Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Biol Pharm Bull ; 46(6): 848-855, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37258151

RESUMEN

A methanol extract of rhizomes of Picrorhiza kurroa Royle ex Benth. (Plantaginaceae) showed hepatoprotective effects against D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced liver injury in mice. We had previously isolated 46 compounds, including several types of iridoid glycosides, phenylethanoid glycosides, and aromatics, etc., from the extract. Among them, picroside II, androsin, and 4-hydroxy-3-methoxyacetophenone exhibited active hepatoprotective effects at doses of 50-100 mg/kg, per os (p.o.) To characterize the mechanisms of action of these isolates and to clarify the structural requirements of phenylethanoid glycosides for their hepatoprotective effects, their effects were assessed in in vitro studies on (i) D-GalN-induced cytotoxicity in mouse primary hepatocytes, (ii) LPS-induced nitric oxide (NO) production in mouse peritoneal macrophages, and (iii) tumor necrosis factor-α (TNF-α)-induced cytotoxicity in L929 cells. These isolates decreased the cytotoxicity caused by D-GalN without inhibiting LPS-induced macrophage activation and also reduced the sensitivity of hepatocytes to TNF-α. In addition, the structural requirements of phenylethanoids for the protective effects of D-GalN-induced cytotoxicity in mouse primary hepatocytes were evaluated.


Asunto(s)
Picrorhiza , Rizoma , Ratones , Animales , Rizoma/química , Picrorhiza/química , Lipopolisacáridos/toxicidad , Factor de Necrosis Tumoral alfa , Glicósidos Iridoides/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/análisis , Galactosamina/toxicidad
2.
Mol Biol Rep ; 49(6): 5567-5576, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35581509

RESUMEN

BACKGROUND: Picrorhiza kurroa has been reported as an age-old ayurvedic hepato-protection to treat hepatic disorders due to the presence of iridoids such as picroside-II (P-II), picroside-I, and kutkoside. The acylation of catalpol and vanilloyl coenzyme A by acyltransferases (ATs) is critical step in P-II biosynthesis. Since accumulation of P-II occurs only in roots, rhizomes and stolons in comparison to leaves uprooting of this critically endangered herb has been the only source of this compound. Recently, we reported that P-II acylation likely happen in roots, while stolons serve as the vital P-II storage compartment. Therefore, developing an alternate engineered platform for P-II biosynthesis require identification of P-II specific AT/s. METHODS AND RESULTS: In that direction, egg-NOG function annotated 815 ATs from de novo RNA sequencing of tissue culture based 'shoots-only' system and nursery grown shoots, roots, and stolons varying in P-II content, were cross-compared in silico to arrive at ATs sequences unique and/or common to stolons and roots. Verification for organ and accession-wise upregulation in gene expression of these ATs by qRT-PCR has shortlisted six putative 'P-II-forming' ATs. Further, six-frame translation, ab initio protein structure modelling and protein-ligand molecular docking of these ATs signified one MBOAT domain containing AT with preferential binding to the vanillic acid CoA thiol ester as well as with P-II, implying that this could be potential AT decorating final structure of P-II. CONCLUSIONS: Organ-wise comparative transcriptome mining coupled with reverse transcription real time qRT-PCR and protein-ligand docking led to the identification of an acyltransferases, contributing to the final structure of P-II.


Asunto(s)
Picrorhiza , Plantas Medicinales , Aciltransferasas/genética , Aciltransferasas/metabolismo , Cinamatos/metabolismo , Glicósidos , Glucósidos Iridoides/metabolismo , Iridoides/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Picrorhiza/genética , Picrorhiza/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo
3.
Immunopharmacol Immunotoxicol ; 44(3): 437-446, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35293848

RESUMEN

CONTEXT: Ulcerative colitis (UC) is a common acute or chronic intestinal disease with an imbalance of inflammation. Picroside II (P-II) exerts a protective role in various inflammation-related diseases. However, the effect of P-II on UC is still unclear. OBJECTIVE: To explore the effect of P-II on UC and its potential mechanism. MATERIALS AND METHODS: Human monocytic leukemia cell line THP-1 was treated with phorbol ester (PMA) to differentiate into a macrophage. The differentiated THP-1 cells were hatched with LPS combined with ATP or Nigericin to activate the NLRP3 inflammasome in vitro. The UC model was constructed by injection of DSS into mice. RESULTS: The maximum nontoxic concentration of P-II on THP-1 cells was 60 µM. LPS combined with ATP or Nigericin stimulated the production of IL-1ß, which was antagonized by P-II treatment. Meanwhile, P-II administration interfered with the aggregation of ASC and the assembly of NLRP3 inflammasomes. Also, P-II treatment reduced the LPS and ATP-induced elevation of the relative protein expression of NLRP3, pro-caspase-1, IL-1ß and p-p65/p65, and the concentration of TNF-α and IL-6. Besides, the NF-κB specific inhibitor BAY-117082 notably repressed the LPS together with ATP-enhanced the relative protein expression of NLRP3, caspase-1 and IL-1ß. Moreover, in vivo results showed that P-II relieved the DDS-induced UC, as evidenced by the improvement of mice weight, DAI and pathological scores. In addition, P-II treatment notably decreased DDS-promoted expression of NLRP3 inflammasomes and inflammatory factors in vivo. CONCLUSION: P-II alleviated DSS-induced UC by repressing the production of NLRP3 inflammasomes via the NF-κB signaling pathway.


Asunto(s)
Colitis Ulcerosa , Inflamasomas , Adenosina Trifosfato , Animales , Caspasa 1/metabolismo , Cinamatos , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Sulfato de Dextran/toxicidad , Inflamasomas/metabolismo , Inflamación/metabolismo , Glucósidos Iridoides , Lipopolisacáridos/farmacología , Ratones , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nigericina/efectos adversos , Transducción de Señal
4.
Toxicol Appl Pharmacol ; 408: 115248, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32976922

RESUMEN

Alpha-naphthylisothiocyanate (ANIT) is a typical hepatotoxicant that causes cholestasis, which causes toxic bile acid accumulation in the liver and leads to liver injury. Picroside II (PIC), one of the dominant effective components extracted from Picrorhiza scrophulariiflora Pennell, exhibits many pharmacological effects. However, the role of AMP-activated protein kinase (AMPK)-Farnesoid X receptor (FXR) pathway in the hepatoprotective effect of PIC against ANIT-induced cholestasis remains largely unknown. This study aimed to investigate the mechanisms of PIC on ANIT-induced cholestasis in vivo and in vitro. Our results showed that PIC protected against ANIT-induced liver injury in primary mouse hepatocytes, and decreased serum biochemical markers and lessened histological injuries in mice. ANIT inhibited FXR and its target genes of bile acid synthesis enzymes sterol-12α-hydroxylase (CYP8B1), and increase bile acid uptake transporter Na + -dependent taurocholate transporter (NTCP), efflux transporter bile salt export pump (BSEP) and bile acid metabolizing enzymes UDP-glucuronosyltransferase 1a1 (UGT1A1) expressions. PIC prevented its downregulation of FXR, NTCP, BSEP and UGT1A1, and further reduced CYP8B1 by ANIT. Furthermore, ANIT activated AMPK via ERK1/2-LKB1 pathway. PIC inhibited ERK1/2, LKB1 and AMPK phosphorylation in ANIT-induced cholestasis in vivo and in vitro. AICAR, an AMPK agonist, blocked PIC-mediated changes in FXR, CYP8B1 and BSEP expression in vitro. Meanwhile, U0126, an ERK1/2 inhibitor, further repressed ERK1/2-LKB1-AMPK pathway phosphorylation. In conclusion, PIC regulated bile acid-related transporters and enzymes to protect against ANIT-induced liver injury, which related to ERK1/2-LKB1-AMPK pathway. Thus, this study extends the understanding of the anti-cholestasis effect of PIC and provides new therapeutic targets for cholestasis treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Colestasis/tratamiento farmacológico , Cinamatos/uso terapéutico , Glucósidos Iridoides/uso terapéutico , Sustancias Protectoras/uso terapéutico , Receptores Citoplasmáticos y Nucleares/metabolismo , 1-Naftilisotiocianato , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colestasis/inducido químicamente , Colestasis/metabolismo , Cinamatos/farmacología , Hepatocitos , Glucósidos Iridoides/farmacología , Masculino , Ratones Endogámicos C57BL , Sustancias Protectoras/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal/efectos de los fármacos
5.
Pharmacol Res ; 159: 104795, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32278035

RESUMEN

Cerebral ischemia reperfusion injury (CIRI), one of the major causes of death from stroke in the world, not only causes tremendous damage to human health, but also brings heavy economic burden to society. Current available treatments for CIRI, including mechanical therapies and drug therapies, are often accompanied by significant side-effects. Therefore, it is necessary to discovery new strategies for treating CIRI. Many studies have confirmed that the herbal medicine has the advantages of abundant resources, good curative effect and little side effects, which can be used as potential drug for treatment of CIRI through multiple targets. It's known that oral administration commonly has low bioavailability, and injection administration is inconvenient and unsafe. Many drugs can't delivery to brain through routine pathways due to the blood-brain-barrier (BBB). Interestingly, increasing evidences have suggested the nasal administration is a potential direct route to transport drug into brain avoiding the BBB and has the characteristics of high bioavailability for treating brain diseases. Therefore, intranasal administration can be treated as an alternative way to treat brain diseases. In the present review, effective methods to treat CIRI by using active ingredients derived from herbal medicine through nose to brain drug delivery (NBDD) are updated and discussed, and some related pharmacological mechanisms have also been emphasized. Our present study would be beneficial for the further drug development of natural agents from herbal medicines via NBDD.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Mucosa Nasal/metabolismo , Preparaciones de Plantas/administración & dosificación , Daño por Reperfusión/tratamiento farmacológico , Administración Intranasal , Animales , Disponibilidad Biológica , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Composición de Medicamentos , Humanos , Preparaciones de Plantas/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Distribución Tisular
6.
J Cell Mol Med ; 23(1): 464-475, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30394648

RESUMEN

Picroside II (P-II), one of the main active components of scrophularia extract, which have anti-oxidative, anti-inflammatory effects, but its effect on hyperhomocysteinemia (HHcy) induced endothelial injury remains to be determined. Here, we test whether P-II protects HHcy-induced endothelial dysfunction against oxidative stress, inflammation and cell apoptosis. In vitro study using HUVECs, and in hyperhomocysteinemia mouse models, we found that HHcy decreased endothelial SIRT1 expression and increased LOX-1 expression, subsequently causing reactive oxygen species generation, up-regulation of NADPH oxidase activity and NF-κB activation, thereby promoting pro-inflammatory response and cell apoptosis. Blockade of Sirt1 with Ex527 or siRNASIRT1 increased LOX-1 expression, whereas overexpression of SIRT1 decreased LOX-1 expression markedly. P-II treatment significantly increased SIRT1 expression and reduced LOX-1 expression, and protected against endothelial cells from Hcy-induced oxidative injury, inflammation and apoptosis. However, blockade of SIRT1 or overexpression of LOX-1 attenuated the therapeutic effects of P-II. In conclusion, our results suggest that P-II prevents the Hcy induced endothelial damage probably through regulating the SIRT1/LOX-1 signaling pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Cinamatos/farmacología , Endotelio/efectos de los fármacos , Hiperhomocisteinemia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Glucósidos Iridoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Línea Celular , Endotelio/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hiperhomocisteinemia/metabolismo , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
7.
Molecules ; 24(10)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31137813

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a major inflammatory lung disease characterized by irreversible and progressive airflow obstruction. Although corticosteroids are often used to reduce inflammation, steroid therapies are insufficient in patients with refractory COPD. Both serum amyloid A (SAA) and IL-33 have been implicated in the pathology of steroid-resistant lung inflammation. Picroside II isolated from Pseudolysimachion rotundum var. subintegrum (Plantaginaceae) is a major bioactive component of YPL-001, which has completed phase-2a clinical trials in chronic obstructive pulmonary disease patients. In this study, we investigated whether picroside II is effective in treating steroid refractory lung inflammation via the inhibition of the SAA-IL-33 axis. Picroside II inhibited LPS-induced SAA1 expression in human monocytes, which are resistant to steroids. SAA induced the secretion of IL-33 without involving cell necrosis. Picroside II, but not dexamethasone effectively inhibited SAA-induced IL-33 expression and secretion. The inhibitory effect by picroside II was mediated by suppressing the mitogen-activated protein kinase (MAPK) p38, ERK1/2, and nuclear factor-κB pathways. Our results suggest that picroside II negatively modulates the SAA-IL-33 axis that has been implicated in steroid-resistant lung inflammation. These findings provide valuable information for the development of picroside II as an alternative therapeutic agent against steroid refractory lung inflammation in COPD.


Asunto(s)
Cinamatos/aislamiento & purificación , Cinamatos/farmacología , Glucocorticoides/farmacología , Interleucina-33/metabolismo , Glucósidos Iridoides/aislamiento & purificación , Glucósidos Iridoides/farmacología , Plantaginaceae/química , Proteína Amiloide A Sérica/metabolismo , Cinamatos/química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Humanos , Glucósidos Iridoides/química , Lipopolisacáridos/farmacología , Pulmón/citología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , FN-kappa B/metabolismo , Células THP-1 , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Transcripción Genética/efectos de los fármacos
8.
Neurochem Res ; 43(5): 1058-1066, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29671236

RESUMEN

Reactive astrocyte-mediated neuroinflammatory responses in the spinal dorsal horn have been reported to play a pivotal role in pathological pain. Chronic constriction injury (CCI) enhances the activation of nuclear factor kappa B (NF-κB), which is involved in neuropathic pain (NP). Picroside II (PII), a major active component of Picrorhiza scrophulariiflora, has been investigated for its anti-oxidative, anti-inflammatory, and anti-apoptotic activities. Here, we explored the analgesic effects of PII on a model of CCI-induced NP and investigated the levels of the GFAP protein and the mRNA and protein levels of pro-inflammatory cytokines in the spinal cord, including interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). CCI significantly induced mechanical allodynia and thermal hyperalgesia. Intraperitoneal administration of PII remarkably reversed the CCI-induced mechanical allodynia and thermal hyperalgesia and reduced the mRNA and protein levels of IL-1ß, IL-6, and TNF-α in the spinal cord. Additionally, according to the in vitro data, the PII treatment inhibited LPS-induced increases in the mRNA and protein levels of IL-1ß, IL-6, and TNF-α and suppressed the NF-κB pathway by inhibiting the phosphorylation of NF-κB/p65 and the degradation of inhibitor of NF-κB (IκB) in astrocytes without toxicity to astrocytes. Overall, the analgesic effect of PII correlated with the inhibition of spinal reactive astrocyte-mediated neuroinflammation through the NF-κB pathway in rats with NP.


Asunto(s)
Analgésicos/uso terapéutico , Astrocitos/efectos de los fármacos , Cinamatos/uso terapéutico , Glucósidos Iridoides/uso terapéutico , FN-kappa B/efectos de los fármacos , Neuralgia/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Astrocitos/patología , Células Cultivadas , Constricción Patológica/complicaciones , Citocinas/metabolismo , Proteína Ácida Fibrilar de la Glía/biosíntesis , Proteína Ácida Fibrilar de la Glía/genética , Hiperalgesia/tratamiento farmacológico , Inflamación/patología , Inflamación/prevención & control , Masculino , Neuralgia/etiología , Neuralgia/patología , Ratas , Ratas Sprague-Dawley , Médula Espinal/patología
9.
J Cell Biochem ; 118(12): 4479-4486, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28464271

RESUMEN

Picroside II, one of the major components isolated from the seed of natural plant picrorhiza, is widely used in traditional Chinese medicine. The present study was performed to define effects of picroside II on nuclear factor-kappaB ligand (RANKL)-stimulated osteoclast differentiation in vitro and on lipopolysaccharide (LPS)-induced bone loss in vivo. The bone marrow cells (BMMs) were harvested and induced with RANKL followed by treatment with picroside II at several doses, and the differentiation of osteoclasts from these cells was evaluated by tartrate-resistant acid phosphatase (TRAP) staining and resorption pit formation assay. The effects of picroside II on osteoclastogenesis were studied by examining RANKL-induced osteoclast F-actin ring formation and osteoclast bone resorption. Moreover, we explored the mechanisms of these downregulation effects by performed Western blotting and quantitative RT-PCR examination. Results demonstrated picroside II strongly inhibited RANKL-induced osteoclast formation when added during the early stage of BMMs cultures, suggesting that it acts on osteoclast precursors to inhibit RANKL/RANK signaling. Moreover, picroside II markedly decreased the phosphorylation of p38, ERK, JNK, p65, and I-κB degradation, and significantly suppressed c-Fos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), both the key transcription factors during osteoclastogenesis. Furthermore, in vivo studies verified the bone protection effects of picroside II. These results collectively suggested that picroside II acted as an anti-resorption agent by blocking osteoclast activation. J. Cell. Biochem. 118: 4479-4486, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Cinamatos/farmacología , Glucósidos Iridoides/farmacología , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Osteoclastos/metabolismo , Osteólisis , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Animales , Ratones , Osteoclastos/patología , Osteólisis/inducido químicamente , Osteólisis/metabolismo , Osteólisis/patología , Osteólisis/prevención & control
10.
Clin Exp Pharmacol Physiol ; 42(9): 930-939, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26175147

RESUMEN

In the study, the neuroprotective effect and underlying mechanism of picroside II were explored, and its involvement in the ERK1/2 signal pathway after cerebral ischemia injury in rats. A monofilament thread was inserted to generate middle cerebral artery occlusion (MCAO) in 100 Wistar rats that were administered an intraperitoneal injection of picroside II (20 mg/kg). The neurobehavioural function of rats was evaluated using a modified neurological severity score (mNSS) test. The cerebral infarct volume (CIV) was measured using tetrazolium chloride (TTC) staining. The morphology and ultra-structure of the nerve cells in the cortex were observed using hematoxylin and eosin (HE) staining and transmission electron microscopy (TEM), respectively. The apoptotic cells were counted using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The expression of extracellular signal-regulated kinase 1/2 (pERK1/2) in the cortex was determined using immunohistochemistry and Western blot analysis. Neurological dysfunction was observed in all rats with MCAO. In both the model and lipopolysaccharide (LPS) groups, the CIV increased, the neuronal damage in the cortex was more severe, and the number of apoptotic cells and the pERK1/2 expression significantly increased compared with the control group (P < 0.05). In treatment and U0126 groups, the neurological function was improved, the CIV decreased, the neuronal damage in the cortex was attenuated, and the number of apoptotic cells and the pERK1/2 expression significantly decreased compared with the model group (P < 0.05). No significant differences in these indices were observed between model and LPS groups or treatment and U0126 groups (P > 0.05). The results suggest that activation of ERK1/2 in cerebral ischaemia induces neuronal apoptosis and picroside II may reduce neuronal apoptosis to confer protection against cerebral ischemic injury by inhibiting ERK1/2 activation.

11.
Ren Fail ; 36(9): 1443-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25246345

RESUMEN

In kidney transplantation, renal ischemia and reperfusion injury was one of the leading factors to the development of renal fibrosis, which was the main cause of graft loss. The fibrogenic changes were associated with the long term inflammation elicited by ischemia and reperfusion injury. In the present study, we investigated the role of the Picroside II, the main active constituents of the extract of picrorrhiza scrophulariiflora roots, in attenuating renal fibrosis in a renal ischemia and reperfusion injury model. We induced ischemia and reperfusion injury in kidneys treated with or without Picroside II. We observed that inflammation and tissue fibrosis were increased in ischemia and reperfusion injury group compared to Picroside II group, however, these changes were significantly decreased by the treatment with Picroside II. We concluded that Picroside II can protect the ischemic kidney against renal fibrosis and its mechanism may be through the inhibition of the long term inflammation.


Asunto(s)
Cinamatos/farmacología , Glucósidos Iridoides/farmacología , Nefroesclerosis/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Actinas/metabolismo , Animales , Western Blotting , Modelos Animales de Enfermedad , Inmunohistoquímica , Masculino , Nefroesclerosis/etiología , Nefroesclerosis/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Daño por Reperfusión/complicaciones , Daño por Reperfusión/metabolismo
12.
Vet Microbiol ; 296: 110191, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032445

RESUMEN

Infectious bursal disease virus (IBDV) is a highly contagious virus with a dsRNA genome, predominantly infecting chickens and causing significant economic losses due to high mortality rates. The emergence of recombinant, novel variant, and highly virulent strains that evade current vaccines has led to frequent epidemics and outbreaks in the poultry industry. The lack of targeted antivirals for IBDV underscores the pressing requirement to develop potent therapeutic options. Within this framework, our research investigated the effectiveness of picroside II, a naturally derived iridoid glycoside, against viruses in DF-1 cells. Our findings demonstrate that picroside II significantly inhibits viral replication, with its efficacy increasing proportionally to the dosage administered. Through time-addition and antiviral duration analysis, we determined that picroside II therapeutically blocks IBDV replication, with its effects persisting for over 72 hours. Further investigation revealed that picroside II specifically inhibits the cellular replication stage of IBDV's lifecycle. Additionally, our findings indicate that picroside II impairs VP1 polymerase activity by binding to the active pocket, which significantly disrupts the interaction between VP1 and VP3. Mutations at three critical binding sites on VP1 not only impair virus replication but also hinder polymerase function and disrupt VP1-VP3 interactions. Collectively, these results demonstrate that picroside II, by inhibiting viral polymerase activity, represents a promising antiviral agent against IBDV.

13.
Toxicol Res (Camb) ; 13(3): tfae073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38765240

RESUMEN

Background: Picroside II (PII), an iridoid glycoside extracted from the rhizomes and stems of the genus Picroside, exhibits pronounced hepatoprotective properties. Pre-administration of PII protects against acute liver injury caused by D-galactosamine (D-Gal), carbon tetrachloride (CCl4), and acetaminophen (APAP). This study aimed to elucidate the ramifications of PII administration subsequent to the initiation of acute hepatic injury. Methods: Exploring the role of PII treatment in APAP-treated cell and rat models and in D-Gal and CCl4-treated rat models. Results: In rats, APAP treatment increased serum aspartate transaminase, alanine transaminase, and alkaline phosphatase levels and decreased glutathione activity and the fluidity of the liver mitochondrial membrane. In L-02 cells, APAP exposure resulted in a decrement in membrane potential, an augmentation in the liberation of reactive oxygen species, and an acceleration of apoptotic processes. Moreover, PII pre-administration protected against D-Gal-induced acute hepatic injury and CCl4-induced chronic hepatic injury in rodent models, whereas PII administration post-injury aggravated CCl4-induced chronic hepatic injury. Conclusions: Our results suggest that the effects of PII depend on the hepatic physiological or pathological state at the time of intervention. While PII possesses the potential to avert drug-induced acute hepatic injury through the mitigation of oxidative stress, its administration post-injury may exacerbate the hepatic damage, underscoring the critical importance of timing in therapeutic interventions.

14.
Chin J Nat Med ; 22(7): 582-598, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39059828

RESUMEN

Liver fibrosis is characterized by chronic inflammatory responses and progressive fibrous scar formation. Macrophages play a central role in the pathogenesis of hepatic fibrosis by reconstructing the immune microenvironment. Picroside II (PIC II), extracted from Picrorhizae Rhizoma, has demonstrated therapeutic potential for various liver damage. However, the mechanisms by which macrophage polarization initiates immune cascades and contributes to the development of liver fibrosis, and whether this process can be influenced by PIC II, remain unclear. In the current study, RNA sequencing and multiple molecular approaches were utilized to explore the underlying mechanisms of PIC II against liver fibrosis in multidrug-resistance protein 2 knockout (Mdr2-/-) mice. Our findings indicate that PIC II activates M1-polarized macrophages to recruit natural killer cells (NK cells), potentially via the CXCL16-CXCR6 axis. Additionally, PIC II promotes the apoptosis of activated hepatic stellate cells (aHSCs) and enhances the cytotoxic effects of NK cells, while also reducing the formation of neutrophil extracellular traps (NETs). Notably, the anti-hepatic fibrosis effects associated with PIC II were largely reversed by macrophage depletion in Mdr2-/- mice. Collectively, our research suggests that PIC II is a potential candidate for halting the progression of liver fibrosis.


Asunto(s)
Apoptosis , Cinamatos , Células Estrelladas Hepáticas , Glucósidos Iridoides , Cirrosis Hepática , Macrófagos , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Miembro 4 de la Subfamilia B de Casete de Unión a ATP/genética , Cinamatos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Glucósidos Iridoides/farmacología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Cirrosis Hepática/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados
15.
Protoplasma ; 260(2): 453-466, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35767110

RESUMEN

Picrorhiza kurroa Royle ex Benth is a valuable medicinal herb of North-Western Himalayas due to presence of two major bioactive compounds, picroside-I and picroside-II used in the preparation of several hepatoprotective herbal drugs. These compounds accumulate in stolons/rhizomes; however, biosynthesized in different organs, viz., picroside-I in shoots and picroside-II in roots. As of today, no information exists on what transporters are transporting these metabolites from shoots and roots to the final storage organ, stolon, which ultimately transforms into rhizome. The ATP-binding cassette (ABC) transporters are reported to transport majority of secondary metabolites, including terpenoids in plants, therefore, we mined P. kurroa transcriptomes to identify and shortlist potential candidates. A total of 99 ABC transporter-encoding transcripts were identified in 3 differential transcriptomes, PKSS (shoots), PKSTS (stolons), and PKSR (roots) of P. kurroa, based on in silico comparative analysis and transcript abundance. 15 of these transcripts were further validated for their association using qRT-PCR in shoots, roots and stolon tissues in P. kurroa accessions varying for picroside-I and picroside-II contents. Organ-specific expression analysis revealed that PkABCA1, PkABCG1, and PkABCB5 had comparatively elevated expression in shoots; PkABCB2 and PkABCC2 in roots; PkABCB3 and PkABCC1 in stolon tissues of P. kurroa. Co-expression network analysis using ABC genes as hubs further unravelled important interactions with additional components of biosynthetic machinery. Our study has provided leads, first to our knowledge as of today, on putative ABC transporters possibly involved in long distance and local transport of picrosides in P. kurroa organs, thus opening avenues for designing a suitable genetic intervention strategy.


Asunto(s)
Picrorhiza , Plantas Medicinales , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Transcriptoma/genética , Picrorhiza/genética , Picrorhiza/química , Picrorhiza/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Perfilación de la Expresión Génica
16.
J Ethnopharmacol ; 314: 116582, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37192720

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Picrorhiza scrophulariiflora Pennell, a well-known Chinese herb, has been traditionally utilized as an antioxidant and anti-inflammatory agent. One of its main bioactive components is Picroside II, a glycoside derivative. However, there is limited information on the effects of Picroside II on the activity of cytochrome P450 (CYP) enzymes nor on potential herb-drug interactions are rarely studied. AIM OF THE STUDY: The purpose of the study was to investigate the effects of Picroside II on the activity of cytochrome P450 enzymes in vitro and in vivo and its potential herb-drug interactions. MATERIALS AND METHODS: Specific probe substrates were employed to assess the effect of Picroside II on the activity of P450 enzymes. The inhibitory effects of Picroside II on CYP enzymes were assayed both in human (i.e., 1A, 2C9, 2C19, 2D6, 2E1, and 3A) and rat (i.e., 1A, 2C6/11, 2D1, 2E1, and 3A) liver microsomes in vitro. The inductive effects were investigated in rats following oral gavage of 2.5 mg/kg and 10 mg/kg Picroside II. A specific Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS) method was developed to determine the formation of specific metabolites. RESULTS: Enzyme inhibition results showed that Picroside II (0.5-200 µM) had no evident inhibitory effects on rat and human liver microsomes in vitro. Interestingly, the administration of multiple doses of 10 mg/kg Picroside II inhibited the activity of CYP2C6/11 by reducing the rate of formation of 4-hydroxydiclofenac and 4-hydroxymephenytoin, while Picroside II at 2.5 mg/kg increased the activity of CYP3A by promoting the formation of 1-hydroxymidazolam and 6-hydroxychlorzoxazone in rats. In addition, there were negligible effects on CYP1A, CYP2D1, and CYP2E1 in rats. CONCLUSIONS: The results indicated that Picroside II modulated the activities of CYP enzymes and was involved in CYP2C and CYP3A medicated herb-drug interactions. Therefore, careful monitoring is necessary when Picroside II is used in combination with related conventional drugs.


Asunto(s)
Citocromo P-450 CYP3A , Inhibidores Enzimáticos del Citocromo P-450 , Ratas , Humanos , Animales , Citocromo P-450 CYP3A/metabolismo , Cromatografía Liquida , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Espectrometría de Masas en Tándem/métodos , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo
17.
Int J Mol Sci ; 13(3): 2551-2562, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22489110

RESUMEN

The aim of this study was to explore the optimal therapeutic dose and time window of picroside II for treating cerebral ischemic injury in rats according to the orthogonal test. The middle cerebral artery occlusion (MCAO) models were established by intraluminally inserting a thread into middle cerebral artery (MCA) from left external carotid artery (ECA). The successful rat models were randomly divided into 16 groups according to the orthogonal layout of [L(16)(4(5))] and treated by injecting picroside II intraperitoneally with different doses at various times. The neurological behavioral function was evaluated by Bederson's test and the cerebral infarction volume was measured by tetrazolium chloride (TTC) staining. The expressions of neuron specific enolase (NSE) and neuroglial mark-protein S-100 were determined by immunohistochemisty assay. The results indicated that the optimal compositions of the therapeutic dose and time window of picroside II in treating cerebral ischemic injury were ischemia 1.5 h with 20 mg/kg body weight according to Bederson's test, 1.0 h with 20 mg/kg body weight according to cerebral infarction volume, 1.5 h with 20 mg/kg body weight according to the expressions of NSE and S-100 respectively. Based on the principle of the minimization of medication dose and maximization of therapeutic time window, the optimal composition of the therapeutic dose and time window of picroside II in treating cerebral ischemic injury should be achieved by injecting picroside II intraperitoneally with 20 mg/kg body weight at ischemia 1.5 h.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Cinamatos/administración & dosificación , Cinamatos/uso terapéutico , Glucósidos Iridoides/administración & dosificación , Glucósidos Iridoides/uso terapéutico , Análisis de Varianza , Animales , Isquemia Encefálica/fisiopatología , Relación Dosis-Respuesta a Droga , Masculino , Fosfopiruvato Hidratasa/metabolismo , Ratas Wistar , Proteínas S100/metabolismo , Factores de Tiempo
18.
J Ayurveda Integr Med ; 12(3): 465-473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34353693

RESUMEN

BACKGROUND: Accumulation of free fatty acids (FFAs) in hepatocytes is a hallmark of liver dysfunction and non-alcoholic fatty liver disease (NAFLD). Excessive deposition of FFAs alters lipid metabolism pathways increasing the oxidative stress and mitochondrial dysfunction. Attenuating hepatic lipid accumulation, oxidative stress, and improving mitochondrial function could provide potential targets in preventing progression of non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). Earlier studies with Picrorhiza kurroa extract have shown reduction in hepatic damage and fatty acid infiltration in several experimental models and also clinically in viral hepatitis. Thus, the effect of P. kurroa's phytoactive, picroside II, needed mechanistic investigation in appropriate in vitro liver cell model. OBJECTIVE(S): To study the effect of picroside II on FFAs accumulation, oxidative stress and mitochondrial function with silibinin as a positive control in in vitro NAFLD model. MATERIALS AND METHODS: HepG2 cells were incubated with FFAs-1000µM in presence and absence of Picroside II-10 µM for 20 hours. RESULTS: HepG2 cells incubated with FFAs-1000µM lead to increased lipid accumulation. Picroside II-10µM attenuated FFAs-induced lipid accumulation (33%), loss of mitochondrial membrane potential (ΔΨm), ATP depletion, and production of reactive oxygen species (ROS). A concomitant increase in cytochrome C at transcription and protein levels was observed. An increase in expression of MnSOD, catalase, and higher levels of tGSH and GSH:GSSG ratios underlie the ROS salvaging activity of picroside II. CONCLUSION: Picroside II significantly attenuated FFAs-induced-lipotoxicity. The reduction in ROS, increased antioxidant enzymes, and improvement in mitochondrial function underlie the mechanisms of action of picroside II. These findings suggest a need to develop an investigational drug profile of picroside II for NAFLD as a therapeutic strategy. This could be evaluated through the fast-track path of reverse pharmacology.

19.
Mini Rev Med Chem ; 21(19): 2976-2995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33797375

RESUMEN

Picrorhiza kurroa Royle ex Benth. (Family: Plantaginaceae) is a well-recognized Ayurvedic herb. It is commonly called "Kutki" or "Kurro" and 'Indian gentian'. Iridoid glycosides are the plant's bioactive constituents accountable for the bitter taste and medicinal properties of the plant. The iridoid glycosides such as picrosides and other active metabolites of the plant exhibit many pharmacological activities like hepatoprotective, antioxidant, anti-inflammatory, anticancer, immunomodulator, anti-ulcerative colitis, antimicrobial, etc. This review aims to provide updated information on the ethnobotany, synthetic phytochemistry, pharmacological potential, safety and toxicology of P. kurroa and its active metabolites. Indiscriminate exploitation, ecological destruction of natural habitats, slower plant growth and unawareness regarding cultivation and uprooting of plants have brought kutki an endangered status. Therefore, various techniques used for the conservation and production of bioactive metabolites from P. kurroa have also been reported. Information on the plant has been collected from Science Direct, Google Scholar, PubMed, Scopus using 'Picrorhiza kurroa', 'Picroside-', 'Picroside-II', 'Picroliv', 'Immunomodulator' keywords. All studies on ethnobotany, phytochemistry and pharmacology of plant from 2010- 2020 were comprised in this review article. The possible directions for future research have also been outlined briefly in this review article.


Asunto(s)
Picrorhiza , Antioxidantes/metabolismo , Antioxidantes/farmacología , Etnobotánica , Picrorhiza/química , Picrorhiza/metabolismo , Extractos Vegetales/química
20.
Int J Mol Sci ; 11(11): 4580-90, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21151457

RESUMEN

The aim of this study was to explore the effect of picroside II on neuronal apoptosis and the expression of caspase-3 and poly ADP-ribose polymerase (PARP) following middle cerebral artery occlusion/reperfusion in male Wistar rats. Picroside II (10 mg/kg) was administered intravenously into the tail vein of the animals. The neurological function deficits were evaluated with the Bederson's test and the cerebral infarction volume was visualized with tetrazolium chloride (TTC) staining. The apoptotic cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry stain and enzyme linked immunosorbent assay (ELISA) was used to determine the expressions of caspase-3 and PARP in brain tissue. The results indicated that rats in the control group showed neurological function deficit and cerebral infarction in ischemic hemisphere after two hours ischemia followed by 22 hours reperfusion. Caspase-3 and PARP expressions were also profound in the cortex, the striatum and the hippocampus, along with increased apoptotic cells in this group. Bederson's score, infarction volume, and expressions of caspase-3 and PARP, as well as apoptosis in the treatment group were, however, significantly decreased compared to those in the control group indicating that intravenous treatment with picroside II might be beneficial to inhibit neuronal apoptosis and, thus, to improve the neurological function of rats upon cerebral ischemia reperfusion injury.


Asunto(s)
Cinamatos/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Glucósidos Iridoides/farmacología , Fármacos Neuroprotectores/farmacología , Daño por Reperfusión/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Cinamatos/uso terapéutico , Infarto de la Arteria Cerebral Media/patología , Glucósidos Iridoides/uso terapéutico , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Ratas , Ratas Wistar , Daño por Reperfusión/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA