-based buffer. This will lays the foundation for large-scale regeneration and reuse of nanotube arrays in science and clinical research.

17.
Ecotoxicol Environ Saf ; 182: 109472, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31352210

RESUMEN

In present study, reductive graphene oxide and silver nanoparticles co-comodified TiO2 nanotube arrays were prepared, and which was investigated to degrade tetrabromobisphenol A. The arrays co-modified with silver nanoparticles and reductive graphene oxide prepared by electrodeposition method exhibited good photoelectrocatalytic degradative activity for tetrabromobisphenol A, and the degradation efficiency reached 99.6% within 80 min. The synergistic effect of high photoresponse of Ag nanoparticles with their high capture ability for photogenerated electrons and the extended wavelength absorption range of reductive graphene oxide resulted in the highest degradation efficiencies. Degradation is postulated to follow a stepwise reductive debromination mechanism.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Grafito/química , Nanotubos/química , Bifenilos Polibrominados/análisis , Plata/química , Luz Solar , Titanio/química , Catálisis , Electrodos , Oxidación-Reducción , Fotólisis , Bifenilos Polibrominados/efectos de la radiación
18.
Small ; 14(37): e1802132, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30109773

RESUMEN

Nowadays, the state-of-the-art electrocatalysts for hydrogen evolution reaction (HER) are platinum group metals. Nonetheless, Pt-based catalysts show decreased HER activity in alkaline media compared with that in acidic media due to the sluggish dissociation process of H2 O on the surface of Pt. With a cost 1/25 that of Pt, Ru demonstrates a favorable dissociation kinetics of absorbed H2 O. Herein, crystalline Ru0.33 Se nanoparticles are decorated onto TiO2 nanotube arrays (TNAs) to fabricate Ru0.33 Se @ TNA hybrid for HER. Owing to the large-specific surface area, Ru0.33 Se nanoparticles are freely distributed and the particle aggregation is eliminated, providing more active sites. The contracted electron transport pathway rendered by TiO2 nanotubes and the synergistic effect at the interface significantly improve the charge transfer efficiency in the hybrid catalyst. Compared with Ru0.33 Se nanoparticles deposited directly on the Ti foil (Ru0.33 Se/Ti) or carbon cloth (Ru0.33 Se/CC), Ru0.33 Se @ TNA shows an enhanced catalytic activity with an overpotential of 57 mV to afford a current density of 10 mA cm-2 , a Tafel slope of 50.0 mV dec-1 . Furthermore, the hybrid catalyst also exhibits an outstanding catalytic stability. The strategy here opens up a new synthetic avenue to the design of highly efficient hybrid electrocatalysts for hydrogen production.

19.
Chemistry ; 24(10): 2339-2343, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29030955

RESUMEN

Paper-like electrodes are emerging as a new category of advanced electrodes for flexible supercapacitors (SCs). Graphene, a promising two-dimensional material with high conductivity, can be easily processed into papers. Here, we report a rational design of flexible architecture with Co9 S8 nanotube arrays (NAs) grown onto graphene paper (GP) via a facile two-step hydrothermal method. When employed as flexible free-standing electrode for SCs, the proposed architectured Co9 S8 /GPs exhibits superior electrochemical performance with ultrahigh capacitance and outstanding rate capability (469 F g-1 at 10 A g-1 ). These results demonstrate that the new nanostructured Co9 S8 /GPs can be potentially applied in high performance flexible supercapacitors.

20.
Sci Technol Adv Mater ; 19(1): 535-542, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30083278

RESUMEN

We report a novel and inexpensive fabrication process of multiferroic nanocomposite via liquid phase using an anodic alumina template. The sol-gel spin-coating technique was used to coat the template with ferrimagnetic CoFe2O4. By dissolving the template with NaOH aqueous solution, a unique nanotube array structure of CoFe2O4 was obtained. The CoFe2O4 nanotube arrays were filled with, and sandwiched in, ferroelectric BaTiO3 layers by a sol-gel spin-coating method to obtain the composite. Its multiferroicity was confirmed by measuring the magnetic and dielectric hysteresis loops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA