Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35328461

RESUMEN

Dihydrouridine (D) is an abundant post-transcriptional modification present in transfer RNA from eukaryotes, bacteria, and archaea. D has contributed to treatments for cancerous diseases. Therefore, the precise detection of D modification sites can enable further understanding of its functional roles. Traditional experimental techniques to identify D are laborious and time-consuming. In addition, there are few computational tools for such analysis. In this study, we utilized eleven sequence-derived feature extraction methods and implemented five popular machine algorithms to identify an optimal model. During data preprocessing, data were partitioned for training and testing. Oversampling was also adopted to reduce the effect of the imbalance between positive and negative samples. The best-performing model was obtained through a combination of random forest and nucleotide chemical property modeling. The optimized model presented high sensitivity and specificity values of 0.9688 and 0.9706 in independent tests, respectively. Our proposed model surpassed published tools in independent tests. Furthermore, a series of validations across several aspects was conducted in order to demonstrate the robustness and reliability of our model.


Asunto(s)
Algoritmos , Nucleótidos , Biología Computacional/métodos , ARN de Transferencia , Reproducibilidad de los Resultados
2.
Oncotarget ; 8(3): 4208-4217, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-27926534

RESUMEN

Catalyzed by adenosine deaminase (ADAR), the adenosine to inosine (A-to-I) editing in RNA is not only involved in various important biological processes, but also closely associated with a series of major diseases. Therefore, knowledge about the A-to-I editing sites in RNA is crucially important for both basic research and drug development. Given an uncharacterized RNA sequence that contains many adenosine (A) residues, can we identify which one of them can be of A-to-I editing, and which one cannot? Unfortunately, so far no computational method whatsoever has been developed to address such an important problem based on the RNA sequence information alone. To fill this empty area, we have proposed a predictor called iRNA-AI by incorporating the chemical properties of nucleotides and their sliding occurrence density distribution along a RNA sequence into the general form of pseudo nucleotide composition (PseKNC). It has been shown by the rigorous jackknife test and independent dataset test that the performance of the proposed predictor is quite promising. For the convenience of most experimental scientists, a user-friendly web-server for iRNA-AI has been established at http://lin.uestc.edu.cn/server/iRNA-AI/, by which users can easily get their desired results without the need to go through the mathematical details.


Asunto(s)
Adenosina/química , Biología Computacional/métodos , Inosina/química , ARN Mensajero/genética , Adenosina/genética , Algoritmos , Humanos , Inosina/genética , Edición de ARN , ARN Mensajero/química , Análisis de Secuencia de ARN , Programas Informáticos , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA