Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Med Genet A ; 191(2): 370-377, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36322476

RESUMEN

The 5p13 microduplication syndrome is a contiguous gene syndrome characterized by developmental delay intellectual disability, hypotonia, unusual facies with marked variability, mild limb anomalies, and in some cases brain malformations. The duplication ranges in size from 0.25 to 1.08 Mb and encompasses five genes (NIPBL, SLC1A3, CPLANE1, NUP155, and WDR70), of which NIPBL has been suggested to be the main dose sensitive gene. All patients with duplication of the complete NIPBL gene reported thus far have been de novo. Here, we report a 25-week-old male fetus with hypertelorism, wide and depressed nasal bridge, depressed nasal tip, low-set ears, clenched hands, flexion contracture of elbows, knees, and left wrist, and bilateral clubfeet, bowing and shortening of long bones and brain malformation of dorsal part of callosal body. The fetus had a 667 kb gain at 5p13.2 encompassing SLC1A3, NIPBL and exons 22-52 of CPLANE1. The microduplication was inherited from the healthy father, in whom no indication for mosaicism was detected. The family demonstrates that incomplete penetrance of 5p13 microduplication syndrome may occur which is important in genetic counseling of families with this entity.


Asunto(s)
Anomalías Múltiples , Discapacidad Intelectual , Humanos , Masculino , Anomalías Múltiples/genética , Proteínas de Ciclo Celular/genética , Duplicación Cromosómica/genética , Padre , Feto , Discapacidad Intelectual/genética , Mosaicismo
2.
Differentiation ; 119: 19-27, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34029921

RESUMEN

A proper skin barrier function requires constant formation of stratum corneum, i.e. the outermost layer of epidermis composed of terminally differentiated keratinocytes. The complex process of converting proliferative basal keratinocytes into corneocytes relies on programmed changes in the activity of many well-established genes. Much remains however to be investigated about this process, e.g. in conjunction with epidermal barrier defects due to genetic errors as in ichthyosis. To this end, we re-analyzed two sets of microarray-data comparing altered gene expression in differentiated vs. proliferating keratinocytes and in the skin of patients with autosomal recessive congenital ichthyosis (ARCI) vs. healthy controls, respectively. We thus identified 24 genes to be upregulated in both sets of array and not previously associated with keratinocyte differentiation. For 10 of these genes (AKR1B10, BLNK, ENDOU, GCNT4, GLTP, RHCG, SLC15A1, TMEM45B, TMEM86A and VSNL1), qPCR analysis confirmed the array results and subsequent immunostainings of normal epidermis showed superficial expression of several of the proteins. Furthermore, induction of keratinocyte differentiation using phorbol esters (PMA) resulted in increased expression of eight of the genes, whereas siRNA silencing of PPARδ, a transcription factor supporting differentiation, had the opposite effect. In summary, our results identify ten new candidate genes seemingly involved in human epidermal keratinocyte differentiation and possibly important for epidermal repair in a genetic skin disease characterized by barrier failure.


Asunto(s)
Diferenciación Celular/genética , Córnea/metabolismo , Ictiosis/genética , PPAR delta/genética , Piel/crecimiento & desarrollo , Proliferación Celular/genética , Córnea/crecimiento & desarrollo , Epidermis/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Humanos , Ictiosis/patología , Queratinocitos/metabolismo , Proteínas de la Membrana/genética , Organogénesis/genética , PPAR delta/antagonistas & inhibidores , Ésteres del Forbol/farmacología , ARN Interferente Pequeño/genética
3.
BMC Genomics ; 20(1): 821, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699050

RESUMEN

BACKGROUND: At sexual maturity, the liver of laying hens undergoes many metabolic changes to support vitellogenesis. In published transcriptomic approaches, hundreds of genes were reported to be overexpressed in laying hens and functional gene annotation using gene ontology tools have essentially revealed an enrichment in lipid and protein metabolisms. We reanalyzed some data from a previously published article comparing 38-week old versus 10-week old hens to give a more integrative view of the functions stimulated in the liver at sexual maturity and to move beyond current physiological knowledge. Functions were defined based on information available in Uniprot database and published literature. RESULTS: Of the 516 genes previously shown to be overexpressed in the liver of laying hens, 475 were intracellular (1.23-50.72 fold changes), while only 36 were predicted to be secreted (1.35-66.93 fold changes) and 5 had no related information on their cellular location. Besides lipogenesis and protein metabolism, we demonstrated that the liver of laying hens overexpresses several clock genes (which supports the circadian control of liver metabolic functions) and was likely to be involved in a liver/brain/liver circuit (neurotransmitter transport), in thyroid and steroid hormones metabolisms. Many genes were associated with anatomical structure development, organ homeostasis but also regulation of blood pressure. As expected, several secreted proteins are incorporated in yolky follicles but we also evidenced that some proteins are likely participating in fertilization (ZP1, MFGE8, LINC00954, OVOCH1) and in thyroid hormone maturation (CPQ). We also proposed that secreted proteins (PHOSPHO1, FGF23, BMP7 but also vitamin-binding proteins) may contribute to the development of peripheral organs including the formation of medullar bones to provide labile calcium for eggshell formation. Thirteen genes are uniquely found in chicken/bird but not in human species, which strengthens that some of these genes may be specifically related to avian reproduction. CONCLUSIONS: This study gives additional hypotheses on some molecular actors and mechanisms that are involved in basic physiological function of the liver at sexual maturity of hen. It also revealed some additional functions that accompany reproductive capacities of laying hens, and that are usually underestimated when using classical gene ontology approaches.


Asunto(s)
Pollos/genética , Pollos/fisiología , Perfilación de la Expresión Génica , Hígado/metabolismo , Oviposición/genética , Animales , Pollos/metabolismo , Proteínas del Huevo/metabolismo , Femenino , Factor-23 de Crecimiento de Fibroblastos , Especificidad de la Especie
4.
Exp Dermatol ; 28(10): 1164-1171, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30372788

RESUMEN

Autosomal recessive congenital ichthyosis (ARCI) is a group of monogenic skin disorders caused by mutations in any of at least 12 different genes, many of which are involved in the epidermal synthesis of ω-O-acylceramides (acylCer). AcylCer are essential precursors of the corneocyte lipid envelope crosslinked by transglutaminase-1 (TGm-1), or a yet unidentified enzyme, for normal skin barrier formation. We hypothesized that inactivating TGM1 mutations will lead to a compensatory overexpression of the transcripts involved in skin barrier repair, including many other ARCI-causing genes. Using microarray, we examined the global mRNA expression profile in skin biopsies from five ARCI patients with TGM1 mutations and four healthy controls. There were a total of 599 significantly differentially expressed genes (adjusted P < 0.05), out of which 272 showed more than 1.5 log2fold-change (FC) up- or down-regulation. Functional classification of the latter group of transcripts showed enrichment of mRNA encoding proteins mainly associated with biological pathways involved in keratinocyte differentiation and immune response. Moreover, the expression of seven out of twelve ARCI-causing genes was significantly increased (FC = 0.98-2.05). Also, many of the genes involved in keratinocyte differentiation (cornified envelope formation) and immune response (antimicrobial peptides and proinflammatory cytokines) were upregulated. The results from the microarray analysis were also verified for selected genes at the mRNA level by qPCR and at the protein level by semi-quantitative immunofluorescence. The upregulation of these genes might reflect a compensatory induction of acylCer biosynthesis as a part of a global barrier repair response in the patient's epidermis.


Asunto(s)
Ictiosis Lamelar/genética , Piel/metabolismo , Transglutaminasas/genética , Adulto , Anciano de 80 o más Años , Biopsia , Estudios de Casos y Controles , Diferenciación Celular , Ceramidas/biosíntesis , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Ictiosis Lamelar/metabolismo , Ictiosis Lamelar/patología , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa/métodos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Piel/patología , Absorción Cutánea/genética , Absorción Cutánea/fisiología , Transcriptoma , Transglutaminasas/deficiencia , Regulación hacia Arriba
5.
Fish Shellfish Immunol ; 41(1): 2-11, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24882017

RESUMEN

Brown Ring Disease (BRD) is a bacterial infection affecting the economically-important clam Ruditapes philippinarum. The disease is caused by a bacterium, Vibrio tapetis, that colonizes the edge of the mantle, altering the biomineralization process and normal shell growth. Altered organic shell matrices accumulate on the inner face of the shell leading to the formation of the typical brown ring in the extrapallial space (between the mantle and the shell). Even though structural and functional changes have been described in solid (mantle) and fluid (hemolymph and extrapallial fluids) tissues from infected clams, the underlying molecular alterations and responses remain largely unknown. This study was designed to gather information on clam molecular responses to the disease and to compare focal responses at the site of the infection (mantle and extrapallial fluid) with systemic (hemolymph) responses. To do so, we designed and produced a Manila clam expression oligoarray (15K Agilent) using transcriptomic data available in public databases and used this platform to comparatively assess transcriptomic changes in mantle, hemolymph and extrapallial fluid of infected clams. Results showed significant regulation in diseased clams of molecules involved in pathogen recognition (e.g. lectins, C1q domain-containing proteins) and killing (defensin), apoptosis regulation (death-associated protein, bcl-2) and in biomineralization (shell matrix proteins, perlucin, galaxin, chitin- and calcium-binding proteins). While most changes in response to the disease were tissue-specific, systemic alterations included co-regulation in all 3 tested tissues of molecules involved in microbe recognition and killing (complement-related factors, defensin). These results provide a first glance at molecular alterations and responses caused by BRD and identify targets for future functional investigations.


Asunto(s)
Bivalvos/microbiología , Regulación de la Expresión Génica/inmunología , Transcriptoma/inmunología , Vibrio/inmunología , Animales , Bivalvos/genética , Bivalvos/inmunología , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Ontología de Genes , Hemolinfa/inmunología , Hemolinfa/microbiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transcriptoma/genética
6.
Cells ; 10(12)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34943959

RESUMEN

To reduce the potentially irreversible environmental impacts caused by fossil fuels, the use of renewable energy sources must be increased on a global scale. One promising source of biomass and bioenergy is sugarcane. The study of this crop's development in different planting seasons can aid in successfully cultivating it in global climate change scenarios. The sugarcane variety SP80-3280 was field grown under two planting seasons with different climatic conditions. A systems biology approach was taken to study the changes on physiological, morphological, agrotechnological, transcriptomics, and metabolomics levels in the leaf +1, and immature, intermediate and mature internodes. Most of the variation found within the transcriptomics and metabolomics profiles is attributed to the differences among the distinct tissues. However, the integration of both transcriptomics and metabolomics data highlighted three main metabolic categories as the principal sources of variation across tissues: amino acid metabolism, biosynthesis of secondary metabolites, and xenobiotics biodegradation and metabolism. Differences in ripening and metabolite levels mainly in leaves and mature internodes may reflect the impact of contrasting environmental conditions on sugarcane development. In general, the same metabolites are found in mature internodes from both "one-year" and "one-and-a-half-year sugarcane", however, some metabolites (i.e., phenylpropanoids with economic value) and natural antisense transcript expression are only detected in the leaves of "one-year" sugarcane.


Asunto(s)
Desarrollo de la Planta/genética , ARN sin Sentido/genética , Saccharum/genética , Transcripción Genética , Transcriptoma/genética , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Grano Comestible/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Saccharum/crecimiento & desarrollo , Saccharum/metabolismo , Metabolismo Secundario/genética
7.
Gene ; 558(2): 220-6, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25562418

RESUMEN

Neurofibromatosis type 1 (NF1) is a genetic disorder where affected individuals develop benign or malignant nervous system tumors. To date, NF1 is caused by mutations in the NF1 tumor suppressor gene located at chromosome band 17q11.2. In this study, we aimed to characterize novel recurrent regional chromosomal imbalances and tumor-related candidate genes in NF1-associated cutaneous neurofibromas. Nine cutaneous neurofibromas from NF1 patients were screened for recurrent chromosomal imbalances using high-resolution 400K oligonucleotide array comparative genomic hybridization (aCGH). All the cases exhibited at least one sub-microscopic abnormality. Regions of recurrent chromosomal imbalances in a least one third of cases were loss of 1q13.2 (33%, FAM19A3), 1q21.1 (44%, RABGAP1L), 2q37.1 (56%, INPP5D), 3p25.1 (67%, CHCHD4), 4p15.32 (56%, FGFBP1), 5q11.2 (56%, ARL15), 6q22.31 (56%, NKAIN2), 6q22.33 (67%, ARHGAP18), 6q25.1 (67%, UST), 7q13 (56%, ADCY1), 12q13.13 (44%, KRT71), 19q13.32 (56%, GRLF1), and 20p11.21 (56%, NLP) and gain of 2p23.3 (76%, C2orf53), 8q22.3 (44%, ODF1) and 8q24.3 (67%, ARC). Several chromosomal imbalances, including loss of 7q11.23, 13q14.1, 14q32.13, 17p12, and 17q11.2 were detected at a lower frequency. We also confirmed that these chromosomal imbalances were not detected in the patient-matched lymphocyte DNAs. Amongst the 6 tumor-related candidate genes (RABGAP1L, ADCY1, SLIT2, GRLF1, UST, and ARC) identified in the regions of recurrent chromosomal imbalances, the gene expression changes of UST (down-regulation) and ARC (up-regulation) were found to be significantly associated with copy number alterations. The novel recurrent chromosomal imbalances and the altered expression levels of the tumor-related candidate genes may be associated with the development of NF1-associated benign cutaneous neurofibromas.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Neurofibroma/genética , Neurofibromatosis 1/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Cutáneas/genética , Adolescente , Adulto , Anciano , Aberraciones Cromosómicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Cancer Med ; 1(3): 289-94, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23342278

RESUMEN

Peripheral T-cell lymphoma, not otherwise specified (PTCL, NOS) with genomic aberrations has been shown to resemble lymphoma-type adult T-cell leukemia/lymphoma (ATLL) in terms of its genomic aberration patterns, histopathology, and prognosis. We have shown recently that a majority of patients with acute-type ATLL have multiple subclones that were likely produced in lymph nodes. In this study, we analyzed whether PTCL, NOS with genomic aberrations also has multiple subclones as found in ATLL by means of high-resolution oligo-array comparative genomic hybridization (CGH). Thirteen cases of PTCL, NOS were available for 44K high-resolution array CGH analysis. The results showed that 11 (84.6%) of the 13 cases had a log2 ratio imbalance, suggesting that multiple subclones exist in PTCL, NOS with genomic aberrations. In order to analyze the association between multiple subclones and prognosis, we used previous bacterial-artificial chromosome (BAC) array analyses for 29 cases and found that the existence of multiple subclones was associated with a poor prognosis (P = 0.0279).


Asunto(s)
Aberraciones Cromosómicas , Leucemia-Linfoma de Células T del Adulto/genética , Ganglios Linfáticos/patología , Linfoma de Células T Periférico/patología , Adulto , Anciano , Hibridación Genómica Comparativa , Femenino , Genoma Humano , Humanos , Leucemia-Linfoma de Células T del Adulto/patología , Linfoma de Células T Periférico/genética , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico
9.
G3 (Bethesda) ; 2(6): 657-63, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22690375

RESUMEN

Suppressor screens are an invaluable method for identifying novel genetic interactions between genes in the model organism Caenorhabditis elegans. However, traditionally this approach has suffered from the laborious and protracted process of mapping mutations at the molecular level. Using a mutagen known to generate small deletions, coupled with oligoarray comparative genomic hybridization (aCGH), we have identified mutations in two genes that suppress the lethality associated with a mutation of the essential receptor tyrosine kinase rol-3. First, we find that deletion of the Bicaudal-C ortholog, bcc-1, suppresses rol-3-associated lethality. Second, we identify several duplications that also suppress rol-3-associated lethality. We establish that overexpression of srap-1, a single gene present in these duplications, mediates the suppression. This study demonstrates the suitability of deletion-biased mutagenesis screening in combination with aCGH characterization for the rapid identification of novel suppressor mutations. In addition to detecting small deletions, this approach is suitable for identifying copy number suppressor mutations, a class of suppressor not easily characterized using alternative approaches.

10.
Front Genet ; 3: 44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22509179

RESUMEN

Microarray analysis enables the genome-wide detection of copy number variations and the investigation of chromosomal instability. Whereas array techniques have been well established for the analysis of unamplified DNA derived from many cells, it has been more challenging to enable the accurate analysis of single cell genomes. In this review, we provide an overview of single cell DNA amplification techniques, the different array approaches, and discuss their potential applications to study human embryos.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA