Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neuron ; 110(8): 1371-1384.e7, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35120627

RESUMEN

Many mammalian neurons release multiple neurotransmitters to activate diverse classes of postsynaptic ionotropic receptors. Entopeduncular nucleus somatostatin (EP Sst+) projection neurons to the lateral habenula (LHb) release both glutamate and GABA, but it is unclear whether these are packaged into the same or segregated pools of synaptic vesicles. Here, we describe a method combining electrophysiology, spatially patterned optogenetics, and computational modeling designed to analyze the mechanism of glutamate/GABA co-release in mouse brain. We find that the properties of postsynaptic currents elicited in LHb neurons by optogenetically activating EP Sst+ terminals are only consistent with co-packaging of glutamate/GABA into individual vesicles. Furthermore, presynaptic neuromodulators that weaken EP Sst+ to LHb synapses maintain the co-packaging of glutamate/GABA while reducing vesicular release probability. Our approach is applicable to the study of multi-transmitter neurons throughout the brain, and our results constrain the mechanisms of neuromodulation and synaptic integration in LHb.


Asunto(s)
Habénula , Vesículas Sinápticas , Animales , Ácido Glutámico , Mamíferos , Ratones , Neurotransmisores , Ácido gamma-Aminobutírico
2.
Cell Rep ; 39(1): 110616, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385745

RESUMEN

The ventral tegmental area (VTA) is a complex brain region that is essential for reward function and frequently implicated in neuropsychiatric disease. While decades of research on VTA function have focused on dopamine neurons, recent evidence has identified critical roles for GABAergic and glutamatergic neurons in reward processes. Additionally, although subsets of VTA neurons express genes involved in the synthesis and transport of multiple neurotransmitters, characterization of these combinatorial populations has largely relied on low-throughput methods. To comprehensively define the molecular architecture of the VTA, we performed single-nucleus RNA sequencing on 21,600 cells from the rat VTA. Analysis of neuronal subclusters identifies selective markers for dopamine and combinatorial neurons, reveals expression profiles for receptors targeted by drugs of abuse, and demonstrates population-specific enrichment of gene sets linked to brain disorders. These results highlight the heterogeneity of the VTA and provide a resource for further exploration of VTA gene expression.


Asunto(s)
Neuronas Dopaminérgicas , Área Tegmental Ventral , Animales , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Neurotransmisores/metabolismo , Ratas , Recompensa , Área Tegmental Ventral/metabolismo
3.
Neuron ; 109(5): 823-838.e6, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33476548

RESUMEN

The circuit mechanisms underlying fear-induced suppression of feeding are poorly understood. To help fill this gap, mice were fear conditioned, and the resulting changes in synaptic connectivity among the locus coeruleus (LC), the parabrachial nucleus (PBN), and the central nucleus of amygdala (CeA)-all of which are implicated in fear and feeding-were studied. LC neurons co-released noradrenaline and glutamate to excite PBN neurons and suppress feeding. LC neurons also suppressed inhibitory input to PBN neurons by inducing heterosynaptic, endocannabinoid-dependent, long-term depression of CeA synapses. Blocking or knocking down endocannabinoid receptors in CeA neurons prevented fear-induced depression of CeA synaptic transmission and fear-induced suppression of feeding. Altogether, these studies demonstrate that LC neurons play a pivotal role in modulating the circuitry that underlies fear-induced suppression of feeding, pointing to new ways of alleviating stress-induced eating disorders.


Asunto(s)
Miedo/fisiología , Conducta Alimentaria/fisiología , Locus Coeruleus/fisiología , Neuronas/fisiología , Animales , Núcleo Amigdalino Central/fisiología , Condicionamiento Clásico , Femenino , Ácido Glutámico/fisiología , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Norepinefrina/fisiología , Núcleos Parabraquiales/fisiología , Transmisión Sináptica
4.
Elife ; 92020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32613945

RESUMEN

The mouse cerebral cortex contains neurons that express choline acetyltransferase (ChAT) and are a potential local source of acetylcholine. However, the neurotransmitters released by cortical ChAT+ neurons and their synaptic connectivity are unknown. We show that the nearly all cortical ChAT+ neurons in mice are specialized VIP+ interneurons that release GABA strongly onto other inhibitory interneurons and acetylcholine sparsely onto layer 1 interneurons and other VIP+/ChAT+ interneurons. This differential transmission of ACh and GABA based on the postsynaptic target neuron is reflected in VIP+/ChAT+ interneuron pre-synaptic terminals, as quantitative molecular analysis shows that only a subset of these are specialized to release acetylcholine. In addition, we identify a separate, sparse population of non-VIP ChAT+ neurons in the medial prefrontal cortex with a distinct developmental origin that robustly release acetylcholine in layer 1. These results demonstrate both cortex-region heterogeneity in cortical ChAT+ interneurons and target-specific co-release of acetylcholine and GABA.


Asunto(s)
Acetilcolina/metabolismo , Encéfalo/metabolismo , Colina O-Acetiltransferasa/metabolismo , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Corteza Cerebral/metabolismo , Heterocigoto , Interneuronas/metabolismo , Ratones , Corteza Prefrontal/metabolismo , Terminales Presinápticos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA