Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475205

RESUMEN

Light Detection and Ranging (LiDAR) is a well-established active technology for the direct acquisition of 3D data. In recent years, the geometric information collected by LiDAR sensors has been widely combined with optical images to provide supplementary spectral information to achieve more precise results in diverse remote sensing applications. The emergence of active Multispectral LiDAR (MSL) systems, which operate on different wavelengths, has recently been revolutionizing the simultaneous acquisition of height and intensity information. So far, MSL technology has been successfully applied for fine-scale mapping in various domains. However, a comprehensive review of this modern technology is currently lacking. Hence, this study presents an exhaustive overview of the current state-of-the-art in MSL systems by reviewing the latest technologies for MSL data acquisition. Moreover, the paper reports an in-depth analysis of the diverse applications of MSL, spanning across fields of "ecology and forestry", "objects and Land Use Land Cover (LULC) classification", "change detection", "bathymetry", "topographic mapping", "archaeology and geology", and "navigation". Our systematic review uncovers the potentials, opportunities, and challenges of the recently emerged MSL systems, which integrate spatial-spectral data and unlock the capability for precise multi-dimensional (nD) mapping using only a single-data source.

2.
Sensors (Basel) ; 24(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38610455

RESUMEN

In order to guide orchard management robots to realize some tasks in orchard production such as autonomic navigation and precision spraying, this research proposed a deep-learning network called dynamic fusion segmentation network (DFSNet). The network contains a local feature aggregation (LFA) layer and a dynamic fusion segmentation architecture. The LFA layer uses the positional encoders for initial transforming embedding, and progressively aggregates local patterns via the multi-stage hierarchy. The fusion segmentation module (Fus-Seg) can format point tags by learning a multi-embedding space, and the generated tags can further mine the point cloud features. At the experimental stage, significant segmentation results of the DFSNet were demonstrated on the dataset of orchard fields, achieving an accuracy rate of 89.43% and an mIoU rate of 74.05%. DFSNet outperforms other semantic segmentation networks, such as PointNet, PointNet++, D-PointNet++, DGCNN, and Point-NN, with improved accuracies over them by 11.73%, 3.76%, 2.36%, and 2.74%, respectively, and improved mIoUs over the these networks by 28.19%, 9.89%, 6.33%, 9.89, and 24.69%, respectively, on the all-scale dataset (simple-scale dataset + complex-scale dataset). The proposed DFSNet can capture more information from orchard scene point clouds and provide more accurate point cloud segmentation results, which are beneficial to the management of orchards.

3.
Sensors (Basel) ; 24(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39001170

RESUMEN

This paper presents a novel segmentation algorithm specially developed for applications in 3D point clouds with high variability and noise, particularly suitable for heritage building 3D data. The method can be categorized within the segmentation procedures based on edge detection. In addition, it uses a graph-based topological structure generated from the supervoxelization of the 3D point clouds, which is used to make the closure of the edge points and to define the different segments. The algorithm provides a valuable tool for generating results that can be used in subsequent classification tasks and broader computer applications dealing with 3D point clouds. One of the characteristics of this segmentation method is that it is unsupervised, which makes it particularly advantageous for heritage applications where labelled data is scarce. It is also easily adaptable to different edge point detection and supervoxelization algorithms. Finally, the results show that the 3D data can be segmented into different architectural elements, which is important for further classification or recognition. Extensive testing on real data from historic buildings demonstrated the effectiveness of the method. The results show superior performance compared to three other segmentation methods, both globally and in the segmentation of planar and curved zones of historic buildings.

4.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124068

RESUMEN

Semantic segmentation of target objects in power transmission line corridor point cloud scenes is a crucial step in powerline tree barrier detection. The massive quantity, disordered distribution, and non-uniformity of point clouds in power transmission line corridor scenes pose significant challenges for feature extraction. Previous studies have often overlooked the core utilization of spatial information, limiting the network's ability to understand complex geometric shapes. To overcome this limitation, this paper focuses on enhancing the deep expression of spatial geometric information in segmentation networks and proposes a method called BDF-Net to improve RandLA-Net. For each input 3D point cloud data, BDF-Net first encodes the relative coordinates and relative distance information into spatial geometric feature representations through the Spatial Information Encoding block to capture the local spatial structure of the point cloud data. Subsequently, the Bilinear Pooling block effectively combines the feature information of the point cloud with the spatial geometric representation by leveraging its bilinear interaction capability thus learning more discriminative local feature descriptors. The Global Feature Extraction block captures the global structure information in the point cloud data by using the ratio between the point position and the relative position, so as to enhance the semantic understanding ability of the network. In order to verify the performance of BDF-Net, this paper constructs a dataset, PPCD, for the point cloud scenario of transmission line corridors and conducts detailed experiments on it. The experimental results show that BDF-Net achieves significant performance improvements in various evaluation metrics, specifically achieving an OA of 97.16%, a mIoU of 77.48%, and a mAcc of 87.6%, which are 3.03%, 16.23%, and 18.44% higher than RandLA-Net, respectively. Moreover, comparisons with other state-of-the-art methods also verify the superiority of BDF-Net in point cloud semantic segmentation tasks.

5.
Sensors (Basel) ; 24(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39204811

RESUMEN

Global pose refinement is a significant challenge within Simultaneous Localization and Mapping (SLAM) frameworks. For LIDAR-based SLAM systems, pose refinement is integral to correcting drift caused by the successive registration of 3D point clouds collected by the sensor. A divergence between the actual and calculated platform paths characterizes this error. In response to this challenge, we propose a linear, parameter-free model that uses a closed circuit for global trajectory corrections. Our model maps rotations to quaternions and uses Spherical Linear Interpolation (SLERP) for transitions between them. The intervals are established by the constraint set by the Least Squares (LS) method on rotation closure and are proportional to the circuit's size. Translations are globally adjusted in a distinct linear phase. Additionally, we suggest a coarse-to-fine pairwise registration method, integrating Fast Global Registration and Generalized ICP with multiscale sampling and filtering. The proposed approach is tested on three varied datasets of point clouds, including Mobile Laser Scanners and Terrestrial Laser Scanners. These diverse datasets affirm the model's effectiveness in 3D pose estimation, with substantial pose differences and efficient pose optimization in larger circuits.

6.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474954

RESUMEN

Generative models have the potential to revolutionize 3D extended reality. A primary obstacle is that augmented and virtual reality need real-time computing. Current state-of-the-art point cloud random generation methods are not fast enough for these applications. We introduce a vector-quantized variational autoencoder model (VQVAE) that can synthesize high-quality point clouds in milliseconds. Unlike previous work in VQVAEs, our model offers a compact sample representation suitable for conditional generation and data exploration with potential applications in rapid prototyping. We achieve this result by combining architectural improvements with an innovative approach for probabilistic random generation. First, we rethink current parallel point cloud autoencoder structures, and we propose several solutions to improve robustness, efficiency and reconstruction quality. Notable contributions in the decoder architecture include an innovative computation layer to process the shape semantic information, an attention mechanism that helps the model focus on different areas and a filter to cover possible sampling errors. Secondly, we introduce a parallel sampling strategy for VQVAE models consisting of a double encoding system, where a variational autoencoder learns how to generate the complex discrete distribution of the VQVAE, not only allowing quick inference but also describing the shape with a few global variables. We compare the proposed decoder and our VQVAE model with established and concurrent work, and we prove, one by one, the validity of the single contributions.

7.
Sensors (Basel) ; 24(16)2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39204879

RESUMEN

Understanding geometric and biophysical characteristics is essential for determining grapevine vigor and improving input management and automation in viticulture. This study compares point cloud data obtained from a Terrestrial Laser Scanner (TLS) and various UAV sensors including multispectral, panchromatic, Thermal Infrared (TIR), RGB, and LiDAR data, to estimate geometric parameters of grapevines. Descriptive statistics, linear correlations, significance using the F-test of overall significance, and box plots were used for analysis. The results indicate that 3D point clouds from these sensors can accurately estimate maximum grapevine height, projected area, and volume, though with varying degrees of accuracy. The TLS data showed the highest correlation with grapevine height (r = 0.95, p < 0.001; R2 = 0.90; RMSE = 0.027 m), while point cloud data from panchromatic, RGB, and multispectral sensors also performed well, closely matching TLS and measured values (r > 0.83, p < 0.001; R2 > 0.70; RMSE < 0.084 m). In contrast, TIR point cloud data performed poorly in estimating grapevine height (r = 0.76, p < 0.001; R2 = 0.58; RMSE = 0.147 m) and projected area (r = 0.82, p < 0.001; R2 = 0.66; RMSE = 0.165 m). The greater variability observed in projected area and volume from UAV sensors is related to the low point density associated with spatial resolution. These findings are valuable for both researchers and winegrowers, as they support the optimization of TLS and UAV sensors for precision viticulture, providing a basis for further research and helping farmers select appropriate technologies for crop monitoring.

8.
Sensors (Basel) ; 23(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36850645

RESUMEN

The traditional point-cloud registration algorithms require large overlap between scans, which imposes strict constrains on data acquisition. To facilitate registration, the user has to strategically position or move the scanner to ensure proper overlap. In this work, we design a method of feature extraction based on high-level information to establish structure correspondences and an optimization problem. And we rewrite it as a fixed-point problem and apply the Lie algebra to parameterize the transform matrix. To speed up convergence, we introduce Anderson acceleration, an approach enhanced by heuristics. Our model attends to the structural features of the region of overlap instead of the correspondence between points. The experimental results show the proposed ICP method is robust, has a high accuracy of registration on point clouds with low overlap on a laser datasets, and achieves a computational time that is competitive with that of prevalent methods.

9.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420777

RESUMEN

Many recent cloud or edge computing strategies for automotive applications require transmitting huge amounts of Light Detection and Ranging (LiDAR) data from terminals to centralized processing units. As a matter of fact, the development of effective Point Cloud (PC) compression strategies that preserve semantic information, which is critical for scene understanding, proves to be crucial. Segmentation and compression have always been treated as two independent tasks; however, since not all the semantic classes are equally important for the end task, this information can be used to guide data transmission. In this paper, we propose Content-Aware Compression and Transmission Using Semantics (CACTUS), which is a coding framework that exploits semantic information to optimize the data transmission, partitioning the original point set into separate data streams. Experimental results show that differently from traditional strategies, the independent coding of semantically consistent point sets preserves class information. Additionally, whenever semantic information needs to be transmitted to the receiver, using the CACTUS strategy leads to gains in terms of compression efficiency, and more in general, it improves the speed and flexibility of the baseline codec used to compress the data.


Asunto(s)
Compresión de Datos , Semántica , Concienciación , Fenómenos Físicos
10.
Sensors (Basel) ; 23(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765772

RESUMEN

Three-dimensional face recognition is an important part of the field of computer vision. Point clouds are widely used in the field of 3D vision due to the simple mathematical expression. However, the disorder of the points makes it difficult for them to have ordered indexes in convolutional neural networks. In addition, the point clouds lack detailed textures, which makes the facial features easily affected by expression or head pose changes. To solve the above problems, this paper constructs a new face recognition network, which mainly consists of two parts. The first part is a novel operator based on a local feature descriptor to realize the fine-grained features extraction and the permutation invariance of point clouds. The second part is a feature enhancement mechanism to enhance the discrimination of facial features. In order to verify the performance of our method, we conducted experiments on three public datasets: CASIA-3D, Bosphorus, and Lock3Dface. The results show that the accuracy of our method is improved by 0.7%, 0.4%, and 0.8% compared with the latest methods on these three datasets, respectively.

11.
Sensors (Basel) ; 23(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37837167

RESUMEN

In interpreting a scene for numerous applications, including autonomous driving and robotic navigation, semantic segmentation is crucial. Compared to single-modal data, multi-modal data allow us to extract a richer set of features, which is the benefit of improving segmentation accuracy and effect. We propose a point cloud semantic segmentation method, and a fusion graph convolutional network (FGCN) which extracts the semantic information of each point involved in the two-modal data of images and point clouds. The two-channel k-nearest neighbors (KNN) module of the FGCN was created to address the issue of the feature extraction's poor efficiency by utilizing picture data. Notably, the FGCN utilizes the spatial attention mechanism to better distinguish more important features and fuses multi-scale features to enhance the generalization capability of the network and increase the accuracy of the semantic segmentation. In the experiment, a self-made semantic segmentation KITTI (SSKIT) dataset was made for the fusion effect. The mean intersection over union (MIoU) of the SSKIT can reach 88.06%. As well as the public datasets, the S3DIS showed that our method can enhance data features and outperform other methods: the MIoU of the S3DIS can reach up to 78.55%. The segmentation accuracy is significantly improved compared with the existing methods, which verifies the effectiveness of the improved algorithms.

12.
Sensors (Basel) ; 23(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37299883

RESUMEN

The individual identification of pigs is the basis for precision livestock farming (PLF), which can provide prerequisites for personalized feeding, disease monitoring, growth condition monitoring and behavior identification. Pig face recognition has the problem that pig face samples are difficult to collect and images are easily affected by the environment and body dirt. Due to this problem, we proposed a method for individual pig identification using three-dimension (3D) point clouds of the pig's back surface. Firstly, a point cloud segmentation model based on the PointNet++ algorithm is established to segment the pig's back point clouds from the complex background and use it as the input for individual recognition. Then, an individual pig recognition model based on the improved PointNet++LGG algorithm was constructed by increasing the adaptive global sampling radius, deepening the network structure and increasing the number of features to extract higher-dimensional features for accurate recognition of different individuals with similar body sizes. In total, 10,574 3D point cloud images of ten pigs were collected to construct the dataset. The experimental results showed that the accuracy of the individual pig identification model based on the PointNet++LGG algorithm reached 95.26%, which was 2.18%, 16.76% and 17.19% higher compared with the PointNet model, PointNet++SSG model and MSG model, respectively. Individual pig identification based on 3D point clouds of the back surface is effective. This approach is easy to integrate with functions such as body condition assessment and behavior recognition, and is conducive to the development of precision livestock farming.


Asunto(s)
Agricultura , Reconocimiento Facial , Porcinos , Animales , Algoritmos , Tamaño Corporal , Granjas , Ganado
13.
Sensors (Basel) ; 23(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37420934

RESUMEN

Point cloud registration plays a crucial role in 3D mapping and localization. Urban scene point clouds pose significant challenges for registration due to their large data volume, similar scenarios, and dynamic objects. Estimating the location by instances (bulidings, traffic lights, etc.) in urban scenes is a more humanized matter. In this paper, we propose PCRMLP (point cloud registration MLP), a novel model for urban scene point cloud registration that achieves comparable registration performance to prior learning-based methods. Compared to previous works that focused on extracting features and estimating correspondence, PCRMLP estimates transformation implicitly from concrete instances. The key innovation lies in the instance-level urban scene representation method, which leverages semantic segmentation and density-based spatial clustering of applications with noise (DBSCAN) to generate instance descriptors, enabling robust feature extraction, dynamic object filtering, and logical transformation estimation. Then, a lightweight network consisting of Multilayer Perceptrons (MLPs) is employed to obtain transformation in an encoder-decoder manner. Experimental validation on the KITTI dataset demonstrates that PCRMLP achieves satisfactory coarse transformation estimates from instance descriptors within a remarkable time of 0.0028 s. With the incorporation of an ICP refinement module, our proposed method outperforms prior learning-based approaches, yielding a rotation error of 2.01° and a translation error of 1.58 m. The experimental results highlight PCRMLP's potential for coarse registration of urban scene point clouds, thereby paving the way for its application in instance-level semantic mapping and localization.


Asunto(s)
Redes Neurales de la Computación , Nube Computacional , Aprendizaje Automático
14.
Sensors (Basel) ; 23(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36904743

RESUMEN

The research and development of an intelligent magnetic levitation transportation system has become an important research branch of the current intelligent transportation system (ITS), which can provide technical support for state-of-the-art fields such as intelligent magnetic levitation digital twin. First, we applied unmanned aerial vehicle oblique photography technology to acquire the magnetic levitation track image data and preprocessed them. Then, we extracted the image features and matched them based on the incremental structure from motion (SFM) algorithm, recovered the camera pose parameters of the image data and the 3D scene structure information of key points, and optimized the bundle adjustment to output 3D magnetic levitation sparse point clouds. Then, we applied multiview stereo (MVS) vision technology to estimate the depth map and normal map information. Finally, we extracted the output of the dense point clouds that can precisely express the physical structure of the magnetic levitation track, such as turnout, turning, linear structures, etc. By comparing the dense point clouds model with the traditional building information model, experiments verified that the magnetic levitation image 3D reconstruction system based on the incremental SFM and MVS algorithm has strong robustness and accuracy and can express a variety of physical structures of magnetic levitation track with high accuracy.

15.
Sensors (Basel) ; 23(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38005549

RESUMEN

Object detection is important in many applications, such as autonomous driving. While 2D images lack depth information and are sensitive to environmental conditions, 3D point clouds can provide accurate depth information and a more descriptive environment. However, sparsity is always a challenge in single-frame point cloud object detection. This paper introduces a two-stage proposal-based feature fusion method for object detection using multiple frames. The proposed method, called proposal features fusion (PFF), utilizes a cosine-similarity approach to associate proposals from multiple frames and employs an attention weighted fusion (AWF) module to merge features from these proposals. It allows for feature fusion specific to individual objects and offers lower computational complexity while achieving higher precision. The experimental results on the nuScenes dataset demonstrate the effectiveness of our approach, achieving an mAP of 46.7%, which is 1.3% higher than the state-of-the-art 3D object detection method.

16.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904990

RESUMEN

Because of societal changes, human activity recognition, part of home care systems, has become increasingly important. Camera-based recognition is mainstream but has privacy concerns and is less accurate under dim lighting. In contrast, radar sensors do not record sensitive information, avoid the invasion of privacy, and work in poor lighting. However, the collected data are often sparse. To address this issue, we propose a novel Multimodal Two-stream GNN Framework for Efficient Point Cloud and Skeleton Data Alignment (MTGEA), which improves recognition accuracy through accurate skeletal features from Kinect models. We first collected two datasets using the mmWave radar and Kinect v4 sensors. Then, we used zero-padding, Gaussian Noise (GN), and Agglomerative Hierarchical Clustering (AHC) to increase the number of collected point clouds to 25 per frame to match the skeleton data. Second, we used Spatial Temporal Graph Convolutional Network (ST-GCN) architecture to acquire multimodal representations in the spatio-temporal domain focusing on skeletal features. Finally, we implemented an attention mechanism aligning the two multimodal features to capture the correlation between point clouds and skeleton data. The resulting model was evaluated empirically on human activity data and shown to improve human activity recognition with radar data only. All datasets and codes are available in our GitHub.

17.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37447967

RESUMEN

Autonomous vehicles (AVs) rely on advanced sensory systems, such as Light Detection and Ranging (LiDAR), to function seamlessly in intricate and dynamic environments. LiDAR produces highly accurate 3D point clouds, which are vital for the detection, classification, and tracking of multiple targets. A systematic review and classification of various clustering and Multi-Target Tracking (MTT) techniques are necessary due to the inherent challenges posed by LiDAR data, such as density, noise, and varying sampling rates. As part of this study, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was employed to examine the challenges and advancements in MTT techniques and clustering for LiDAR point clouds within the context of autonomous driving. Searches were conducted in major databases such as IEEE Xplore, ScienceDirect, SpringerLink, ACM Digital Library, and Google Scholar, utilizing customized search strategies. We identified and critically reviewed 76 relevant studies based on rigorous screening and evaluation processes, assessing their methodological quality, data handling adequacy, and reporting compliance. As a result of this comprehensive review and classification, we were able to provide a detailed overview of current challenges, research gaps, and advancements in clustering and MTT techniques for LiDAR point clouds, thus contributing to the field of autonomous driving. Researchers and practitioners working in the field of autonomous driving will benefit from this study, which was characterized by transparency and reproducibility on a systematic basis.


Asunto(s)
Vehículos Autónomos , Lagunas en las Evidencias , Reproducibilidad de los Resultados , Análisis por Conglomerados , Bases de Datos Factuales
18.
Int J Comput Vis ; 130(9): 2321-2336, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968252

RESUMEN

We present 3DPointCaps++ for learning robust, flexible and generalizable 3D object representations without requiring heavy annotation efforts or supervision. Unlike conventional 3D generative models, our algorithm aims for building a structured latent space where certain factors of shape variations, such as object parts, can be disentangled into independent sub-spaces. Our novel decoder then acts on these individual latent sub-spaces (i.e. capsules) using deconvolution operators to reconstruct 3D points in a self-supervised manner. We further introduce a cluster loss ensuring that the points reconstructed by a single capsule remain local and do not spread across the object uncontrollably. These contributions allow our network to tackle the challenging tasks of part segmentation, part interpolation/replacement as well as correspondence estimation across rigid / non-rigid shape, and across / within category. Our extensive evaluations on ShapeNet objects and human scans demonstrate that our network can learn generic representations that are robust and useful in many applications.

19.
Sensors (Basel) ; 22(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36236444

RESUMEN

With the development of autonomous driving, augmented reality, and other fields, it is becoming increasingly important for machines to more accurately and comprehensively perceive their surrounding environment. LiDAR is one of the most important tools used by machines to obtain information about the surrounding environment. However, because of occlusion, the point cloud data obtained by LiDAR are not the complete shape of the object, and completing the incomplete point cloud shape is of great significance for further data analysis, such as classification and segmentation. In this study, we examined the completion of a 3D point cloud and improved upon the FoldingNet auto-encoder. Specifically, we used the encoder-decoder architecture to design our point cloud completion network. The encoder part uses the transformer module to enhance point cloud feature extraction, and the decoder part changes the 2D lattice used by the A network into a 3D lattice so that the network can better fit the shape of the 3D point cloud. We conducted experiments on point cloud datasets sampled from the ShapeNet car-category CAD models to verify the effectiveness of the various improvements made to the network.

20.
Sensors (Basel) ; 22(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36365915

RESUMEN

Point cloud registration aims to find a rigid spatial transformation to align two given point clouds; it is widely deployed in many areas of computer vision, such as target detection, 3D localization, and so on. In order to achieve the desired results, registration error, robustness, and efficiency should be comprehensively considered. We propose a deep learning-based point cloud registration method, called DOPNet. DOPNet extracts global features of point clouds with a dynamic graph convolutional neural network (DGCNN) and cascading offset-attention modules, and the transformation is predicted by a multilayer perceptron (MLP). To enhance the information interaction between the two branches, the feature interaction module is inserted into the feature extraction pipeline to implement early data association. We compared DOPNet with the traditional method of using the iterative closest point (ICP) algorithm along with four learning-based registration methods on the Modelnet40 data set. In the experiments, the source and target point clouds were generated by sampling the original point cloud twice independently; we also conducted additional experiments with asymmetric objects. Further evaluation experiments were conducted with point cloud models from Stanford University. The results demonstrated that our DOPNet method outperforms these comparative methods in general, achieving more accurate and efficient point cloud registration.


Asunto(s)
Aprendizaje Profundo , Humanos , Algoritmos , Redes Neurales de la Computación , Registros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA