Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Small ; : e2404782, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162100

RESUMEN

2D nanomaterials with ångström-scale thicknesses offer a unique platform for confining molecules at an unprecedentedly small scale, presenting novel opportunities for modulating material properties and probing microscopic phenomena. In this study, mesogen-tethered polyhedral oligomeric silsesquioxane (POSS) amphiphiles with varying numbers of mesogenic tails to systematically influence molecular self-assembly and the architecture of the ensuing supramolecular structures, are synthesized. These organic-inorganic hybrid amphiphiles facilitate precise spatial arrangement and directional alignment of the primary molecular units within highly ordered supramolecular structures. The correlation between molecular design and the formation of superlattices through comprehensive structural analyses, incorporating molecular thermodynamics and kinetics, is explored. The distinct intermolecular interactions of the POSS core and the mesogenic tails drive the preferential formation of a 2D inorganic sublattice while simultaneously guiding the hierarchical assembly of organic lamellae via soft epitaxy. The findings reveal the intricate balance between shape, size, and interaction strengths of the inorganic and organic components, and how these factors collectively influence the structural hierarchy of the superstructures, which consist of multiple sublattices. By controlling this unique molecular behavior, it is possible to modulate or maximize the anisotropy of optical, mechanical, and electrical properties at the sub-nanometer scale for nanotechnology applications.

2.
Small ; : e2403490, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39031997

RESUMEN

The miniaturization, integration, and increased power of electronic devices have exacerbated serious heat dissipation issues. Thermally conductive adhesives, which effectively transfer heat and firmly bond components, are critical for addressing these challenges. This paper innovatively proposed a composite comprising inorganic phosphate/alumina as a matrix and diamond as filler. The composite achieved an isotropic thermal conductivity (TC) of up to 18.96 W m-1 K-1, significantly surpassing existing reports while maintaining electrical insulation. First-principles calculations and experimental tests confirmed that the high TC of phosphate and excellent interface contact ensured efficient heat transfer. To optimize bonding performance, a modified-diamond/Al(H2PO4)3@epoxy hybrid composite is subsequently developed using an organic modification method. The unique hybrid structure, combining inorganic thermal pathways and an organic adhesive network, enabled the hybrid composite to simultaneously possess a high TC (3.23 W m-1 K-1) and strong adhesion (14.35 MPa). Compared to previous reports, the comprehensive performance of this hybrid thermally conductive adhesive is exceptionally remarkable. The superior heat dissipation capability of the hybrid thermal adhesive is demonstrated in chip cooling scenarios. This organic/inorganic hybrid approach offered a new direction for obtaining advanced thermal interface materials, demonstrating significant application potential in chip soldering, packaging, and heat dissipation.

3.
Small ; 20(26): e2310722, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38229525

RESUMEN

Aqueous aluminum-ion batteries are attractive post-lithium battery technologies for large-scale energy storage in virtue of abundant and low-cost Al metal anode offering ultrahigh capacity via a three-electron redox reaction. However, state-of-the-art cathode materials are of low practical capacity, poor rate capability, and inadequate cycle life, substantially impeding their practical use. Here layered manganese oxide that is pre-intercalated with benzoquinone-coordinated aluminum ions (BQ-AlxMnO2) as a high-performance cathode material of rechargeable aqueous aluminum-ion batteries is reported. The coordination of benzoquinone with aluminum ions not only extends interlayer spacing of layered MnO2 framework but reduces the effective charge of trivalent aluminum ions to diminish their electrostatic interactions, substantially boosting intercalation/deintercalation kinetics of guest aluminum ions and improving structural reversibility and stability. When coupled with Zn50Al50 alloy anode in 2 m Al(OTf)3 aqueous electrolyte, the BQ-AlxMnO2 exhibits superior rate capability and cycling stability. At 1 A g-1, the specific capacity of BQ-AlxMnO2 reaches ≈300 mAh g-1 and retains ≈90% of the initial value for more than 800 cycles, along with the Coulombic efficiency of as high as ≈99%, outperforming the AlxMnO2 without BQ co-incorporation.

4.
Chemistry ; 30(17): e202303918, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38102982

RESUMEN

The photoluminescent properties of lanthanide complexes have been thoroughly investigated; however, there have been much fewer studies showcasing their potential use in ionizing radiation detection. In this work, we delve into the photo- and radio-induced luminescence of a series of lanthanide-bearing organic-inorganic hybrids and their potential as a platform for X-ray scintillation and imaging. The judicious synergy between lanthanide cations and 2,6-di(1H-pyrazol-1-yl)isonicotinate (bppCOO-) ligands affords six new materials with three distinct structures. Notably, Eu-bppCOO-1 and Tb-bppCOO-2 display sharp fingerprint X-ray-excited luminescence (XEL), the intensities of which can be linearly correlated with the X-ray dose rates over a broad dynamic range (0.007-4.55 mGy s-1). Moreover, the X-ray sensing efficacies of Eu-bppCOO-1 and Tb-bppCOO-2 were evaluated, showing that Tb-bppCOO-2 features a lower detection limit of 4.06 µGy s-1 compared to 14.55 µGy s-1 of Eu-bppCOO-1. Given the higher X-ray sensitivity and excellent radiation stability of Tb-bppCOO-2, we fabricated a flexible scintillator film for X-ray imaging by embedding finely ground Tb-bppCOO-2 in the polydimethylsiloxane (PDMS) polymer. The resulting scintillator film can be utilized for high-resolution X-ray imaging with a spatial resolution of approximately 7 lp mm-1.

5.
Chemistry ; 30(17): e202304177, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38228508

RESUMEN

This paper presents a one-step photochemical method for the preparation of CdS/Poly(MMA-co-MAA) composite photocatalyst, based on the concept of simultaneous photocatalytic polymerization of organic monomers during UV-light induced formation of CdS. The preparation is carried out in an aqueous solution of Na2S2O3, CdSO4, methyl methacrylate (MMA) and methacrylic acid (MAA), under a UV lamp. The continuously formed CdS particles with photocatalytic activity act the role of initiator to directly initiate the copolymerization of MMA and MAA, resulting in the in situ formation of the composite and full contact of the CdS particles with the oxygen-containing groups in the polymer. Taking the photocatalytic degradation of methylene blue as a case study, the composite exhibited significantly higher activity under simulated solar light compared to the pure CdS. By analysis on various data, the enhanced photocatalytic activity is attributed to the enhanced visible light absorption, and especially the high electron-hole separation efficiency caused by the electrostatic interaction between photogenerated holes and carbonyl oxygen atoms with negatively charged features. Furthermore, the composite displays excellent sunlight activity and recyclability, suggesting its potential for practical applications. Such a one-step construction strategy relying only on photo-energy is green, low-cost and promising in obtaining high-performance semiconductor/polymer composite photocatalysts.

6.
Chemistry ; 30(39): e202401257, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38709195

RESUMEN

Aqueous proton batteries have received increasing attention due to their outstanding rate performance, stability and high capacity. However, the selection of anode materials in strongly acidic electrolytes poses a challenge in achieving high-performance aqueous proton batteries. This study optimized the proton reaction kinetics of layered metal oxide WO3 by introducing interlayer structural water and coating polyaniline (PANI) on its surface to prepare organic-inorganic hybrid material (WO3 ⋅ 2H2O@PANI). We constructed an aqueous proton battery with WO3 ⋅ 2H2O@PANI anode and MnO2@GF cathode. After 1500 cycles at a current density of 10 A g-1, the capacity retention rate can still reach 80.2 %. These results can inspire the development of new aqueous proton batteries.

7.
Anal Bioanal Chem ; 416(21): 4789-4805, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878180

RESUMEN

Organic-inorganic hybrid nanocomposites (OIHN), with tailored surface chemistry, offer ultra-sensitive architecture capable of detecting ultra-low concentrations of target analytes with precision. In the present work, a novel nano-biosensor was fabricated, acquainting dynamic synergy of reduced graphene oxide (rGO) decorated hexagonal boron nitride nanosheets (hBNNS) for detection of carcinoembryonic antigen (CEA). Extensive spectroscopic and microscopic analyses confirmed the successful hydrothermal synthesis of cross-linked rGO-hBNNS nanocomposite. Uniform micro-electrodes of rGO-hBNNS onto pre-hydrolyzed ITO were obtained via electrophoretic deposition (EPD) technique at low DC potential (15 V). Optimization of antibody incubation time, pH of supporting electrolyte, and immunoelectrode preparation was thoroughly investigated to enhance nano-biosensing efficacy. rGO-modified hBNNS demonstrated 29% boost in electrochemical performance over bare hBNNS, signifying remarkable electro-catalytic activity of nano-biosensor. The presence of multifunctional groups on the interface facilitated stable crosslinking chemistry, increased immobilization density, and enabled site-specific anchoring of Anti-CEA, resulting in improved binding affinity. The nano-biosensor demonstrated a remarkably low limit of detection of 5.47 pg/mL (R2 = 0.99963), indicating exceptional sensitivity and accuracy in detecting CEA concentrations from 0 to 50 ng/mL. The clinical evaluation confirmed its exceptional shelf life, minimal cross-reactivity, and robust recovery rates in human serum samples, thereby unraveling the potential for early, highly sensitive, and reliable CEA detection.


Asunto(s)
Técnicas Biosensibles , Compuestos de Boro , Antígeno Carcinoembrionario , Técnicas Electroquímicas , Grafito , Límite de Detección , Nanocompuestos , Antígeno Carcinoembrionario/sangre , Antígeno Carcinoembrionario/análisis , Grafito/química , Nanocompuestos/química , Técnicas Electroquímicas/métodos , Humanos , Técnicas Biosensibles/métodos , Compuestos de Boro/química , Catálisis , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunología
8.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928068

RESUMEN

As a low-calorie sugar, D-allulose is produced from D-fructose catalyzed by D-allulose 3-epimerase (DAE). Here, to improve the catalytic activity, stability, and processability of DAE, we reported a novel method by forming organic-inorganic hybrid nanoflowers (NF-DAEs) and co-immobilizing them on resins to form composites (Re-NF-DAEs). NF-DAEs were prepared by combining DAE with metal ions (Co2+, Cu2+, Zn2+, Ca2+, Ni2+, Fe2+, and Fe3+) in PBS buffer, and were analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and X-ray diffraction. All of the NF-DAEs showed higher catalytic activities than free DAE, and the NF-DAE with Ni2+ (NF-DAE-Ni) reached the highest relative activity of 218%. The NF-DAEs improved the thermal stability of DAE, and the longest half-life reached 228 min for NF-DAE-Co compared with 105 min for the free DAE at 55 °C. To further improve the recycling performance of the NF-DAEs in practical applications, we combined resins and NF-DAEs to form Re-NF-DAEs. Resins and NF-DAEs co-effected the performance of the composites, and ReA (LXTE-606 neutral hydrophobic epoxy-based polypropylene macroreticular resins)-based composites (ReA-NF-DAEs) exhibited outstanding relative activities, thermal stabilities, storage stabilities, and processabilities. The ReA-NF-DAEs were able to be reused to catalyze the conversion from D-fructose to D-allulose, and kept more than 60% of their activities after eight cycles.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Enzimas Inmovilizadas/química , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Nanoestructuras/química , Fructosa/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
9.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930953

RESUMEN

A new series of inorganic-organic hybrid perovskite materials were prepared by microwave-assisted grafting reactions. Simple carboxylic acids, acetic acid, and propionic acid, as well as hydroxyaromatic carboxylic acids, 3,5-dihydroxy benzoic acid (DBA), 5-hydroxyisophthalic acid (HPA), 4-hydroxybenzoic acid (HBA), and 4-hydroxy-4-biphenyl carboxylic acid (HBCA), were reacted with the Dion-Jacobson double-layered perovskite, HLaNb2O7, and its alcoxy derivatives. Grafting was found to not occur with simple carboxylic acids, while those molecules with hydroxyls were all attached to the perovskite interlayers. Reactivity of the hydroxyaromatic carboxylic acids varied with the different layered perovskite hosts where reactions with HLaNb2O7 did not occur, and those with n-propoxy-LaNb2O7 were limited; the greatest extent of reactivity was seen with n-decoxy-LaNb2O7. This is attributed to the larger interlayer spacing available for the insertion of the various hydroxyaromatic carboxylic acid compounds. The loading exhibited by the grafting species was less than that seen with well-known long-chain alkoxy grafting groups. It is expected that the width of the molecules contributes to this where, due to the benzyl groups, the interlayer volume of the grafted moieties occupies a larger horizontal fraction, therefore minimizing the loading to the below half. X-ray powder diffraction and transmission electron microscopy studies found that grafting of the n-decoxy-LaNb2O7 intermediates with the series of hydroxyaromatics resulted in a reduction in crystallinity along with a disruption of the layer structure. Raman data on the series show little variation in local structure except for HBCA, where there appears to be a lengthening of the Nb-O apical linkage and a possible reduction in the distortion of inner-layer NbO6 octahedra. The optical properties of the hydroxyaromatic carboxylic acid grafted perovskites were also investigated using diffuse-reflectance UV-Vis spectroscopy. The band gaps of DBA, HPA, and HBA were found to be similar to the parent (Eg ≈ 3.4 eV), while the HBCA was significantly less by ca. 0.6 eV. This difference is attributed to electron withdrawal from the perovskite block to the HBCA ligand, leading to a lower band gap for the HBCA compound. The methods described herein allow for the formation of a new series of inorganic-organic hybrid materials where the products are of interest as precursors to more complex architectures as well as models for band gap modification of metal oxide photocatalysts.

10.
Molecules ; 29(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38998926

RESUMEN

As an important photovoltaic material, organic-inorganic hybrid perovskites have attracted much attention in the field of solar cells, but their instability is one of the main challenges limiting their commercial application. However, the search for stable perovskites among the thousands of perovskite materials still faces great challenges. In this work, the energy above the convex hull values of organic-inorganic hybrid perovskites was predicted based on four different machine learning algorithms, namely random forest regression (RFR), support vector machine regression (SVR), XGBoost regression, and LightGBM regression, to study the thermodynamic phase stability of organic-inorganic hybrid perovskites. The results show that the LightGBM algorithm has a low prediction error and can effectively capture the key features related to the thermodynamic phase stability of organic-inorganic hybrid perovskites. Meanwhile, the Shapley Additive Explanation (SHAP) method was used to analyze the prediction results based on the LightGBM algorithm. The third ionization energy of the B element is the most critical feature related to the thermodynamic phase stability, and the second key feature is the electron affinity of ions at the X site, which are significantly negatively correlated with the predicted values of energy above the convex hull (Ehull). In the screening of organic-inorganic perovskites with high stability, the third ionization energy of the B element and the electron affinity of ions at the X site is a worthy priority. The results of this study can help us to understand the correlation between the thermodynamic phase stability of organic-inorganic hybrid perovskites and the key features, which can assist with the rapid discovery of highly stable perovskite materials.

11.
Molecules ; 29(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276577

RESUMEN

As an indicator of the optical characteristics of perovskite materials, the band gap is a crucial parameter that impacts the functionality of a wide range of optoelectronic devices. Obtaining the band gap of a material via a labor-intensive, time-consuming, and inefficient high-throughput calculation based on first principles is possible. However, it does not yield the most accurate results. Machine learning techniques emerge as a viable and effective substitute for conventional approaches in band gap prediction. This paper collected 201 pieces of data through the literature and open-source databases. By separating the features related to bits A, B, and X, a dataset of 1208 pieces of data containing 30 feature descriptors was established. The dataset underwent preprocessing, and the Pearson correlation coefficient method was employed to eliminate non-essential features as a subset of features. The band gap was predicted using the GBR algorithm, the random forest algorithm, the LightGBM algorithm, and the XGBoost algorithm, in that order, to construct a prediction model for organic-inorganic hybrid perovskites. The outcomes demonstrate that the XGBoost algorithm yielded an MAE value of 0.0901, an MSE value of 0.0173, and an R2 value of 0.991310. These values suggest that, compared to the other two models, the XGBoost model exhibits the lowest prediction error, suggesting that the input features may better fit the prediction model. Finally, analysis of the XGBoost-based prediction model's prediction results using the SHAP model interpretation method reveals that the occupancy rate of the A-position ion has the greatest impact on the prediction of the band gap and has an A-negative correlation with the prediction results of the band gap. The findings provide valuable insights into the relationship between the prediction of band gaps and significant characteristics of organic-inorganic hybrid perovskites.

12.
Angew Chem Int Ed Engl ; : e202410908, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954489

RESUMEN

Efficient occlusion of particulate additives into a single crystal has garnered an ever-increasing attention in materials science because it offers a counter-intuitive yet powerful platform to make crystalline nanocomposite materials with emerging properties. However, precisely controlling the spatial distribution of the guest additives within a host crystal remains highly challenging. We herein demonstrate a unique, straightforward method to engineer the spatial distribution of copolymer nanoparticles within calcite (CaCO3) single crystals by judiciously adjusting initial [Ca2+] concentration used for the calcite precipitation. More specifically, polymerization-induced self-assembly is employed to synthesize well-defined and highly anionic poly(3-sulfopropyl methacrylate potassium)41-block-poly(benzyl methacrylate)500 [PSPMA41-PBzMA500] diblock copolymer nanoparticles, which are subsequently used as model additives during the growth of calcite crystals. Impressively, such guest nanoparticles are preferentially occluded into specific regions of calcite depending on the initial [Ca2+] concentration. These unprecedented phenomena are most probably caused by dynamic change in electrostatic interaction between Ca2+ ions and PSPMA41 chains based on systematic investigations. This study not only showcases a significant advancement in controlling the spatial distribution of guest nanoparticles within host crystals, enabling the internal structure of composite crystals to be rationally tailored via a spatioselective occlusion strategy, but also provides new insights into biomineralization.

13.
Angew Chem Int Ed Engl ; : e202408551, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858167

RESUMEN

Heat-activated second harmonic generation (SHG) switching materials are gaining interest for their ability to switch between SHG on and off states, offering potential in optoelectronic applications. The novel nonlinear optical (NLO) switch, (C5H6NO)+(CH3SO3)- (4-hydroxypyridinium methylsulfonate, 4HPMS), is a near-room-temperature thermal driven material with a strong SHG response (3.3 × KDP), making it one of the most potent heat-stimulated NLO switches. It offers excellent contrast of 13 and a high laser-induced damage threshold (2.5 × KDP), with reversibility > 5 cycles. At 73 °C, 4HPMS transitions from the noncentrosymmetric Pna21 room temperature phase (RTP) to the centrosymmetric P21/c phase, caused by the rotation of the (C5H6NO)+ and (CH3SO3)- due to partially thermal breaking of intermolecular hydrogen bonds. The reverse phase change exhibits a large 50 °C thermal hysteresis. Density functional theory (DFT) calculations show that (C5H6NO)+ primarily dictates both the SHG coefficient (dij) and birefringence (▵n(Zeiss) = 0.216 vs ▵n(cal.) = 0.202 at 546 nm; Δn(Immersion) = 0.210 vs ▵n(cal.) = 0.198 at 589.3 nm), while the band gap (Eg) is influenced synergistically by (C5H6NO)+ and (CH3SO3)-. Additionally, 4HPMS-RTP also exhibits mechanochromism upon grinding as well as an aggregation-enhanced emission in a mixture of acetone and water.

14.
Angew Chem Int Ed Engl ; : e202411219, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020249

RESUMEN

Two-dimensional organic-inorganic hybrid perovskites ( OIHPs) with alternating structure of the organic and inorganic layers have a natural quantum well structure. The difference of dielectric constants between organic and inorganic layers in this structure results in the enhancement of dielectric confinement effect, which exhibits a large exciton binding energy and hinders the separation of electron-hole pairs. Herein, a strategy to reduce the dielectric confinement effect by narrowing the dielectric difference between organic amine molecule and [PbBr6]4- octahedron is put forward. The Ethanolamine (EOA) contains hydroxyl groups, resulting in the positive and negative charge centers of O and H non-overlapping,which generated a larger polarity and dielectric constant. The reduced dielectric constant produces a smaller exciton binding energy (71.03 meV) of (C2H7NO)2PbBr4 ((EOA)2PbBr4) than (C8H11N)2PbBr4 ((PEA)2PbBr4 (156.07 meV), and promotes the dissociation of electrons and holes. The increasing of lifetime of photogenerated carrier in (EOA)2PbBr4 are proved by femtosecond transient absorption spectra. DFT calculations have also indicated that the small energy shift of the total density of states (DOS) between the C/H/N and the Pb/Br in (EOA)2PbBr4 favors the separation of electrons and holes. In addition, this work demonstrates the application of (PEA)2PbBr4 and (EOA)2PbBr4 in the field of photocatalytic CO2 reduction.

15.
Angew Chem Int Ed Engl ; 63(15): e202319882, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38337137

RESUMEN

Polar materials with spontaneous polarization (Ps) have emerged as highly promising photocatalysts for efficient photocatalytic H2 evolution owing to the Ps-enhanced photogenerated carrier separation. However, traditional inorganic polar materials often suffer from limitations such as wide band gaps and poor carrier transport, which hinders their photocatalytic H2 evolution efficiency. Here, we rationally synthesized a series of isostructural two-dimensional (2D) aromatic Dion-Jacobson (DJ) perovskites, namely (2-(2-Aminoethyl)pyridinium)PbI4 (2-APDPI), (3-(2-Aminoethyl)pyridinium)PbI4 (3-APDPI), and (4-(2-Aminoethyl)pyridinium)PbI4 (4-APDPI), where 2-APDPI and 4-APDPI crystalize in polar space groups with piezoelectric constants (d33) of approximately 40 pm V-1 and 3-APDPI adopts a centrosymmetric structure. Strikingly, owing to the Ps-facilitated separation of photogenerated carriers, polar 2-APDPI and 4-APDPI exhibit a 3.9- and 2.8-fold increase, respectively, in photocatalytic H2 evolution compared to the centrosymmetric 3-APDPI. As a pioneering study, this work provides an efficient approach for exploring new polar photocatalysts and highlights their potential in promoting photocatalytic H2 evolution.

16.
Angew Chem Int Ed Engl ; : e202411136, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147700

RESUMEN

Low dimensional organic-inorganic hybrid metal halide materials have attracted extensive attention due to their superior optoelectronic properties. However, low photoluminescence quantum yields (PLQYs) caused by parity-forbidden transition hinder their further application in optoelectronic devices. Herein, a novel yellow-emitting PMA4Na(In,Sb)Cl8 (C7H10N+, PMA+) low-dimensional OIMHs single crystal with a PLQY as high as 88% was successfully designed and synthesized, originating from the fact that the doping of Sb3+ effectively relaxes the parity-forbidden transition by strong spin-orbit (SO) coupling and Jahn-Teller (JT) interaction. The as-prepared crystal shows an efficient dual emission peaking 495 and 560 nm at low temperature, which are ascribed to different levels of 3P1 → 1S0 transitions of Sb3+ in [SbCl6]3- octahedral caused by JT deformation. Moreover, wide-range luminescence tailoring from cyan to orange can be achieved through adjusting excitation energy and temperature because of flexible [SbCl6]3- octahedral in the PNIC lattice. Based on a relative stiff lattice environment, the 560 nm yellow emission under 350 nm light excitation exhibits abnormal anti-thermal quenching from 8 to 400 K owing to the suppression of non-radiative transition. The multimode luminescence regulation enriches PMA4Na(In,Sb)Cl8 great potential in the field of optoelectronics such as temperature sensing,  low temperature anti-counterfeiting and WLED applications.

17.
Adv Sci (Weinh) ; 11(29): e2400636, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38778554

RESUMEN

Over the past years, the application potential of ferroelectric nanomaterials with unique physical properties for modern electronics is highlighted to a large extent. However, it is relatively challenging to fabricate inorganic ferroelectric nanomaterials, which is a process depending on a vacuum atmosphere at high temperatures. As significant complements to inorganic ferroelectric nanomaterials, the nanomaterials of molecular ferroelectrics are rarely reported. Here a low-cost room-temperature antisolvent method is used to synthesize free-standing 2D organic-inorganic hybrid perovskite (OIHP) ferroelectric nanosheets (NSs), that is, (CHA)2PbBr4 NSs (CHA = cyclohexylammonium), with an average lateral size of 357.59 nm and a thickness ranging from 10 to 70 nm. This method shows high repeatability and produces NSs with excellent crystallinity. Moreover, ferroelectric domains in single NSs can be clearly visualized and manipulated using piezoresponse force microscopy (PFM). The domain switching and PFM-switching spectroscopy indicate the robust in-plane ferroelectricity of the NSs. This work not only introduces a feasible, low-cost, and scalable method for preparing molecular ferroelectric NSs but also promotes the research on molecular ferroelectric nanomaterials.

18.
J Colloid Interface Sci ; 672: 97-106, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833738

RESUMEN

Formate is an important environmental pollutant, and meanwhile its concentration change is associated with a variety of diseases. Thus, rapid and sensitive detection of formate is critical for the biochemical analysis of complex samples and clinical diagnosis of multiple diseases. Herein, a colorimetric biosensor was constructed based on the cascade catalysis of formate oxidase (FOx) and horseradish peroxidase (HRP). These two enzymes were co-immobilized in Cu3(PO4)2-based hybrid nanoflower with spatial localization, in which FOx and HRP were located in the shell and core of nanoflower, respectively (FOx@HRP). In this system, FOx could catalyze the oxidation of formate to generate H2O2, which was then utilized by HRP to oxidize 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid to yield blue product. Ideal linear correlation could be obtained between the absorbance at 420 nm and formate concentration. Meanwhile, FOx@HRP exhibited excellent detection performance with low limit of detection (6 µM), wide linear detection range (10-900 µM), and favorable specificity, stability and reusability. Moreover, it could be applied in the detection of formate in environmental, food and biological samples with high accuracy. Collectively, FOx@HRP provides a useful strategy for the simple and sensitive detection of formate and is potentially to be used in biochemical analysis and clinical diagnosis.


Asunto(s)
Colorimetría , Enzimas Inmovilizadas , Formiatos , Peroxidasa de Rábano Silvestre , Colorimetría/métodos , Formiatos/química , Peroxidasa de Rábano Silvestre/química , Peroxidasa de Rábano Silvestre/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Técnicas Biosensibles/métodos , Límite de Detección , Nanoestructuras/química , Tamaño de la Partícula , Propiedades de Superficie
19.
Adv Mater ; 36(27): e2313381, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38647215

RESUMEN

Aggregation-induced emission luminogen (AIEgen)-functionalized organic-inorganic hybrid nanoparticles (OINPs) are an emerging category of multifunctional nanomaterials with vast potential applications. The spatial arrangement and positioning of AIEgens and inorganic compounds in AIEgen-functionalized OINPs determine the structures, properties, and functionalities of the self-assembled nanomaterials. In this work, a facile and general emulsion self-assembly tactic for synthesizing well-defined AIEgen-functionalized OINPs is proposed by coassembling alkane chain-functionalized inorganic nanoparticles with hydrophobic organic AIEgens. As a proof of concept, the self-assembly and structural evolution of plasmonic-fluorescent hybrid nanoparticles (PFNPs) from concentric circle to core shell and then to Janus structures is demonstrated by using alkane chain-modified AuNPs and AIEgens as building blocks. The spatial position of AuNPs in the signal nanocomposite is controlled by varying the alkane ligand length and density on the AuNP surface. The mechanism behind the formation of various PFNP nanostructures is also elucidated through experiments and theoretical simulation. The obtained PFNPs with diverse structures exhibit spatially tunable optical and photothermal properties for advanced applications in multicolor and multimode immunolabeling and photothermal sterilization. This work presents an innovative synthetic approach of constructing AIEgen-functionalized OINPs with diverse structures, compositions, and functionalities, thereby championing the progressive development of these OINPs.

20.
Bioinspir Biomim ; 19(3)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38579734

RESUMEN

Nature is filled with materials that are both strong and light, such as bones, teeth, bamboo, seashells, arthropod exoskeletons, and nut shells. The insights gained from analyzing the changing chemical compositions and structural characteristics, as well as the mechanical properties of these materials, have been applied in developing innovative, durable, and lightweight materials like those used for impact absorption. This research concentrates on the involucres of Job's tears (Coix lacryma-jobivar.lacryma-jobi), which are rich in silica, hard, and serve to encase the seeds. The chemical composition and structural characteristics of involucres were observed using scanning electron microscopy and energy-dispersive x-ray spectroscopy and optical microscopy with safranin staining. The hardness of the outer and inner surfaces of the involucre was measured using the micro-Vickers hardness test, and the Young's modulus of the involucre's cross-section was measured using nanoindentation. Additionally, the breaking behavior of involucres was measured through compression test and three-point bending tests. The results revealed a smooth transition in chemical composition, as well as in the orientation and dimensions of the tissues from the outer to the inner layers of involucres. Furthermore, it was estimated that the spatial gradient of the Young's modulus is due to the gradient of silica deposition. By distributing the hard, brittle silica in the outer layer and elastoplastic organic components in the middle and inner layers, the involucres effectively respond to compressive and tensile stresses that occur when loads are applied to the outside of the involucre. Furthermore, the involucres are reinforced in both meridional and equatorial directions by robust fibrovascular bundles, fibrous bundles, and the inner layer's sclerenchyma fibers. From these factors, it was found that involucres exhibit high toughness against loads from outside, making it less prone to cracking.


Asunto(s)
Artrópodos , Coix , Diente , Animales , Coix/química , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA