Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 103, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088119

RESUMEN

Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.


Asunto(s)
Bacterias , Hongos , Microbiota , Phoeniceae , Microbiología del Suelo , Phoeniceae/microbiología , Phoeniceae/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/fisiología , Genotipo , Raíces de Plantas/microbiología , Suelo/química
2.
Ecotoxicol Environ Saf ; 278: 116431, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38718730

RESUMEN

The issue of mercury (Hg) toxicity has recently been identified as a significant environmental concern, with the potential to impede plant growth in forested and agricultural areas. Conversely, recent reports have indicated that Fe, may play a role in alleviating HM toxicity in plants. Therefore, this study's objective is to examine the potential of iron nanoparticles (Fe NPs) and various sources of Fe, particularly iron sulfate (Fe SO4 or Fe S) and iron-ethylene diamine tetra acetic acid (Fe - EDTA or Fe C), either individually or in combination, to mitigate the toxic effects of Hg on Pleioblastus pygmaeus. Involved mechanisms in the reduction of Hg toxicity in one-year bamboo species by Fe NPs, and by various Fe sources were introduced by a controlled greenhouse experiment. While 80 mg/L Hg significantly reduced plant growth and biomass (shoot dry weight (36%), root dry weight (31%), and shoot length (31%) and plant tolerance (34%) in comparison with control treatments, 60 mg/L Fe NPs and conventional sources of Fe increased proline accumulation (32%), antioxidant metabolism (21%), polyamines (114%), photosynthetic pigments (59%), as well as root dry weight (25%), and shoot dry weight (22%), and shoot length (22%). Fe NPs, Fe S, and Fe C in plant systems substantially enhanced tolerance to Hg toxicity (23%). This improvement was attributed to increased leaf-relative water content (39%), enhanced nutrient availability (50%), improved antioxidant capacity (34%), and reduced Hg translocation (6%) and accumulation (31%) in plant organs. Applying Fe NPs alone or in conjunction with a mixture of Fe C and Fe S can most efficiently improve bamboo plants' tolerance to Hg toxicity. The highest efficiency in increasing biochemical and physiological indexes under Hg, was related to the treatments of Fe NPs as well as Fe NPs + FeS + FeC. Thus, Fe NPs and other Fe sources might be effective options to remove toxicity from plants and soil. The future perspective may help establish mechanisms to regulate environmental toxicity and human health progressions.


Asunto(s)
Hierro , Mercurio , Nanopartículas del Metal , Contaminantes del Suelo , Suelo , Mercurio/toxicidad , Contaminantes del Suelo/toxicidad , Nanopartículas del Metal/toxicidad , Suelo/química , Ácido Edético/química , Poaceae/efectos de los fármacos , Poaceae/crecimiento & desarrollo , Restauración y Remediación Ambiental/métodos , Nutrientes , Antioxidantes/metabolismo
3.
J Environ Manage ; 355: 120448, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422850

RESUMEN

Salinity stress poses a significant challenge to agriculture, impacting soil health, plant growth and contributing to greenhouse gas (GHG) emissions. In response to these intertwined challenges, the use of biochar and its nanoscale counterpart, nano-biochar, has gained increasing attention. This comprehensive review explores the heterogeneous role of biochar and nano-biochar in enhancing salt resilience in plants and soil while concurrently mitigating GHG emissions. The review discusses the effects of these amendments on soil physicochemical properties, improved water and nutrient uptake, reduced oxidative damage, enhanced growth and the alternation of soil microbial communities, enhance soil fertility and resilience. Furthermore, it examines their impact on plant growth, ion homeostasis, osmotic adjustment and plant stress tolerance, promoting plant development under salinity stress conditions. Emphasis is placed on the potential of biochar and nano-biochar to influence soil microbial activities, leading to altered emissions of GHG emissions, particularly nitrous oxide(N2O) and methane(CH4), contributing to climate change mitigation. The comprehensive synthesis of current research findings in this review provides insights into the multifunctional applications of biochar and nano-biochar, highlighting their potential to address salinity stress in agriculture and their role in sustainable soil and environmental management. Moreover, it identifies areas for further investigation, aiming to enhance our understanding of the intricate interplay between biochar, nano-biochar, soil, plants, and greenhouse gas emissions.


Asunto(s)
Gases de Efecto Invernadero , Resiliencia Psicológica , Gases de Efecto Invernadero/análisis , Suelo/química , Carbón Orgánico/química , Agricultura , Cloruro de Sodio , Metano/análisis , Óxido Nitroso/análisis , Dióxido de Carbono/análisis
4.
Molecules ; 28(12)2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37375248

RESUMEN

Chromium (Cr) can exist in several oxidation states, but the two most stable forms-Cr(III) and Cr(VI)-have completely different biochemical characteristics. The aim of the present study was to evaluate how soil contamination with Cr(III) and Cr(VI) in the presence of Na2EDTA affects Avena sativa L. biomass; assess the remediation capacity of Avena sativa L. based on its tolerance index, translocation factor, and chromium accumulation; and investigate how these chromium species affect the soil enzyme activity and physicochemical properties of soil. This study consisted of a pot experiment divided into two groups: non-amended and amended with Na2EDTA. The Cr(III)- and Cr(VI)-contaminated soil samples were prepared in doses of 0, 5, 10, 20, and 40 mg Cr kg-1 d.m. soil. The negative effect of chromium manifested as a decreased biomass of Avena sativa L. (aboveground parts and roots). Cr(VI) proved to be more toxic than Cr(III). The tolerance indices (TI) showed that Avena sativa L. tolerates Cr(III) contamination better than Cr(VI) contamination. The translocation values for Cr(III) were much lower than for Cr(VI). Avena sativa L. proved to be of little use for the phytoextraction of chromium from soil. Dehydrogenases were the enzymes which were the most sensitive to soil contamination with Cr(III) and Cr(VI). Conversely, the catalase level was observed to be the least sensitive. Na2EDTA exacerbated the negative effects of Cr(III) and Cr(VI) on the growth and development of Avena sativa L. and soil enzyme activity.


Asunto(s)
Avena , Contaminantes del Suelo , Suelo/química , Ácido Edético , Contaminantes del Suelo/análisis , Cromo/química
5.
Plant Mol Biol ; 109(4-5): 639-650, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33063221

RESUMEN

KEY MESSAGE: Interactions among phytohormones are essential for providing tolerance of sorghum plants to aphids. Plant's encounter with insect herbivores trigger defense signaling networks that fine-tune plant resistance to insect pests. Although it is well established that phytohormones contribute to antixenotic- and antibiotic-mediated resistance to insect pests, their role in conditioning plant tolerance, the most durable and promising category of host plant resistance, is largely unknown. Here, we screened a panel of sorghum (Sorghum bicolor) inbred lines to identify and characterize sorghum tolerance to sugarcane aphids (SCA; Melanaphis sacchari Zehntner), a relatively new and devastating pest of sorghum in the United States. Our results suggest that the sorghum genotype SC35, the aphid-tolerant line identified among the sorghum genotypes, displayed minimal plant biomass loss and a robust photosynthetic machinery, despite supporting higher aphid population. Phytohormone analysis revealed significantly higher basal levels of 12-oxo-phytodienoic acid, a precursor in the jasmonic acid biosynthesis pathway, in the sorghum SCA-tolerant SC35 plants. Salicylic acid accumulation appeared as a generalized plant response to aphids in sorghum plants, however, SCA feeding-induced salicylic acid levels were unaltered in the sorghum tolerant genotype. Conversely, basal levels of abscisic acid and aphid feeding-induced cytokinins were accumulated in the SCA-tolerant sorghum genotype. Our findings imply that the aphid-tolerant sorghum genotype tightly controls the relationship among phytohormones, as well as provide significant insights into the underlying mechanisms that contribute to plant tolerance to sap-sucking aphids.


Asunto(s)
Áfidos , Sorghum , Animales , Áfidos/fisiología , Grano Comestible , Herbivoria , Reguladores del Crecimiento de las Plantas , Ácido Salicílico , Sorghum/genética
6.
Plant Cell Environ ; 45(12): 3412-3428, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35982608

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis modulates plant-herbivore interactions. Still, how it shapes the overall plant defence strategy and the mechanisms involved remain unclear. We investigated how AM symbiosis simultaneously modulates plant resistance and tolerance to a shoot herbivore, and explored the underlying mechanisms. Bioassays with Medicago truncatula plants were used to study the effect of the AM fungus Rhizophagus irregularis on plant resistance and tolerance to Spodoptera exigua herbivory. By performing molecular and chemical analyses, we assessed the impact of AM symbiosis on herbivore-triggered phosphate (Pi)- and jasmonate (JA)-related responses. Upon herbivory, AM symbiosis led to an increased leaf Pi content by boosting the mycorrhizal Pi-uptake pathway. This enhanced both plant tolerance and herbivore performance. AM symbiosis counteracted the herbivore-triggered JA burst, reducing plant resistance. To disentangle the role of the mycorrhizal Pi-uptake pathway in the plant's response to herbivory, we used the mutant line ha1-2, impaired in the H+ -ATPase gene HA1, which is essential for Pi-uptake via the mycorrhizal pathway. We found that mycorrhiza-triggered enhancement of herbivore performance was compromised in ha1-2 plants. AM symbiosis thus affects the defence pattern of M. truncatula by altering resistance and tolerance simultaneously. We propose that the mycorrhizal Pi-uptake pathway is involved in the modulation of the plant defence strategy.


Asunto(s)
Medicago truncatula , Micorrizas , Micorrizas/fisiología , Simbiosis/fisiología , Medicago truncatula/metabolismo , Herbivoria , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
7.
J Exp Bot ; 73(14): 4996-5015, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35522985

RESUMEN

While traits of plant resistance to herbivory often change during ontogeny, it is unknown whether the primability of this resistance depends on the plant's developmental stage. Resistance in non-flowering Arabidopsis thaliana against Pieris brassicae larvae is known to be primable by prior egg deposition on leaves. We investigated whether this priming effect is maintained in plants at the flowering stage. Larval performance assays revealed that flowering plants' resistance to herbivory was not primable by egg deposition. Accordingly, transcriptomes of flowering plants showed almost no response to eggs. In contrast, egg deposition on non-flowering plants enhanced the expression of genes induced by subsequent larval feeding. Strikingly, flowering plants showed constitutively high expression levels of these genes. Larvae performed generally worse on flowering than on non-flowering plants, indicating that flowering plants constitutively resist herbivory. Furthermore, we determined the seed weight in regrown plants that had been exposed to eggs and larvae during the non-flowering or flowering stage. Non-flowering plants benefitted from egg priming with a smaller loss in seed yield. The seed yield of flowering plants was unaffected by the treatments, indicating tolerance towards the larvae. Our results show that the primability of anti-herbivore defences in Arabidopsis depends on the plant's developmental stage.


Asunto(s)
Arabidopsis , Mariposas Diurnas , Animales , Arabidopsis/metabolismo , Mariposas Diurnas/fisiología , Herbivoria/fisiología , Larva/fisiología , Oviposición/fisiología , Hojas de la Planta/metabolismo
8.
Mol Biol Rep ; 49(1): 761-772, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34773178

RESUMEN

Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.


Asunto(s)
Grano Comestible/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Salinidad , Tolerancia a la Sal/genética , Ensamble y Desensamble de Cromatina/genética , Metilación de ADN/genética , Código de Histonas/genética , Fenotipo
9.
Plant Cell Rep ; 41(3): 675-698, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33713206

RESUMEN

Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.


Asunto(s)
Biodiversidad , Reguladores del Crecimiento de las Plantas , Etilenos , Respuesta al Choque Térmico , Hormonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico/fisiología , Temperatura
10.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36012598

RESUMEN

The main mechanism of plant tolerance is the avoidance of metal uptake, whereas the main mechanism of hyperaccumulation is the uptake and neutralization of metals through specific plant processes. These include the formation of symbioses with rhizosphere microorganisms, the secretion of substances into the soil and metal immobilization, cell wall modification, changes in the expression of genes encoding heavy metal transporters, heavy metal ion chelation, and sequestration, and regenerative heat-shock protein production. The aim of this work was to review the natural plant mechanisms that contribute towards increased heavy metal accumulation and tolerance, as well as a review of the hyperaccumulator phytoremediation capacity. Phytoremediation is a strategy for purifying heavy-metal-contaminated soils using higher plants species as hyperaccumulators.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Quelantes/metabolismo , Metales Pesados/metabolismo , Plantas/genética , Plantas/metabolismo , Suelo , Contaminantes del Suelo/metabolismo
11.
Oecologia ; 195(4): 971-982, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33791860

RESUMEN

Pre-dispersal seed predation diminishes fitness and population growth rate of many plant species. Therefore, plants have developed multiple strategies to reduce the harmful effects of this type of herbivory. The present study aims to determine the effect of pre-dispersal seed predators (PSPs) on the fitness of a short-lived herb, and to discern the mechanisms allowing the plants to reduce the impact of pre-dispersal seed predation. Knowing that the interplay between pre-dispersal seed predators and plants is strongly shaped by the presence of other co-occurring organisms, we tested whether detritivores modulate plant responses towards pre-dispersal seed predators. To do so, we experimentally manipulated in the field pre-dispersal seed predators and detritivores interacting with the short-lived herb Moricandia moricandioides. We found that detritivores did not alter the response of plants to PSPs. Strikingly, the plant overcompensated for pre-dispersal seed predation, almost doubling the number of seeds produced. Plant response to PSPs led to substantial changes in shoot architecture, reproductive traits, chemical defences in leaves and seeds and in seed nutrient content. The overcompensating mechanism seems to be meristem activation, which allowed plants to produce more reproductive tissue, and increasing the proportion of ovules that became seeds, a response which specifically compensates for pre-dispersal seed predation. As far as we know, this is the first experimental evidence of a positive effect of PSPs on plant lifetime fitness as a consequence of plant overcompensation.


Asunto(s)
Brassicaceae , Dispersión de Semillas , Animales , Herbivoria , Conducta Predatoria , Reproducción , Semillas
12.
Phytopathology ; 110(3): 574-581, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31725349

RESUMEN

Clavibacter michiganensis is the Gram-positive causal agent of bacterial canker of tomato, an economically devastating disease with a worldwide distribution. C. michiganensis colonizes the xylem, leading to unilateral wilt, stem canker, and plant death. C. michiganensis can also infect developing tomato fruit through splash dispersal, forming exterior bird's eye lesions. There are no documented sources of qualitative resistance in Solanum spp.; however, quantitative trait loci conferring tolerance in Solanum arcanum and Solanum habrochaites have been identified. Mechanisms of tolerance and C. michiganensis colonization patterns in wild tomato species remain poorly understood. This study describes differences in symptom development and colonization patterns of the wild type (WT) and a hypervirulent bacterial expansin knockout (ΔCmEXLX2) in wild and cultivated tomato genotypes. Overall, WT and ΔCmEXLX2 cause less severe symptoms in wild tomato species and are impeded in spread and colonization of the vascular system. Laser scanning confocal microscopy and scanning electron microscopy were used to observe preferential colonization of protoxylem vessels and reduced intravascular spread in wild tomatoes. Differences in C. michiganensis in vitro growth and aggregation were determined in xylem sap, which may suggest that responses to pathogen colonization are occurring, leading to reduced colonization density in wild tomato species. Finally, wild tomato fruit was determined to be susceptible to C. michiganensis through in vivo inoculations and assessing lesion numbers and size. Fruit symptom severity was in some cases unrelated to severity of symptoms during vascular infection, suggesting different mechanisms for colonization of different tissues.


Asunto(s)
Actinomycetales , Infecciones , Solanum lycopersicum , Solanum , Actinobacteria , Clavibacter , Humanos , Enfermedades de las Plantas
13.
Int J Phytoremediation ; 22(1): 69-77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31342787

RESUMEN

The 2,4-D (2,4-dichlorophenoxyacetic acid) has low half-life in the soil, but it is capable of altering the soil microbial community. The objective of this study was to evaluate the influence of 2,4-D residues on the structure of the soil microbial community and the growth of tree species. The tolerance and phytoremediation potential of tree species were evaluated. The microbial analysis was performed by T-RFLP. The 2,4-D herbicide reduced the plant height of K. lathrophyton, number of leaves of C. ferrea and K. lathrophyton and root dry matter allocation for C. brasiliense, I. striata, P. heptaphyllum, and T. guianensis. Cucumis sativus intoxication on soil contaminated with 2,4-D was not significant. The structure of Fungi community in the rhizospheric soils of C. ferrea was altered. The herbicide 2,4-D increased the diversity of Fungi in rhizospheric soils of P. heptahyllum and R. grandis. Most tree species were tolerant, and the evaluation time was sufficient to remedy 2,4-D. The structures of the microbial communities Archaea, Bacteria, and Fungi were little influenced by 2,4-D. The diversity of the Archaea domain was not affected, the diversity of the Bacteria in Inga striata decreased while the fungi increased in Protium heptaphyllum and Richeria grandis with 2,4-D.


Asunto(s)
Microbiota , Suelo , Ácido 2,4-Diclorofenoxiacético , Biodegradación Ambiental , Hongos , Microbiología del Suelo , Árboles
14.
Ecotoxicol Environ Saf ; 167: 218-226, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30342354

RESUMEN

The effects and regulatory mechanisms of co-inoculation of plant-growth-promoting rhizobacteria (PGPRs) and rhizobium in plant-soil systems remain unclear, despite numerous reports that PGPRs or rhizobium can alleviate metal toxicity. We used the co-inoculation of the PGPR Paenibacillus mucilaginosus and the metal-resistant rhizobium Sinorhizobium meliloti for exploring the physiological and biochemical responses of the plant-soil system in metal-contaminated soil. The co-inoculation with the PGPR and rhizobium significantly increased the nutrient (N, P, and K) contents in plant tissues and promoted plant growth in soil contaminated with copper (Cu). Stress from Cu-induced reactive oxygen species and lipid peroxidation were largely attenuated by the co-inoculation by increasing the activities of antioxidant enzymes. The contents and uptake of Cu in plant tissues increased significantly in the co-inoculation treatment compared with the uninoculated control and individual inoculation treatment. Co-inoculation with PGPR and rhizobium significantly increased soil microbial biomass, enzymatic activities, total nitrogen, available phosphorus, and soil organic matter contents compared with the uninoculated control. Interestingly, co-inoculation also affected the composition of the rhizospheric microbial community, and slightly increased rhizospheric microbial diversity. These improvements of the soil fertility and biological activity also had a beneficial impact on plant growth under Cu stress. Our results suggested that alfalfa co-inoculated with PGPR and rhizobium could increase plant growth and Cu uptake in metal-contaminated soil by alleviating plant Cu stress and improving soil biochemical properties. These results indicate that the co-application of PGPR and rhizobium can have a positive effect on the biochemical responses of alfalfa-soil systems in soil contaminated by heavy metals and can provide an efficient strategy for the phytomanagement of metal-contaminated land.


Asunto(s)
Inoculantes Agrícolas , Cobre/metabolismo , Medicago sativa/metabolismo , Rhizobium/fisiología , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Análisis de Varianza , Biodegradación Ambiental , Biomasa , Cobre/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Medicago sativa/química , Medicago sativa/microbiología , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/toxicidad
15.
Biochem Biophys Res Commun ; 498(4): 946-953, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29548824

RESUMEN

Nitrogen (N) is a major nutrient of plants but often a limiting factor for plant growth and crop yield. To adapt to N deficiency, plants have evolved adaptive responses including accumulation of anthocyanins. However, it is still unclear whether the accumulated anthocyanins are part of the components of plant tolerance under low N stress. Here, we demonstrate that low N-induced anthocyanins contribute substantially to the low N tolerance of Arabidopsis thaliana. pap1-1, a mutant defective in MYB75 (PAP1), a MYB-type transcription factor that positively regulates anthocyanin biosynthesis in Arabidopsis, was found to have significantly decreased survival rate to low N stress compared to its wild-type plants. Similarly, tt3, a mutant with severe deficiency in dihydroflavonol 4-reductase (DFR), a key enzyme in anthocyanin biosynthesis, also showed much lower survival rate under low N stress. These results indicate that anthocyanins are substantial contributors of plant tolerance to low N stress. Furthermore, a metabolomics analysis using LC-MS revealed changes in flavonoid profile in the pap1-1 and tt3 plants, which established a causal relationship between plant adaptation to low N stress and these compounds including anthocyanins. Our results showed an important role of anthocyanins rather than flavonols in conferring plant tolerance to low N stress.


Asunto(s)
Antocianinas/biosíntesis , Nitrógeno/deficiencia , Estrés Fisiológico , Adaptación Fisiológica , Oxidorreductasas de Alcohol/deficiencia , Arabidopsis/enzimología , Arabidopsis/fisiología , Proteínas de Arabidopsis , Metabolómica , Sustancias Protectoras , Factores de Transcripción/deficiencia
16.
Planta ; 247(3): 573-585, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29124326

RESUMEN

MAIN CONCLUSION: AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.


Asunto(s)
Micorrizas/fisiología , Poaceae/fisiología , Estrés Fisiológico , Biomasa , Clorofila/fisiología , Hojas de la Planta/química , Hojas de la Planta/fisiología , Raíces de Plantas/microbiología , Transpiración de Plantas/fisiología , Poaceae/microbiología , Salinidad , Suelo , Agua/análisis
17.
Oecologia ; 186(2): 495-506, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29218537

RESUMEN

Floral herbivory represents a major threat to plant reproductive success, driving the importance of plant tolerance mechanisms that minimize fitness costs. However, the cumulative insect herbivory plants experience under natural conditions complicates predictions about tolerance contributions to net fitness. Apical damage can lead to compensatory seed production from late season flowering that ameliorates early season fitness losses. Yet, the compensation realized depends on successful development and herbivore escape by later season flowers. Using monocarpic perennial Cirsium canescens, we quantified seed-reproductive fitness of plants with vs. without experimental damage to the early-developing large apical flower head, with and without a 30-40% herbivory reduction on subsequent flower heads, for two flowering cohorts. Plants with reduced herbivory clearly demonstrated the release of apical dominance and compensation, not overcompensation, for apical damage via greater seed maturation by later flower heads. In contrast, plants that experienced ambient herbivory levels on subsequent heads undercompensated for early apical damage. Individuals had lower total seed set when the apical head was damaged. Compensation was, therefore, possible through a small increase in total flower heads, caused by a higher rate of floral bud survival, and a higher seed maturation rate by subsequent heads, leading to more viable seeds per matured flower head. With ambient cumulative floral herbivory, compensation for apical damage was not sufficient to improve fitness. Variation in the intensity of biological interactions played a role in the success of plant tolerance as a mechanism to maximize individual fitness.


Asunto(s)
Cirsium , Herbivoria , Animales , Flores , Insectos , Plantas
18.
New Phytol ; 211(3): 1065-76, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27061745

RESUMEN

Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.


Asunto(s)
Adaptación Fisiológica , Basidiomycota/fisiología , Ciclopentanos/metabolismo , Endófitos/fisiología , Giberelinas/metabolismo , Herbivoria/fisiología , Oryza/microbiología , Oryza/parasitología , Oxilipinas/metabolismo , Raíces de Plantas/parasitología , Animales , Resistencia a la Enfermedad , Larva/fisiología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Desarrollo de la Planta , Enfermedades de las Plantas/microbiología , Transducción de Señal , Gorgojos/fisiología
19.
Mycorrhiza ; 26(7): 673-84, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27113587

RESUMEN

Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Micorrizas/fisiología , Oryza/microbiología , Tolerancia a la Sal , Sodio/metabolismo , Simbiosis , Proteínas de Transporte de Catión/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Salinidad , Distribución Tisular
20.
Plant J ; 78(3): 481-90, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24580720

RESUMEN

The fitness consequences of mating system variation (e.g. inbreeding) have been studied for at least 200 years, yet the ecological consequences of this variation remain poorly understood. Most plants are capable of inbreeding, and also exhibit a remarkable suite of adaptive phenotypic responses to ecological stresses such as herbivory. We tested the consequences of experimental inbreeding on phenotypic plasticity in resistance and growth (tolerance) traits in Solanum carolinense (Solanaceae). Inbreeding reduced the ability of plants to up-regulate resistance traits following damage. Moreover, inbreeding disrupted growth trait responses to damage, indicating the presence of deleterious mutations at loci regulating growth under stress. Production of the phytohormones abscisic and indole acetic acid, and wounding-induced up-regulation of the defence signalling phytohormone jasmonic acid were all significantly reduced under inbreeding, indicating a phytohormonal basis for inbreeding effects on growth and defence trait regulation. We conclude that the plasticity of induced responses is negatively affected by inbreeding, with implications for fragmented populations facing mate limitation and stress as a consequence of environmental change.


Asunto(s)
Adaptación Fisiológica , Herbivoria , Reguladores del Crecimiento de las Plantas/metabolismo , Reproducción , Solanum/fisiología , Endogamia , Solanum/genética , Solanum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA