Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
New Phytol ; 236(1): 296-308, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35719102

RESUMEN

Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.


Asunto(s)
Asteraceae , Policétidos , Asteraceae/genética , Glucósidos , Plantas Modificadas Genéticamente/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Pironas
2.
J Struct Biol ; 212(1): 107581, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32717326

RESUMEN

Modular polyketide synthases (PKSs) are molecular-scale assembly lines comprising multiple gigantic polypeptide subunits. Faithful ordering of the subunits is mediated by extreme C- and N-terminal regions called docking domains (DDs). Decrypting how specificity is achieved by these elements is important both for understanding PKS function and modifying it to generate useful polyketide analogues for biological evaluation. Here we report the biophysical and structural characterisation of all six PKS/PKS interfaces in the unusual, chimaeric cis-AT/trans-AT PKS pathway responsible for biosynthesis of the antibiotic enacyloxin IIa in Burkholderia ambifaria. Taken together with previous work, our data reveal that specificity is achieved in the enacyloxin PKS by deploying at least three functionally orthogonal classes of DDs. We also demonstrate for the first time that cis-AT PKS subunits incorporate DDs with intrinsically disordered character, reinforcing the utility of such regions for achieving both medium affinity and high specificity at PKS intersubunit junctions. Overall, this work substantially increases the number of orthogonal DDs available for creating novel, highly-specific interfaces within cis- and trans-AT PKSs and their hybrids. It also reveals unexpected sequence/structure relationships in PKS DDs, identifying major current limitations to both accurately predicting and categorising these useful protein-protein interaction motifs.


Asunto(s)
Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Subunidades de Proteína/metabolismo , Burkholderia/metabolismo , Péptidos/metabolismo , Polienos/metabolismo , Mapas de Interacción de Proteínas/fisiología
3.
Chembiochem ; 21(6): 780-784, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31507033

RESUMEN

Partially reduced aromatic polyketides are bioactive secondary metabolites or intermediates in the biosynthesis of deoxygenated aromatics. For the antibiotic GTRI-02 (mensalone) in different Streptomyces spp., biosynthesis involving the reduction of a fully aromatized acetyltrihydroxynaphthalene by a naphthol reductase has been proposed and shown in vitro with a fungal enzyme. However, more recently, GTRI-02 has been identified as a product of the ActIII biosynthetic gene cluster from Streptomyces coelicolor A3(2), for which the reduction of a linear polyketide precursor by ActIII ketoreductase, prior to cyclization and aromatization, has been suggested. We have examined three different ketoreductases from bacterial producer strains of GTRI-02 for their ability to reduce mono-, bi-, and tricyclic aromatic substrates. The enzymes reduced 1- and 2-tetralone but not other aromatic substrates. This strongly suggests a reduction of a cyclized but not yet aromatic polyketide intermediate in the biosynthesis of GTRI-02. Implications of the results for the biosynthesis of other secondary polyketidic metabolites are discussed.


Asunto(s)
Oxidorreductasas/metabolismo , Policétidos/metabolismo , Streptomyces/química , Estructura Molecular , Policétidos/química , Streptomyces/metabolismo
4.
Bioorg Med Chem ; 28(20): 115686, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33069071

RESUMEN

Enzyme assemblies such as type II polyketide synthases (PKSs) produce a wide array of bioactive secondary metabolites. While the molecules produced by type II PKSs have found remarkable clinical success, the biosynthetic prowess of these enzymes has been stymied by 1) the inability to reconstitute the bioactivity of the minimal PKS enzymes in vitro and 2) limited exploration of type II PKSs from diverse phyla. To begin filling this unmet need, we expressed, purified, and characterized the ketosynthase chain length factor (KS-CLF) and acyl carrier protein (ACP) from Ktedonobacter racemifer (Kr). Using E. coli as a heterologous host, we obtained soluble proteins in titers signifying improvements over previous KS-CLF heterologous expression efforts. Characterization of these enzymes reveals that KrACP has self-malonylating activity. Sedimentation velocity analytical ultracentrifugation (SV-AUC) analysis of holo-KrACP and KrKS-CLF indicates that these enzymes do not interact in vitro, suggesting that the acylated state of these proteins might play an important role in facilitating biosynthetically relevant interactions. These results lay important groundwork for optimizing the interaction between KrKS-CLF and KrACP and exploring the biosynthetic potential of other non-actinomycete type II PKSs.


Asunto(s)
Chloroflexi/enzimología , Escherichia coli/metabolismo , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/aislamiento & purificación , Sintasas Poliquetidas/metabolismo
5.
Appl Microbiol Biotechnol ; 104(16): 7131-7142, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32632478

RESUMEN

FR901533 (1, also known as WS79089B), WS79089A (2), and WS79089C (3) are polycyclic aromatic natural products with promising inhibitory activity to endothelin-converting enzymes. In this work, we isolated five tridecaketide products from Streptosporangium roseum No. 79089, including 1-3, benaphthamycin (4) and a novel FR901533 analogue (5). The structure of 5 was characterized based on spectroscopic data. Compared with the major product 2, the new compound 5 has an additional hydroxyl group at C-12 and an extra methyl group at the 13-OH. The configuration of C-19 of these compounds was determined to be R using Mosher's method. A putative biosynthetic gene cluster for compounds 1-5 was discovered by analyzing the genome of S. roseum No. 79089. This 38.6-kb gene cluster contains 38 open reading frames, including a minimal polyketide synthase (wsaA-C), an aromatase (wsaD), three cyclases (wsaE, F, and W), and a series of tailoring enzymes such as monooxygenases (wsaO1-O7) and methyltransferases (wsaM1 and M2). Disruption of the ketosynthase gene (wsaA) in this gene cluster abolished the production of 1-5, confirming that this gene cluster is indeed responsible for the biosynthesis of 1-5. A type II polyketide biosynthetic pathway was proposed for this group of natural endothelin-converting enzyme inhibitors. KEY POINTS: • Five aromatic tridecaketides were isolated from Streptosporangium roseum No. 79089. • A novel FR901533 analogue, 12-hydroxy-13-O-methyl-WS79089A, was characterized. • The absolute configuration of C-19 of FR901533 and analogues was determined. • The biosynthetic gene cluster of FR901533 and analogues was discovered.


Asunto(s)
Actinobacteria/genética , Vías Biosintéticas/genética , Familia de Multigenes , Tetraciclinas/química , Actinobacteria/química , Actinobacteria/enzimología , Genoma Bacteriano , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN
6.
Biochem Biophys Res Commun ; 497(4): 1123-1128, 2018 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-29496450

RESUMEN

The polyketide synthases found in a variety of plants and fungi provide a varied source of biologically active compounds of pharmacological and medicinal interest. Stilbene synthase and chalcone synthase catalyze the formation of a common tetraketide intermediate, but use different cyclization mechanisms to produce distinct and separate natural products. While key structural differences have been identified to explain this functional diversity, a fuller explication of the factors responsible for this mechanistic disparity is required. Based on the energetics of our models of the bound tetraketides, and our structural analysis of the active sites we propose that a key tautomeric conversion provides a mechanistic framework common to both cyclizations. A previously unidentified active water molecule facilitates cyclization in chalcone synthase through a Claisen mechanism. Such a "Claisen switch" is comparable to the previously characterized "aldol switch" mechanism proposed for the biosynthesis of resveratrol in stilbene synthase.


Asunto(s)
Plantas/metabolismo , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo , Aciltransferasas/metabolismo , Dominio Catalítico , Simulación por Computador , Ciclización , Modelos Químicos , Agua/química
7.
Proc Natl Acad Sci U S A ; 112(50): E6844-51, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26631750

RESUMEN

Aromatic polyketides make up a large class of natural products with diverse bioactivity. During biosynthesis, linear poly-ß-ketone intermediates are regiospecifically cyclized, yielding molecules with defined cyclization patterns that are crucial for polyketide bioactivity. The aromatase/cyclases (ARO/CYCs) are responsible for regiospecific cyclization of bacterial polyketides. The two most common cyclization patterns are C7-C12 and C9-C14 cyclizations. We have previously characterized three monodomain ARO/CYCs: ZhuI, TcmN, and WhiE. The last remaining uncharacterized class of ARO/CYCs is the di-domain ARO/CYCs, which catalyze C7-C12 cyclization and/or aromatization. Di-domain ARO/CYCs can further be separated into two subclasses: "nonreducing" ARO/CYCs, which act on nonreduced poly-ß-ketones, and "reducing" ARO/CYCs, which act on cyclized C9 reduced poly-ß-ketones. For years, the functional role of each domain in cyclization and aromatization for di-domain ARO/CYCs has remained a mystery. Here we present what is to our knowledge the first structural and functional analysis, along with an in-depth comparison, of the nonreducing (StfQ) and reducing (BexL) di-domain ARO/CYCs. This work completes the structural and functional characterization of mono- and di-domain ARO/CYCs in bacterial type II polyketide synthases and lays the groundwork for engineered biosynthesis of new bioactive polyketides.


Asunto(s)
Aromatasa/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Aromatasa/química , Aromatasa/genética , Modelos Moleculares , Mutagénesis , Sintasas Poliquetidas/genética , Conformación Proteica
8.
Angew Chem Int Ed Engl ; 57(44): 14519-14523, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30025185

RESUMEN

The large number of sequenced bacterial genomes provides the opportunity to bioinformatically identify rich natural product sources among previously neglected microbial groups. Testing this discovery strategy, unusually high biosynthetic potential was suggested for the Oceanospirillales member Gynuella sunshinyii, a Gram-negative marine bacterium from the rhizosphere of the halophilic plant Carex scabrifolia. Its genome contains numerous unusual biosynthetic gene clusters for diverse types of metabolites. Genome-guided isolation yielded representatives of four different natural product classes, of which only alteramide A was known. Cytotoxic lacunalides were identified as products of a giant trans-acyltransferase polyketide synthase gene cluster, one of six present in this strain. Cytological profiling against HeLa cells suggested that lacunalide A disrupts CDK signaling in the cell cycle. In addition, chemical studies on model compounds were conducted, suggesting the structurally unusual ergoynes as products of a conjugated diyne-thiourea cyclization reaction.


Asunto(s)
Productos Biológicos/química , Genoma , Plantas/microbiología , Agua de Mar/microbiología , Espectroscopía de Protones por Resonancia Magnética
9.
Mar Drugs ; 15(6)2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561749

RESUMEN

Two new members of the amphidinol family, amphidinol A (1) and its 7-sulfate derivative amphidinol B (2), were isolated from a strain of Amphidinium carterae of Lake Fusaro, near Naples (Italy), and chemically identified by spectroscopic and spectrometric methods. Amphidinol A showed antifungal activity against Candida albicans (MIC = 19 µg/mL). Biosynthetic experiments with stable isotope-labelled acetate allowed defining the elongation process in 1. For the first time the use of glycolate as a starter unit in the polyketide biosynthesis of amphidinol metabolites was unambiguously demonstrated.


Asunto(s)
Alquenos/metabolismo , Dinoflagelados/metabolismo , Glicolatos/metabolismo , Policétidos/metabolismo , Piranos/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Policétidos/farmacología
10.
Angew Chem Int Ed Engl ; 55(34): 10113-7, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27404448

RESUMEN

Myxobacteria are well-established sources for novel natural products exhibiting intriguing bioactivities. We here report on haprolid (1) isolated from Byssovorax cruenta Har1. The compound exhibits an unprecedented macrolactone comprising four modified amino acids and a polyketide fragment. As configurational assignment proved difficult, a bioinformatic analysis of the biosynthetic gene cluster was chosen to predict the configuration of each stereocenter. In-depth analysis of the corresponding biosynthetic proteins established a hybrid polyketide synthase/nonribosomal peptide synthetase origin of haprolid and allowed for stereochemical assignments. A subsequent total synthesis yielded haprolid and corroborated all predictions made. Intriguingly, haprolid showed cytotoxicity against several cell lines in the nanomolar range whereas other cells were almost unaffected by treatment with the compound.


Asunto(s)
Citotoxinas/farmacología , Lactonas/farmacología , Macrólidos/farmacología , Myxococcales/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citotoxinas/química , Citotoxinas/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Humanos , Lactonas/química , Lactonas/aislamiento & purificación , Macrólidos/química , Macrólidos/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad
11.
Chembiochem ; 15(13): 1991-7, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25044264

RESUMEN

The polyether ionophore monensin is biosynthesized by a polyketide synthase that delivers a mixture of monensins A and B by the incorporation of ethyl- or methyl-malonyl-CoA at its fifth module. Here we present the first computational model of the fifth acyltransferase domain (AT5mon ) of this polyketide synthase, thus affording an investigation of the basis of the relaxed specificity in AT5mon , insights into the activation for the nucleophilic attack on the substrate, and prediction of the incorporation of synthetic malonic acid building blocks by this enzyme. Our predictions are supported by experimental studies, including the isolation of a predicted derivative of the monensin precursor premonensin. The incorporation of non-native building blocks was found to alter the ratio of premonensins A and B. The bioactivity of the natural product derivatives was investigated and revealed binding to prenyl-binding protein. We thus show the potential of engineered biosynthetic polyketides as a source of ligands for biological macromolecules.


Asunto(s)
Productos Biológicos/síntesis química , Monensina/análogos & derivados , Monensina/síntesis química , Sintasas Poliquetidas/química , Aciltransferasas/química , Biología Computacional , Escherichia coli/metabolismo , Fermentación , Malonatos/química , Modelos Moleculares , Monensina/farmacología , Conformación Proteica , Streptomyces/enzimología , Especificidad por Sustrato
12.
Bioorg Med Chem Lett ; 24(18): 4511-4514, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25139567

RESUMEN

The anti-cholesterol natural product herboxidiene is synthesized by a noniterative modular polyketide synthase (HerB, HerC and HerD) and three tailoring enzymes (HerE, HerF and HerG) in Streptomyces chromofuscus A7847. In this work, the putative monooxygenase HerG was expressed in Escherichia coli and the purified enzyme was subjected to biochemical studies. It was identified as a cytochrome P450 enzyme responsible for the stereospecific hydroxylation at C-18. This enzyme is highly substrate-specific as it efficiently hydroxylates 18-deoxy-25-demethyl-herboxidiene, but showed no activity towards 18-deoxy-herboxidiene. The kcat/Km value for the HerG-catalyzed hydroxylation of 18-deoxy-25-demethyl-herboxidiene was determined to be 1669.70±47.36 M(-1) s(-1). In vitro co-reaction of HerG with the methyltransferase HerF and analysis of the product formation in S. chromofuscus A7847 revealed that the biosynthetic intermediate 18-deoxy-25-demethyl-herboxidiene is successively hydroxylated at C-18 by HerG and methylated at 17-OH to yield the final product herboxidiene. The minor metabolite 18-deoxy-hereboxidiene is a byproduct of the biosynthetic pathway.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Alcoholes Grasos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Piranos/metabolismo , Secuencia de Aminoácidos , Sistema Enzimático del Citocromo P-450/genética , Alcoholes Grasos/química , Hidroxilación , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Estructura Molecular , Piranos/química , Alineación de Secuencia
13.
Beilstein J Org Chem ; 10: 1421-32, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24991297

RESUMEN

Streptomyces sp. FORM5 is a bacterium that is known to produce the antibiotic streptazolin and related compounds. We investigated the strain for the production of volatiles using the CLSA (closed-loop stripping analysis) method. Liquid and agar plate cultures revealed the formation of new 2-alkylpyridines (streptopyridines), structurally closely related to the already known 2-pentadienylpiperidines. The structures of the streptopyridines A to E were confirmed by total synthesis. The analysis of the liquid phase by solvent extraction or extraction with an Oasis adsorbent showed that streptazolin and 2-pentadienylpiperidine are the major compounds, while the streptopyridines are only minor components. In the gas phase, only the streptopyridines could be detected. Therefore, an orthogonal set of analysis is needed to assess the metabolic profile of bacteria, because volatile compounds are obviously overlooked by traditional analytical methods. The streptopyridines are strain specific volatiles that are accompanied by a broad range of headspace constituents that occur in many actinomycetes. Volatiles might be of ecological importance for the producing organism, and, as biosynthetic intermediates or shunt products, they can be useful as indicators of antibiotic production in a bacterium.

14.
Beilstein J Org Chem ; 10: 634-640, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24778714

RESUMEN

Herein, we describe the syntheses of a complex biosynthesis-intermediate analogue of the potent antitumor polyketide borrelidin and of reference molecules to determine the stereoselectivity of the dehydratase of borrelidin polyketide synthase module 3. The target molecules were obtained from a common precursor aldehyde in the form of N-acetylcysteamine (SNAc) thioesters and methyl esters in 13 to 15 steps. Key steps for the assembly of the polyketide backbone of the dehydratase substrate analogue were a Yamamoto asymmetric carbocyclisation and a Sakurai allylation as well as an anti-selective aldol reaction. Reference compounds representing the E- and Z-configured double bond isomers as potential products of the dehydratase reaction were obtained from a common precursor aldehyde by Wittig olefination and Still-Gennari olefination. The final deprotection of TBS ethers and methyl esters was performed under mildly acidic conditions followed by pig liver esterase-mediated chemoselective hydrolysis. These conditions are compatible with the presence of a coenzyme A or a SNAc thioester, suggesting that they are generally applicable to the synthesis of complex polyketide-derived thioesters suited for biosynthesis studies.

15.
Bioorg Med Chem Lett ; 23(20): 5667-70, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23992865

RESUMEN

The herboxidiene biosynthetic gene cluster contains a regulatory gene and six biosynthetic genes that encode three polyketide synthases (HerB, HerC and HerD) and three tailoring enzymes (HerE, HerF and HerG). Through single crossover recombination, an integrative plasmid was inserted into the genome of Streptomyces chromofuscus ATCC 49982 between herE and herF, resulting in low-level expression of herF and the downstream herG. The mutant strain produced two new compounds, 18-deoxy-25-demethyl-herboxidiene and 25-demethyl-herboxidiene. HerF was expressed in Escherichia coli and biochemically characterized as the dedicated methyltransferase in herboxidiene biosynthesis. It prefers 25-demethyl-herboxidiene to 18-deoxy-25-demethyl-herboxidiene, suggesting that C-25 methylation is the last tailoring step.


Asunto(s)
Proteínas Bacterianas/metabolismo , Alcoholes Grasos/metabolismo , Metiltransferasas/metabolismo , Piranos/metabolismo , Streptomyces/enzimología , Proteínas Bacterianas/genética , Escherichia coli/metabolismo , Alcoholes Grasos/química , Genoma Bacteriano , Cinética , Espectroscopía de Resonancia Magnética , Metiltransferasas/genética , Conformación Molecular , Familia de Multigenes , Mutación , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Piranos/química , Streptomyces/genética
16.
Methods Mol Biol ; 2489: 173-200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35524051

RESUMEN

The CRISPR/Cas system, which has been widely applied to organisms ranging from microbes to animals, is currently being adapted for use in Streptomyces bacteria. In this case, it is notably applied to rationally modify the biosynthetic pathways giving rise to the polyketide natural products, which are heavily exploited in the medical and agricultural arenas. Our aim here is to provide the potential user with a practical guide to exploit this approach for manipulating polyketide biosynthesis, by treating key experimental aspects including vector choice, design of the basic engineering components, and trouble-shooting.


Asunto(s)
Policétidos , Streptomyces , Animales , Vías Biosintéticas/genética , Sistemas CRISPR-Cas/genética , Edición Génica , Policétidos/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
18.
ACS Catal ; 11(12): 6787-6799, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-36187225

RESUMEN

Ketosynthases (KSs) catalyze carbon-carbon bond forming reactions in fatty acid synthases (FASs) and polyketide synthases (PKSs). KSs utilize a two-step ping pong kinetic mechanism to carry out an overall decarboxylative thio-Claisen condensation that can be separated into the transacylation and condensation reactions. In both steps, an acyl carrier protein (ACP) delivers thioester tethered substrates to the active sites of KSs. Therefore, protein-protein interactions (PPIs) and KS-mediated substrate recognition events are required for catalysis. Recently, crystal structures of Escherichia coli elongating type II FAS KSs, FabF and FabB, in complex with E. coli ACP, AcpP, revealed distinct conformational states of two active site KS loops. These loops were proposed to operate via a gating mechanism to coordinate substrate recognition and delivery followed by catalysis. Here we interrogate this proposed gating mechanism by solving two additional high-resolution structures of substrate engaged AcpP-FabF complexes, one of which provides the missing AcpP-FabF gate-closed conformation. Clearly defined interactions of one of these active site loops with AcpP are present in both the open and closed conformations, suggesting AcpP binding triggers or stabilizes gating transitions, further implicating PPIs in carrier protein-dependent catalysis. We functionally demonstrate the importance of gating in the overall KS condensation reaction and provide experimental evidence for its role in the transacylation reaction. Furthermore, we evaluate the catalytic importance of these loops using alanine scanning mutagenesis and also investigate chimeric FabF constructs carrying elements found in type I PKS KS domains. These findings broaden our understanding of the KS mechanism which advances future engineering efforts in both FASs and evolutionarily related PKSs.

19.
Fitoterapia ; 147: 104761, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33069837

RESUMEN

Plumbagin is a pharmacologically active naphthoquinone present in the Plumbago zeylanica L. having important medicinal properties. The root of P. zeylanica is rich and primary tissue of the plumbagin biosynthesis and accumulation. The complete biosynthetic pathway of plumbagin in plant is still obscure. The present study attempts to understand the plumbagin biosynthetic pathway with the help of differential transcriptome and metabolome analysis of P. zeylanica leaf and root. The transcriptome data showed co-expression of Aldo-keto reductase (PzAKR), Polyketide cyclase (Pzcyclase) and Cytochrome P450 (PzCYPs) transcripts along with the Polyketide synthase (PzPKS) transcripts. Their higher expression in root as compared to leaf supports their possible involvement in plumbagin biosynthesis. The metabolome data of leaf and root revealed naphthalene derivative isoshinanolone that could be potential precursor of plumbagin. Pathway elucidation and transcriptome data of P. zeylanica, will enable and accelerate research on naphthoquinone biosynthesis in plants.


Asunto(s)
Metaboloma , Naftoquinonas/metabolismo , Plumbaginaceae/genética , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , India , Redes y Vías Metabólicas , Hojas de la Planta , Raíces de Plantas , Plumbaginaceae/enzimología
20.
IUCrJ ; 6(Pt 6): 1120-1133, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31709067

RESUMEN

Indanomycin is biosynthesized by a hybrid nonribosomal peptide synthase/polyketide synthase (NRPS/PKS) followed by a number of 'tailoring' steps to form the two ring systems that are present in the mature product. It had previously been hypothesized that the indane ring of indanomycin was formed by the action of IdmH using a Diels-Alder reaction. Here, the crystal structure of a selenomethionine-labelled truncated form of IdmH (IdmH-Δ99-107) was solved using single-wavelength anomalous dispersion (SAD) phasing. This truncated variant allows consistent and easy crystallization, but importantly the structure was used as a search model in molecular replacement, allowing the full-length IdmH structure to be determined to 2.7 Šresolution. IdmH is a homodimer, with the individual protomers consisting of an α+ß barrel. Each protomer contains a deep hydrophobic pocket which is proposed to constitute the active site of the enzyme. To investigate the reaction catalysed by IdmH, 88% of the backbone NMR resonances were assigned, and using chemical shift perturbation of [15N]-labelled IdmH it was demonstrated that indanomycin binds in the active-site pocket. Finally, combined quantum mechanical/molecular mechanical (QM/MM) modelling of the IdmH reaction shows that the active site of the enzyme provides an appropriate environment to promote indane-ring formation, supporting the assignment of IdmH as the key Diels-Alderase catalysing the final step in the biosynthesis of indanomycin through a similar mechanism to other recently characterized Diels-Alderases involved in polyketide-tailoring reactions. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at https://proteopedia.org/w/Journal:IUCrJ:S2052252519012399.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA